跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.0) 您好!臺灣時間:2024/04/24 10:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:趙勵元
研究生(外文):Chao, Li-Yuan
論文名稱:低容量液流阻尼器之性能測試與應用
論文名稱(外文):Performance Tests and Applications of Low-capacity Fluid Dampers
指導教授:王彥博
指導教授(外文):Wang, Yen-Po
學位類別:碩士
校院名稱:國立交通大學
系所名稱:土木工程系所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:98
語文別:中文
論文頁數:232
中文關鍵詞:液流阻尼器流體動力學牛頓流體非牛頓流體減振耐震性能測試
外文關鍵詞:fluid damperfluid dynamicsNewtonian fluidnon-Newtonian fluidvibration controlseismic performance test
相關次數:
  • 被引用被引用:2
  • 點閱點閱:350
  • 評分評分:
  • 下載下載:84
  • 收藏至我的研究室書目清單書目收藏:1
本研究旨在探討與合作廠商所研製之低容量液流阻尼器的力學特性與工程應用—包括設備基座之減振,以及房屋結構﹙含木造與鋼結構﹚之防震應用。為了解液流阻尼器之力學行為,本文根據流體動力學理論,考慮非牛頓流體,建立了液流阻尼器之流體動力分析模式。經由參數分析,探討活塞面積、活塞厚度及孔隙大小對於液流阻尼器力學行為之影響,並發現阻尼係數與勁度之頻率相依特性,此乃習用之Kelvin model所無法模擬者。元件測試結果顯示,合作廠商研製之液流阻尼器有飽滿而穩定之遲滯消能特性,其性能較日本原廠提供之阻尼器更為優異。設備基座減振測試結果顯示,低容量液流阻尼器展現極佳之減振效果,三分之一倍頻分析證明其有效之控制範圍極廣,整體而言以30~100Hz的頻寬內減振效果最為顯著。以振動台完成之一系列結構耐震性能測試結果,顯示低容量液流阻尼器無論應用於木造結構或鋼結構上,均能發揮減振效果,具有成為結構抗震阻尼器之應用潛力。
The objective of this study is to explore the developement mechanical characteristics of the low-capacity fluid dampers through our cooperation with company with possible industrial applications in control of machine-induced vibration, and earthquake resistance of building structure (on both wood and steel model structures) . To get more insight of the mechanics of viscous fluid dampers, a fluid dynamic model has been developed based on theories in fluid dynamics with consideration of non-Newtonian fluid. The effects of piston area, piston thickness and gap of the annular orifice on the mechanical behavior of the fluid dampers are assessed via the parametric study. Both the damping coefficient and stiffness of the fluid damper are found to be frequency- dependent, which could not be reflected by using the Kelvin’s model. Results of the component tests indicate that the fluid dampers developed by cooperation with company exhibit rich and stable energy-dissipative characteristics superior to those of the prototype by the Japan manufacturer. Effectiveness of the low-capacity fluid dampers in machine-induced vibration control have been observed via the simulation tests. The dampers are proved to be effective in a wide range of spectrum as revealed from the one-third octave spectrum analysis, and generally speaking, the control effect is most prominent within the bandwidth of 30~100 Hz. A series of seismic performance tests of the fluid dampers for structural response control by the shaking table has been conducted. Experimental results for both the wood and steel model structures show that the fluid dampers are effective in seismic vibration control. The potential of using fluid dampers for earthquake protection of building structures has been confirmed.
目錄
摘要 i
Abstract iii
目錄 v
表目錄 viii
圖目錄 xi
第一章 緒論 1
第二章 液流阻尼器之流體力學理論 8
2.1 基本構造及原理 8
2.2 黏滯阻尼器之流體力學理論 10
2.2.1 牛頓流體(Newtonian Fluid) 11
2.2.2 非牛頓流體(Non-Newtonian Fluid) 15
2.3 參數分析 21
2.3.1 參數設定 21
2.3.2 擬合結果 23
2.3.3 小結 24
第三章 含液流阻尼器結構之動力分析 35
3.1 前言 35
3.2 運動方程式 35
3.3 數值解析方法—狀態空間法 38
3.4 MATLAB數值模擬分析 42
3.4.1 模型建立與模擬規畫 42
3.4.2 模擬結果 44
3.5 ETABS數值模擬分析 45
3.5.1 ETABS 簡介 45
3.5.2定義木材性質與構件斷面 45
3.5.3阻尼器模型參數設定 47
3.5.4 模型建立 48
3.5.5 阻尼器參數擬合 49
3.5.6 擬合結果 49
3.6 小結 50
第四章 液流阻尼器之元件測試 79
4.1 前言 79
4.2 低容量液流阻尼器之元件測試 79
4.2.1元件測試構架 80
4.2.2試驗規劃與量測系統 81
4.2.3試驗結果與分析 82
4.3 參數擬合 83
4.3.1參數設定 83
4.3.2擬合結果 84
4.4 小結 84
第五章 液流阻尼器之防振(震)性能試驗 114
5.1 前言 114
5.2 低容量液流阻尼器在設備基座之減振性能測試 114
5.2.1 試驗規劃(Experimental Setup) 115
5.2.2 資料擷取與訊號處理分析 116
5.2.3 測試結果評估 117
5.2.4 小結 118
5.3鋼結構加裝液流阻尼器之耐震性能測試 119
5.3.1試驗規劃 119
5.3.2試驗計劃 122
5.3.3 耐震性能試驗與評估 123
5.3.3.1 Hachinohe Earthquake 123
5.3.3.2 El Centro Earthquake 125
5.3.3.3 Kobe Earthquake 128
5.3.4 小結 131
5.4木造結構加裝低容量液流阻尼器之耐震性能測試 132
5.4.1測試機構與量測系統 132
5.4.2 試驗配置與規劃 134
5.4.3 耐震性能試驗與評估 135
5.4.3.1 Kobe Earthquake 135
5.4.3.2 Hachinohe Earthquake 137
5.4.3.3 El Centro Earthquake 138
5.4.4 小結 140
第六章 結論與建議 221
參考文獻 224
附錄A. ARX系統識別理論 227
參考文獻
【1】 Yang, J. N.(1996),”Overview of Protective System,” Workshop on Application of Various Protective Systems to Bridge and Structure, Taipei, Taiwan pp.1-86.
【2】 盧煉元、鍾立來(1999), 「國內外結構控制技術之進展」,防災科技土木技術, 四月號,第14期,pp.81-95.
【3】 Wang Y.P., Teng M.C. and Chung, K.W.(2001),”Seismic Isolation of Rigid Cylindrical Tanks Using Friction Pendulum Bearings,” Earthquake Engineering and Structural Dynamics, Vol 30, Issue 7, July, pp. 1083-1099.
【4】 Wang Y.P., Chang Chien C.S.(2009), ”A study on using pre-bent steel strips as seismic energy-dissipative devices,” Earthquake Engineering and Structural Dynamic;v38:pp.1009-1026.
【5】 Wang Y.P., Chang Chien C.S., Lin C.S., Lee C.L. (2008),”Development of a Buckling-Type Metallic Damper,” The 4th International Conference on Advances in Structural Engineering and mechanics”, Jeju, Korea; pp.3325-3338.
【6】 Pall A.S., Marsh, C.(1982), ” Response of Friction Damped Braced Frames,” Journal of the Structural Division, ASCE, 108(No. ST6), pp.1313–1323.
【7】 Whittaker, A. and Constantinou, M.C.(2000), “Fluid Viscous Dampers for Building Construction,” First International Symposium on Passive Control, Tokyo Institute of Technology, Tokyo,pp.133-142.
【8】 Fu, Y. M. and Kasai, K.(1998), “Comparative Study of Frames Using Viscoelastic and Viscous Damper,” Journal of Structural Engineering, ASCE, Vol.124, No.5, pp.513-522.
【9】 Constantinus, M.C., and Symans, M.D.(1992), Experimental and Analytical Investigation of Seismic Response of Structures with Supplemental Fluid Viscous Dampers, Report No. NCEER-92-0032, National Center for Earthquake Engineering Research, Buffalo, New York.
【10】 Soong, T.T., and Constantinus, M.C.(1994), “Passive and Active Structural Vibration Control in Civil Engineering,” Springer-Verlag, New York.
【11】 http://www.taylordevices.com
【12】 徐德修、李永峰(1998),“結構液體阻尼器之設計及應用”,結構工程,第十三卷,第二期,pp.31-42.
【13】 黃賜琳(2002),“線性液流阻尼器阻尼係數之探討”,碩士論文,國立成功大學土木工程研究所.
【14】 李永峰(2006),“足尺寸液流阻尼器之研發”,博士論文,國立成功大學土木工程研究所.
【15】 Federal Emergency Management Agency (FEMA).(1997), “Guidelines for the seismic rehabilitation of buildings.” FEMA Publication No.273.
【16】 Verma, V., Ghosh, A. K., and Kushwaha, H. S.(2002), “Dynamic characteristicsof a hydraulic damper.” J. Pressure Vessel Technol.,445(2), pp.149-156.
【17】 Constantinou, M. C., and Symans, M. D.(1992), “Experimental investigationof seismic response of structures with supplemental fluid viscous dampers,” National Center for Earthquake Engineering Research Rep. No. NCEER-92-0032, State Univ. of New York at Buffalo, Buffalo, N.Y.
【18】 Seleemah, A. A., and Constantinou, M. C.(1997), “Investigation of seismic response of buildings with linear and nonlinear fluid viscous dampers,” National Center for Earthquake Engineering Research Rep. No. NCEER-97-0004, State Univ. of New York at Buffalo, Buffalo, N.Y.
【19】 Makris, N., Burton, S., Hill, D., and Jordan, M.(1996), “Analysis and design of ER damper for seismic protection of structures,” J. Eng. Mech., ASCE, 122(10),pp.1003-1011.
【20】 Chien-Yuan Hou(2008), “Fluid Dynamics of Nonlinear Viscous Damper,” Journal of Structural Engineering, Vol. 134, No. 1, pp. 56-63.
【21】 Carreau, P. J.(1972), “Rheological equations from molecular network theories.” Trans. Soc. Rheol., 16(1),pp.99-128.
【22】 Yasuda, K.(1979), “Investigation of the analogies between viscometric and linear viscoelastic properties of polystyrene fluids,” Ph.D. thesis, MIT, Cambridge, Mass.
【23】 “木構造建築物設計及施工技術規範”(1995),內政部台內營字第8486750號函訂頒。
【24】 詹明勳、王亞男、黃憶汝、林瑞進(2005), “老樹巨木樹齡估測之研究,” 中華林學季刊,38(2),pp.139-150.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top