跳到主要內容

臺灣博碩士論文加值系統

(44.222.189.51) 您好!臺灣時間:2024/05/20 14:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林意晴
研究生(外文):Lin, Yi-Ching
論文名稱:鋼梁接SRC柱之梁柱接頭力學行為之數值模擬分析
論文名稱(外文):Numerical Simulation on Mechanical Behavior of Steel Beam to Steel Reinforced Concrete (SRC) Column Connections
指導教授:翁正強翁正強引用關係
指導教授(外文):Weng, Cheng-Chiang
學位類別:碩士
校院名稱:國立交通大學
系所名稱:土木工程學系
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:114
中文關鍵詞:SRC梁柱接頭SRC柱鋼梁反復載重試驗接頭區剪力強度耐震性能韌性數值模擬ANSYS
外文關鍵詞:SRCConnectionsSRC ColumnSteel BeamNumerical SimulationSeismic BehaviorPanel ZoneShear StrengthDuctilityANSYS
相關次數:
  • 被引用被引用:1
  • 點閱點閱:399
  • 評分評分:
  • 下載下載:70
  • 收藏至我的研究室書目清單書目收藏:1
近年來許多大尺寸之「鋼梁接SRC柱」之梁柱接頭(Steel Beam-to-Steel Reinforced Concrete Column Connections,簡稱「S-SRC接頭」)的反復載重耐震試驗結果顯示,此種梁柱接頭擁有良好的耐震能力。然而,由於進行大尺寸試驗必須消耗相當的時間、人力與成本,因此以數值模擬分析之方式日漸成為瞭解梁柱接頭力學行為的另一種選擇。本研究採用ANSYS有限元素分析軟體,針對五組實尺寸S-SRC梁柱接頭之反復載重試驗結果進行數值模擬分析。首先,依據試驗之實尺寸試體建立其數值分析模型,其次將數值分析結果與試驗結果進行比較與討論。
  分析結果顯示,由於鋼梁插入SRC柱內的部份受到接頭區混凝土的有效束制,使得鋼梁可以於SRC柱混凝土面外發展出良好的塑性鉸,且其發生位置遠離梁柱接頭內部之銲道,可有效避免銲道發生脆性破壞。研究結果顯示,經過適當設計之S-SRC梁柱接頭其鋼梁端部不須經由補強或減弱(切削鋼梁翼板斷面)之方式,即能發揮預期之強度與韌性;同時亦因鋼梁不須切削或補強,有助於節省梁柱接頭區之鋼梁製作成本。另一方面,ANSYS之分析亦證實在梁柱接頭區之H型鋼柱腹板加銲適當之疊合板,可有效提昇梁柱接頭區之剪力強度與抵抗剪力變形的能力,進一步減少梁柱接頭區混凝土開裂的情形。本研究亦初步證實,於SRC梁柱接頭區加銲足夠厚度之疊合板以取代接頭區之圍束箍筋大致上是可行的,此種作法將有助於簡化接頭區箍筋施工之複雜性。整體而言,本研究經由ANSYS分析S-SRC梁柱接頭力學行為之結果與前人之試驗結果大致相近,顯示本研究建立之數值分析模型可得到合理的模擬結果,並證明此種S-SRC梁柱接頭在適當的設計下具備良好的耐震能力。

During the past decade, many test results of steel beam-to-steel reinforced concrete column (S-SRC) connections have shown satisfactory seismic performance. However, due to the fact that the cost of conducting full-scale experiment is expensive and time consuming, an alternative approach using the numerical simulation technique has become increasingly desirable. The objective of this research is to use the highly recognized finite element method (FEM) computer software ANSYS to numerically simulate the mechanical behavior of the S-SRC connections. In the first stage, a FEM model simulated the SRC test specimen were generated and analyzed. The numerical results were compared to the SRC test data to confirm the validity of the FEM model. In the second stage, the parameters related to the design of the S-SRC connections were investigated using the valid FEM model obtained from the previous stage.
The numerical results showed that the reinforced concrete in the connection zone provided “effective constraint” to the steel beam which was embedded in the SRC column. This constraint helped the steel beam to develop plastic hinge right out the SRC column face, and the welded joint can be protected from premature failure. In addition, the ANSYS analysis also confirmed that welding doubler plate on the web of the H-shaped steel can effectively promote the shear strength and reduce the concrete cracking in the connection zone. The aforementioned analysis suggested that it is feasible to substitute the doubler plate for the hoop reinforcements in the SRC connection zone. Finally, it is hoped that the results of this numerical investigation could provide further understanding on the mechanical behavior and the seismic performance of the S-SRC connections.

中文摘要...................................................I
英文摘要..................................................II
誌謝.....................................................III
目錄......................................................IV
表目錄...................................................VII
圖目錄..................................................VIII
第一章 緒論................................................1
1.1 前言...................................................1
1.2 研究動機與目的.........................................2
第二章 文獻回顧............................................4
2.1 國內外SRC構造相關規範..................................4
2.1.1 美國AISC鋼構造設計規範(2005).......................4
2.1.2 美國ACI 318混凝土構造設計規範(2008)................5
2.1.3 日本建築學會AIJ-SRC構造設計規範(2001)..............5
2.1.4 我國SRC構造設計規範(2004)..........................6
2.3 S-SRC梁柱接頭相關試驗文獻..............................8
2.4 應用ANSYS有限元素程式分析之相關文獻....................9
第三章 S-SRC梁柱接頭之有限元素分析........................11
3.1 前言..................................................11
3.2 分析模型種類..........................................13
3.3 元素種類..............................................14
3.3.1 鋼材元素SOLID45.....................................14
3.3.2 混凝土元素SOLD65....................................14
3.3.3 鋼筋元素LINK8.......................................15
3.3.4 配對接觸元素........................................16
3.4 材料性質..............................................18
3.4.1 鋼材材料性質........................................18
3.4.2 鋼筋材料性質........................................18
3.4.3 混凝土材料性質......................................18
3.4.3.1 混凝土單軸之受力行為..............................18
3.4.3.2 混凝土雙軸之受力行為..............................18
3.4.3.3 混凝土三軸之受力行為..............................19
3.4.3.4 破壞準則..........................................20
3.4.3.5 混凝土開裂壓碎之模擬..............................23
3.5 S-SRC梁柱接頭模型之建立...............................23
3.5.1 基本假設............................................23
3.5.2 試體簡介............................................24
3.5.3 S-SRC梁柱接頭之模型.................................24
3.5.4 邊界條件設定........................................24
3.6 ANSYS非線性求解.......................................25
第四章 有限元素分析結果與討論.............................27
4.1 收斂性分析............................................27
4.1.1 網格劃分數量........................................27
4.1.2 接觸元素參數設定....................................28
4.1.3 SOLID65混凝土元素收斂性改善.........................29
4.2 反復載重與位移遲滯迴圈圖..............................29
4.3 梁柱接頭之變形分量....................................31
4.3.1 梁柱接頭區剪力變形計算..............................31
4.3.2 柱變形計算..........................................32
4.3.3 梁變形計算..........................................32
4.3.4 分析計算之變形結果..................................33
4.4 應變資料分析..........................................37
4.4.1接頭區鋼梁應變分析...................................37
4.4.2接頭區鋼柱腹板剪應變分析.............................38
4.4.3接頭區箍筋應變分析...................................39
第五章 結論與建議.........................................40
5.1 結論..................................................40
5.2 建議..................................................40
參考文獻..................................................42
符號說明..................................................45
1.翁正強(2004),「鋼骨鋼筋混凝土構造設計教材」,內政部建築研究所,十二月,台北。
2.翁正強(2005),「我國鋼骨鋼筋混凝土構造(SRC)設計規範之發展」,結構工程,中華民國結構工程學會,第二十卷,第一期,pp. 3-30,三月,台北。
3.FEMA-350, (2000), Recommended Seismic Design Criteria for New Steel Moment-Frame Buildings, Prepared by the SAC Joint Venture for the Federal Emergency Management Agency, Washington, D.C.
4.ANSYS Inc., (2007) “Release 11.0 Documentation for ANSYS,” ANSYS Inc, Canonsburg, Pennsylvania.
5.AISC, (2005) “Specification for Structural Steel Buildings,” American Institute of Steel Construction, Chicago, Illinois.
6.ACI, (2008) “Buildings Code Requirements for Structural Concrete (ACI 318-08) and Commentary (ACIR318R-08),” American Concrete Institute, Farmington Hills, Michigan.
7.AIJ, (2001) “Standards for Structural Calculation of Steel Reinforced Concrete Structures,” Architectural Institute of Japan, Tokyo.
8.內政部(2004),「鋼骨鋼筋混凝土構造(SRC)設計規範與解說」,內政部營建署,七月,台北。
9.Krawinkler, H., (1978) “Shear in Beam-Column Joints in Seismic Design of Steel Frames,” Engineering Journal, American Institute of Steel Construction, 3rd Quarter.
10.AISC, (2005) “Seismic Provisions for Structural Steel Buildings,” American Institute of Steel Construction, Chicago, Illinois.
11.徐振益(2004),「交會區鋼骨剪力強度對SRC柱接鋼梁之梁柱接頭耐震性能影響之研究」,碩士論文,交通大學,土木工程研究所,新竹。
12.楊宗翰(2004),「鋼骨彎矩強度對SRC柱接鋼梁之梁柱接頭耐震性能影響之研究」,碩士論文,交通大學,土木工程研究所,新竹。
13.Weng, C.C., Yin, Y.L., Wang, H.S. and Yang, C.H., (2008) “Experimental Study on Seismic Performance of Steel Beam to SRC Column Connections,” Journal of the Chinese Institute of Engineers, Vol. 31, No. 2, pp. 239-252.
14.陳勤傑(1996),「鋼骨鋼筋混凝土梁柱接頭之耐震行為」,碩士論文,台灣科技大學,營建工程研究所,台北。
15.Chou, C.C., Uang, C.M. (2002) “Cyclic performance of a type of steel beam to steel-encased reinforced concrete column moment connection,” Journal Constructional Steel Research Vol. 58, pp.637-663.
16.Nie, J.G., Qin, K. and Cai, C.S., (2008) “Seismic Behavior of Connections Composed of CFSSTCs and Steel-concrete Composite Beams-Finite Element Analysis,” Journal of Constructional Steel Research, Vol. 64, June, pp. 680-688.
17.Elmorsi, M., Reza Kianoush, M. and Tso W.K., (1998) “Nonlinear Analysis of Cyclically Loaded Reinforced Concrete Structures,” ACI Structural Journal, Vol. 95, No. 66, November, pp. 725-739.
18.Erduran, E. and Yakut, A., (2004) “Drift Based Damage Functions for Reinforced Concrete Columns,” Computers and Structures, Vol. 82, January, pp. 121-130.
19.Zhou, T.H., (2004) “Study on Seismic Behavior and Load-carrying Capacity of Concrete-filled Square Tubular Column to Steel Beam Connection,” Ph.D. dissertation, Xi'an University of Architecture and Technology, Xi'an, Shaanxi.
20.Lin, J., (2004) “Experimental Study on Seismic Performance of Rectangular Concrete-filled Steel Tubular Column to Steel Beam Connections,” Master thesis, Fuzhou University, Fuzhou, Fujian.
21.陳傑(2008),「預選塑性區鋼橋柱耐震行為之研究」,博士論文,國立臺灣科技大學,營建工程研究所,台北。
22.Chen, W. F. and Saleeb, A. F., (1982) “Constitutive Equations for Engineering Materials, Vol. 1, Elasticity and Modelling,” John Wiley & Sons, New York.
23.Nelissen, L.J.M., “Biaxial Testing of Normal Concrete, (1972)” HERON, Vol.18, No. 1.
24.Kuper, H., Hilsdorf, H. K., and Rusch, H., (1969) “Behavior of Concrete under Biaxial Stress,” Journal of American Concrete Institute, Vol. 66, No. 8, pp. 656-666.
25.Mirza, S.A., (1989) “Parametric Study of Composite Column Strength Variability,”Journal of Constructional Steel Research, Vol. 14, No. 2, pp. 121-137.
26.Mirza, S.A., and Skrabek, B.W., (1991) “Reliability of Short Composite Beam-Column Strength Interaction,” Journal of Structural Engineering, ASCE, Vol. 117, No. 8, pp. 2320-2339.
27.Mirza, S.A., and Skrabek, B.W., (1992) “Statistical Analysis of Slender Composite Beam-Column Strength,” Journal of Structural Engineering, ASCE, Vol. 118, No.5, pp. 1312-1332.
28.Bresler, B., (1974) “Reinforced Concrete Engineering: Volume I - Materials, Structural Elements, Safety,” John Wiley & Sons, New York.
29.Mander, J.B., Priestley, M. J. N. and Park, R., (1998) “Theoretical Stress-strain Model for Confined Concrete,” Journal of Structural Engineering, ASCE, Vol. 114, No.8, pp. 1804-1826.
30.Willam K. J., and Warnke, E. P., (1974) “Constitutive Models for the Triaxial Behavior of Concrete,” Proceeding, International Association of Bridge and Structural Engineering, Vol. 19, ISMES, Bergamo Italy, pp. 174.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top