跳到主要內容

臺灣博碩士論文加值系統

(44.201.99.222) 您好!臺灣時間:2022/12/03 14:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王顥勳
研究生(外文):Wang, Hao-Hsun
論文名稱:挫屈式韌性斜撐之耐震性能試驗與分析
論文名稱(外文):Seismic Performance Test and Analysis of Ductile Braces with Pre-bent Strips
指導教授:王彥博
指導教授(外文):Wang, Yen-Po
學位類別:碩士
校院名稱:國立交通大學
系所名稱:土木工程系所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:98
語文別:中文
論文頁數:201
中文關鍵詞:預彎拱鈑廣義文氏模型韌性斜撐耐震性能試驗
外文關鍵詞:pre-bent steel stripsGeneric Wen’s Modelductile bracesseismic performance tests
相關次數:
  • 被引用被引用:0
  • 點閱點閱:331
  • 評分評分:
  • 下載下載:71
  • 收藏至我的研究室書目清單書目收藏:1
本研究針對預彎拱鈑進行一系列元件測試與耐震性能試驗,探討其力學特性及建築抗震應用之可行性。元件測試結果顯示,預彎拱鈑之遲滯迴圈相當穩定,且隨鈑厚及擾動振幅之增加而愈趨飽滿。ANSYS應力分析與試驗結果有相當程度之契合,有助於對預彎拱鈑元件力學行為之掌握。為能進一步預測結構之地震反應,本研究採用廣義文氏模型(Generic Wen’s Model)來描述預彎拱鈑之力學行為,並以四階Runge-Kutta法求解非線性微分方程,藉由調整形狀控制函數之各項參數,使其遲滯迴圈與元件測試結果相符,並結合狀態空間法求解運動方程式,經由疊代過程完成結構之非線性動態分析。耐震性能試驗結果顯示,以預彎拱鈑為核心結合H-型鋼所組成之韌性斜撐可大幅提高結構低振態之等效阻尼比,降低其振動反應,但也因韌性斜撐之加勁作用而放大高振態之反應。減震效能隨地震強度之增大而愈趨明顯,主要是預彎拱鈑之降伏程度增加所致。模擬分析與試驗結果呈現不錯之相關性,惟仍存在不容忽視之誤差。誤差之來源應為分析模型中忽略斜撐(H-型鋼)的存在,因而高估結構勁度之結果。建議未來在建立結構系統時,應將斜撐考慮進去。
In this study, a series of component tests and seismic performance tests on the pre-bent steel strip has been conducted to explore its mechanical properties and the feasibility of using it for earthquake resistance of building structures. Component tests show that the hysteresis loops of the pre-bent steel strips are pretty stable, and richness of the hysteresis increases with the thickness of the strips as well as the disturbing amplitude. Stress analysis by ANSYS agrees well with the experimental results, which helps in getting insight of the mechanical behavior of the pre-bent steel strips. In order to further predict the seismic structural responses, the Generic Wen's Model is adopted in this study to simulate the mechanical behavior of the pre-bent steel strips. In form of a nonlinear differential equation, the Generic Wen's Model is resolved by using the fourth-order Runge-Kutta method, with parameters of the shape function calibrated to comply with the hysteresis obtained by the component tests. The nonlinear dynamic analysis of the structure is then carried out via an iterative process using the state-space approach. Seismic performance tests show that the ductile braces, consisting of the pre-bent steel strips and wide-flange steel beams (H-beams), significantly enhance the equivalent damping ratios in the lower modes of the structure, and therefore reduce the overall dynamic responses. While the higher mode responses are somewhat amplified due to stiffness strengthening by the ductile braces. The seismic performance of the ductile braces becomes more pronounced with the quake intensity increased, due to increase in the extent of yielding of the pre-bent steel strips. Simulation results of the seismic performance tests are fairly correlated with the experimental data, although the discrepancies are not negligible. The source of errors is believed to come from neglecting the H-beams in the modeling which results in over-estimation of the stiffness. It is suggested that the H-beam should be taken into account in modeling the structural system in the future.
摘要 i
Abstract iii
誌謝 v
目錄 vii
表目錄 ix
圖目錄 xi
第一章 緒論 1
第二章 預彎拱鈑之非線性彈性挫屈理論 7
第三章 預彎拱鈑之ANSYS分析 15
3.1 前言 15
3.2 ANSYS分析流程之介紹 15
3.2.1 前處理 16
3.2.2 模型加載及求解 19
3.2.3 後處理器 21
3.3預彎拱鈑元件之ANSYS非線性分析 22
3.3.1 挫屈消能元件幾何外型之建立 22
3.3.2 網格元素種類之選取及描述 23
3.3.3 定義材料參數 24
3.3.4 建立網格 24
3.3.5 邊界條件之設定 25
3.4 對稱配置預彎拱鈑之ANSYS非線性模擬分析 25
3.4.1 挫屈消能元件幾何外型之建立 25
3.4.2 網格元素種類之選取及描述 25
3.4.3 定義材料參數 26
3.4.4 建立網格 26
3.4.5 邊界條件之設定 27
3.5 歷時分析 27
3.6 分析結果 27
3.7 ANSYS分析過程常見問題 29
第四章 預彎拱鈑之元件試驗與分析 32
4.1 前言 32
4.2 預彎拱鈑之元件測試 32
4.2.1 試驗架構(Experimental Setup) 33
4.2.2 試驗結果與討論 35
第五章 結構加裝阻尼器之解析模型 40
5.1 前言 40
5.1.1 文氏模型(Wen’s Model) 40
5.1.1.1文氏模型簡介 40
5.1.1.2遲滯回復變形函數(Z)與各參數值之關係 42
5.1.1.3遲滯迴圈擬合實例 44
5.1.2 廣義文氏模型(Generic Wen’s Model) 44
5.1.2.1廣義文氏模型簡介 45
5.1.2.2遲滯迴圈之廣義文氏模型擬合 46
5.2 運動方程式 48
5.3 數值解析—狀態空間法 50
5.4 實例分析 52
5.4.1 遲滯迴圈之廣義文氏模型擬合 53
5.4.2 耐震性能試驗與評估 53
5.4.2.1 El Centro Earthquake 54
5.4.2.2 Hachinohe Earthquake 58
5.4.2.3 Kobe Earthquake 63
第六章 韌性斜撐之耐震性能測試 69
6.1 前言 69
6.2 測試設備與量測系統 69
6.2.1 地震模擬振動台 69
6.2.2 五層樓鋼結構模型 70
6.2.3 控制系統與資料擷取系統 71
6.2.3 感測計配置 72
6.3 韌性斜撐之配置與試驗規劃 72
6.3.1 預彎拱鈑試體規格 72
6.3.2 韌性斜撐配置 73
6.3.3 試驗規劃 74
6.4耐震性能試驗與評估 74
6.4.1 El Centro Earthquake 75
6.4.2 Hachinohe Earthquake 80
6.4.3 Kobe Earthquake 84
第七章 結論與建議 90
參考文獻 92
附錄A. 四階Runge-Kutta數值解 193
附錄B. 系統識別之理論介紹 196

【1】Virgin, L. N. and Davis, R. B. (2003),“Vibration Isolation Using Buckled Struts, ” Journal of Sound and Vibration, Vol. 260, No.5, pp. 965-973.
【2】Bazant, Z. P. and Cedolin, L. (1991), Stability of Structures, Oxford University Press, Oxford.
【3】Thompson, J. M. T. and Hunt, G. W. (1984), Elastic Instability Phenomena, Wiley, New York.
【4】Winterflood, J., Barber, T. A. and Blair, D. G. (2002),“Using Euler Buckling Spring for Vibration Isolation, ” Classical and Quantum Gravity, pp. 1639-1645.
【5】Winterflood, J. and Blair, D. G. (2002),“High Performance Vibration Isolation Using Springs in Euler Column Buckling mode, ” Physics Letters A, 300: 122-130.
【6】Chin, E. J., Lee, K. T., Winterflood, J. Jacob, J., Blair, D. G. and Ju, L. (2004),“Techniques for Reducing the Resonant Frequency of Euler Spring Vibration Isolations, ” Classical and Quantum Gravity, pp. 959-963.
【7】Plaut, R. H., Sidbury, J. E. and Virgin, L. N. (2005), “Analysis of Buckledand Pre-bent Fixed-end Folumns Used as Vibration Isolators, ” Journal of Sound and Vibration, Vol. 283, No. 3-5, pp. 1216-1228.
【8】Ji, J. C. and Hansen, C. H. (2000),“Non-linear Response of a Post-buckled Beam Subjected to a Harmonic Axial Excitation, ” Journal of Sound and Vibration, Vol.237, No. 2, pp. 303-318.
【9】Bonello, P., Brennan, M. J. and Elliott, S. J. (2005),“Vibration Control Using an Adaptive Tuned Vibration Absorber with a Variable Curvature Stiffness Element, ” Smart Materials and Structures , Vol.14, No. 5, pp. 1055-1065.
【10】胡家杰(2008), 「韌性斜撐之結構消能減震應用」, 碩士論文 ,交通大學土木工程學系.
【11】張簡嘉賞(2009), 「基於挫屈及摩擦機制之位移型抗震阻尼器的試驗研究」, 博士論文 ,交通大學土木工程學系.
【12】Wang, Y. P., Chang Chien, C. S., Lin, C. S. and Lee, C. L. (2008) , “Development of a Buckling-type Metallic Damper, ” The 4th International Conference on Advances in Structural Engineering and Mechanics , Jeju, Korea, pp. 3325-3338.
【13】Wang Y. P., Chang Chien C. S. (2009), ”A Study on Using Pre-bent Steel Strips as Seismic Energy-dissipative Devices, ” Earthquake Engineering and Structural Dynamic;v38: 1009-1026.
【14】Hsieh Y. Y. (1998), Elementary Theory of Structures: Prentice Hall, 3rd ed., Englewood Cliffs, NJ.
【15】李輝煌(2005), 「ANSYS 工程分析基礎與觀念」, 高立圖書有限公司.
【16】劉晉奇, 褚晴暉, (2006), 「有限元素分析與ANSYS 的工程應用」, 滄海書局.
【17】Roy R. and Craig, Jr. (1981), “Structural Dynamics, ” New York, John Wiley & Sons.
【18】Steven C. Chapra and Raymond P. Canale (2002), “Numerical Methods for Engineers, ” McGRAW-HILL.
【19】J Song and A D. Kiureghian (2006), “Generalized Bouc-Wen Model for Highly Asymmetric Hysteresis, ” Journal of Engineering Mechanics-ASCE. 132 (6), pp. 610-618.
【20】Lopez-Almansa, F., Barbat, A. H., and Rodellar, J. (1988), “SSP Algorithm for Linear and Non-linear Dynamic Response Simulation,” Int. Journal for Numerical Methods in Engineering, Vol. 26, pp2687-2706.
【21】鍾立來、王彥博、楊創盛, (1996), 「結構動力數值分析之穩定性及精確性」, 中華民國結構工程學會,結構工程,第十一卷,第四期,第55-66頁.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top