(3.238.7.202) 您好!臺灣時間:2021/03/03 22:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林卓民
論文名稱:以經驗方法評估潛盾隧道施工遭遇卵礫石地盤引致之地表沉陷
論文名稱(外文):An Empirical Estimaion of Ground Settlement due to Shield Tunneling in Gravelly Soil
指導教授:方永壽方永壽引用關係
學位類別:碩士
校院名稱:國立交通大學
系所名稱:土木工程學系
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:148
中文關鍵詞:潛盾隧道卵礫石層最大沉陷量沉陷歷時曲線地表沉陷槽
外文關鍵詞:empirical methodfield measurementgravelly soilsettlementshield tunneling
相關次數:
  • 被引用被引用:3
  • 點閱點閱:353
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:97
  • 收藏至我的研究室書目清單書目收藏:1
根據現地監測資料,本研究探討潛盾隧道施工國內外遭遇卵礫石地盤造成之地表沉陷歷時曲線及地表沉陷槽。本研究探討利用雙曲線模式模擬地表沉陷歷時曲線之適用性。本研究探討潛盾隧道於卵礫石地盤施工引致之地表沉陷槽寬度i值及最大地表沉陷量Smax,並獲得以下各項結論。
1.桃園國際機場聯外捷運系統CU02A標;潛盾隧道施工遭遇地層之卵石含量為55%,礫石含量為30%,砂之含量為11%,粉土及黏土含量為4%,此地盤含量最多的是卵石,其餘為礫石土壤,故此土層稱為卵礫石土壤(Cobble and Gravelly Soil)。
2.大部分地表沉陷在潛盾機首通過後10天至30天內完成。潛盾隧道施工引致隧道中心線上方之地表沉陷歷時曲線,可以使用雙曲線關係加以模擬。
3.潛盾隧道施工所產生之沉陷縱剖面可分為六個階段,分別為:(1)先行沉陷、(2)開挖面到達前擠壓隆起、(3)開挖面前地盤損失、(4)盾身通過造成之沉陷、(5)盾隙閉合沉陷、及(6)後續沉陷。
4.地表沉陷槽可使用常態分佈曲線模擬。隧道中心線深度愈深,潛盾隧道造成之地表沉陷槽寬度則愈寬。在地下水位以下之卵礫石土層開挖潛盾隧道引致之沉陷寬度,較於砂土層及黏土層開挖隧道造成之沉陷槽為寬。
5.地表最大沉陷量Smax範圍僅2.8~9.0 mm,明顯小於砂土及黏土層造成之最大沉陷範圍,推測其原因,由於卵礫石地層勁度模數大、剪力強度高,及自立性高,因此潛盾機掘進時造成地表沉陷Smax比於其它土層造成者小。

In this thesis, an empirical method is proposed to estimate the ground settlement due to shield tunneling in gravelly soil. Surfae settlement data monitored in the field are collected during the construction of shield tunnels in gravelly soil. Based on the field data, the hyperbolic model is proposed to simulate the settlement-time relationship due to shield tunneling. Base on the field data, this study analyzes the settlement trough width parameter i and maximum surface settlement Smax as a function of tunnel depth Z and tunnel radius R. Base on this study, the following conclusions can be made for shield tunneling in gravelly soil.
1.For the Taoyuan International Airport Access MRT System Case, the grain size analysis indicates the soils to be excavated contained 55% cobble, 30% gravel, 11% sand, and 4% of silt and clay. So the ground to be driven is called cobble and gravelly soil.
2.The settlement-time relationship induced by shield tunneling in gravelly soils can be described with the hyperbolic model. Field data indicates the maximum surface settlement Smax was reached in 10 days to 30 days after the passage of the tunnel face.
3.Based on the longitudinal settlement profile, the ground settlement due to shield tunneling can be separated into six stage; namely: preceding settlement; face-pushing heaving; face loss settlement; shield passage settlement; tail-void closure settlement and succeeding settlement.
4.The surface settlement trough can be approximated by the normal distribution curve suggested by Peck. Field data indicates the settlement-trough width increases with the increasing tunnel depth. The width of settlement trough in gravelly soil is wider than that in sandy and clayey soils.
5.In gravelly soil, the maximum surface settlement Smax measured above the center of the tunnel was only 2.8 to 9.0 mm. This value was much smaller than the Smax due tunneling in sandy and clayey soils. This is probably because of the stiffness and shear strength of the gravelly soil is much higher than that for sandy and clayey soils.

摘要 I
誌謝 V
目錄 VI
表目錄 X
圖目錄 XI
符號說明 XIV
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 2
1.3 論文組織 3
第二章 文獻回顧 5
2.1 卵礫石土壤之工程特性 5
2.2 潛盾隧道工法之沿革 6
2.3 潛盾隧道工法施工原理 7
2.4 潛盾機型式 8
2.5 潛盾隧道施工引致地盤沉陷之原因 9
2.5.1 盾尾間隙閉合 9
2.5.2 襯砌變形 10
2.5.3 潛盾機蛇行或超挖 10
2.5.4 開挖面應力的改變 10
2.5.5 地下水位變化 11
2.6 地表沉陷歷時曲線 11
2.6.1 沉陷對數時間模式 12
2.6.2 雙曲線模式 12
2.7 單一隧道施工引致之地盤變位 13
2.7.1 沉陷槽寬度估算 14
2.7.2 最大沉陷量估算 16
2.7.3 預估沉陷槽 18
第三章 台灣電力公司161 kV電纜線路洞道工程案例 20
3.1 工程概況 20
3.2 地質概況 20
3.3 卵礫石地盤潛盾施工 21
3.4 切刃轉盤磨損 21
3.5 監測計畫 22
第四章 桃園國際機場聯外捷運系統潛盾工程案例 23
4.1 工程概況 23
4.2 地質概況 24
4.3 大口徑鑽孔地質調查 24
4.4 遭遇卵礫石潛盾機之設計考量 25
4.4.1 切刃盤開口及限制 25
4.4.2 切刃盤之切刃配置 26
4.5 灌漿改良潛盾機上方地盤 26
4.6 切刃轉盤磨損 27
4.7 監測計畫 27
第五章 地表沉陷歷時曲線與雙曲線模式 28
5.1 雙曲線模式介紹 28
5.1.1 決定雙曲線參數a及b 29
5.1.2 參數1/a之物理意義 30
5.1.3 參數1/b之物理意義 31
5.2 以雙曲線模式模擬地表沉陷歷時曲線 31
5.3 地表初始沉陷速率1/a探討 32
5.4 地表最終沉陷量Smax=1/b探討 33
5.5 地表沉陷歷時曲線的限制性 33
第六章 地表沉陷縱剖面與雙曲線模式 35
6.1 地表沉陷縱剖面 35
6.2 雙曲線模式介紹 36
6.2.1 決定雙曲線參數a及b 36
6.2.2 參數1/a之物理意義 37
6.2.3 參數1/b之物理意義 38
6.3 以雙曲線模式模擬地表沉陷縱剖面 38
6.4 卵礫石地層地表初始斜率探討 39
6.5 卵礫石地層地表最終沉陷量探討 40
第七章 潛盾隧道於卵礫石地層施工造成之地表沉陷槽 41
7.1 常態分佈沉陷槽理論 41
7.1.1 例題說明如何決定i與Smax 42
7.2 以常態分佈理論模擬現地監測沉陷資料 43
7.3 沉陷槽寬度參數i 45
7.4 隧道中心上方地表最大沉陷量Smax 46
7.5 以經驗方法評估地表沉陷 47
7.5.1 分析評估案例 47
7.5.2 經驗法估算沉陷槽與監測沉陷槽之比較 48
7.6 經驗評估方法的優點與限制 50
第八章 結論與建議 52
8.1 結論 52
8.2 建議 54
參考文獻 55
表 66
圖 82

1.日本土木學會(1987),“隧道標準規範潛盾篇”。
2.日本土木學會(1997),“日本隧道工程標準規範及解說-潛盾工法篇”。
3.日本土質工學會(1992),“シ一ルド工法入門”。
4.方永壽、陳秋宗,(1988),“潛盾隧道施工盾尾間隙所引致之地盤沉陷”, 論文集中華民國第十二屆力學研討會議,台北市,第707-716 頁。
5.中華民國隧道協會叢書(2004),“潛盾隧道施工技術規範之研討”,民國93年8月。
6.中華民國隧道協會叢書(2007),“潛盾隧道設計及施工準則”。
7.中華顧問工程司(2000),“新竹科學工業園區第三期開發工程三期給水污水增設工程配合工程之二放流管線第二階段延伸工程施工計畫書”。
8.中華顧問工程司(2001),“新竹科學工業園區第三期開發工程三期給水污水增設工程配合工程之三放流管線第三階段延伸工程施工計畫書”。
9.中華顧問工程司(2002),“新竹科學工業園區第三期開發工程三期給水污水增設工程配合工程之三放流管線第三階段延伸工程潛盾穿越高速公路施工計畫書”。
10.中華顧問工程司(2003),“新竹科學工業園區第三期開發工程三期給水污水增設工程配合工程之二放流管線第二階段延伸工程安全監測系統工程施工計畫書”。
11.中華顧問工程司(2004),“新工~湖北161KV電纜線路洞道暨附屬機電設備設計及施工統包工程潛盾施工計畫書”。
12.介興/清水營造股份有限公司(2008a),“竹工超高壓變電所出口161kv電纜線路洞道統包工程潛盾安全觀測系統計劃書”,民國97年5月。
13.介興/清水營造股份有限公司(2008b),“竹工超高壓變電所出口161kv電纜線路洞道統包工程潛盾施工計劃書”,民國97年8月。
14.台灣世曦工程顧問股份有限公司(2007),“台灣桃園國際機場聯外捷運系統建設計劃細部設計及施工監造顧問服務DU01標-補充地質調查報告”。
15.朱旭(1984),“潛盾施工法在國內應用之探討”,中國土木水利學會七十三年年會論文集,第1卷,第51 ~ 69頁,民國73年11月。
16.交通部高速鐵路工程局(2003),“中正國際機場聯外捷運系統建設計劃規劃報告書”。
17.吳文隆、何泰源、林俊良(1995),“台灣地區卵礫石層之工程特性”,國際卵礫石層地下工程研討會論文集,第1.61-1.72頁。
18.吳俊德(2008),“潛盾隧道施工引致之地表沉陷歷時曲線及深層沉陷槽”碩士論文,國立交通大學土木工程研究所。
19.何泰源、李魁士(2009),“台灣潛盾隧道技術發展現況與展望”,土木水利,第三十六卷,第六期。
20.吳慶輝(2006),“下水道潛盾施工遭遇礫石層案例探討與防災對策研究”碩士論文,國立交通大學工程技術與管理組在職專班。
21.佐藤工業株式會社(1993),“卵礫石層潛盾隧道施工論文集”,日本東京。
22.卓彥百、黃孟麟、廖銘洋、劉萬寧(2009), “卵礫石層潛盾機施工技術探討”,第八屆海峽兩岸隧道與地下工程學術與技術研討會。
23.林照順(1992),“以 Peck-Fujita 經驗方法估算潛盾隧道施工所引之地表沉陷”,碩士論文,國立交通大學土木工程研究所。
24.林照順(1993),“台北捷運隧道施工引致之地表沉陷(Ⅲ)”,行政院國家科學委員會專題研究計劃成果報告,民國82年7月。
25.洪如江(1995),“台灣紅土礫石台地之風化與侵蝕”,國際卵礫石層地下工程研討會,第11~20頁。
26.洪如江(1978),“複合土層工程特性之初步研究”,台灣大學工程學刊,第23期,第1~12頁。
27.陳正勳、何泰源、陳福盛(2007),“卵礫石層潛盾隧道設計考慮研析”,第六屆海峽兩岸隧道與地下工程學術與技術研討會,第273-277頁。
28.高宗正、陳俊宏(2008),“捷運潛盾隧道穿越機場下方之沉陷控制”,地工技術,第118期,第5-18頁。
29.陳正勳、何泰源、陳福盛(2008),“卵礫石層潛盾隧道遭遇之最大卵石粒徑推估”,台灣世曦工程顧問公司。
30.陳卓然、陳福勝(2006),“潛盾隧道施工所引起地表沉陷之預測公式初步探討”,岩盤工程研討會論文集。
31.陳柏碩(2009),“潛盾隧道施工遭遇卵礫石地盤引致之地盤沉陷案例研究”碩士論文,國立交通大學土木工程研究所。
32.陳秋宗(1988),“台北市潛盾隧道施工對地盤沉陷之影響”,碩士論文,國立交通大學土木工程研究所。
33.陳景功、黃金田、張文城(2009),“桃園卵礫石層捷運潛盾施工監測與安全管理”,第八屆海峽兩岸隧道與地下工程學術與技術研討會
34.陳勝峰(1994),“潛盾隧道施工引致之地表及深層沈陷”碩士論文,國立交通大學土木工程研究所。
35.陳福勝、周功台、何泰源、侯嘉松、吳文隆、林俊良(1996),“都會區卵礫石地層鑽掘隧道與深開挖工程專題研究報告-期末報告書”,中華顧問工程司大地工程部,第二~三章,第2-3~2-4、3-1頁,民國85年7月。
36.陳錦清、蔡明欣、王銘德(1995),“台灣西部卵礫石層現地抗剪強度研究”,國際卵礫石層地下工程研討會,pp.1-21 – 1-30。
37.張皓禎(2007),“以經驗方法評估潛盾隧道施工引致之地表沉陷”碩士論文,國立交通大學土木工程所。
38.湯程傑(2000),“潛盾隧道於混合地盤開挖之案例研究”碩士論文,國立交通大學土木工程研究所。
39.褚炳麟、潘進明、張國雄(1996),“台灣地區西部卵礫石層現地之大地工程性質”,地工技術,第55期,pp. 59-70。
40.榮民工程股份有限公司/日商奧村組營造股份有限公司台灣分公司(2007),“機場捷運CU02A標潛盾機製造計劃書”。
41.趙基盛、陳福勝、何泰源,“卵礫石工址調查方式探討與調查案例”,中華技術,25期。
42.鄧屬予(1996),“台灣礫石層的地質背景”,地工技術,第55期,第5-24頁。
43.蔡茂生(1985),“隧道機型式之選擇”,地工技術雜誌,第23期,第55-71頁,9月。
44.盧協成、童念遠(2008),“捷運潛於桃園卵礫石層之設計與施工案例探討”,地工技術,第118期,第59-68頁。
45.環島工程有限公司(2004),“竹科污水處理廠第三期擴建工程第二加壓站至污水處理廠污水收集管線工程地質鑽探報告”。
46.謝旭昇、王崑瑞(1996),“卵礫石層深開挖案例”,地工技術雜誌,第55期,第81~88頁。
47.簡明同(1998),“潛盾隧道施工引致之地表沉陷速率”,碩士論文,國立交通大學土木工程研究所。
48.Abdrabbo, F. M., EI-Nahhas, F. M. and Abd EI-Lateef, H. A. (1999). “Field Measurements during Construction of a Sewerage Tunnel.” Geo-Engineering for Underground Facilities: Proceedings of the 3rd international Conference, University of Illinois at Urbana-Champaign, ASCE, pp.879-887.
49.Abu-Farsakh, M. Y. and Voyiadjis, G. Z. (1999), “Computational Model for the Simulation of the Shield Tunneling Process in Cohesive Soil” Numerical and Analytical Method in Geomechanics, Vol. 23, No. 1, January 1999, pp. 23-44.
50.Attewell, P. B. (1981). “Engineering Contract, Site Investigation and Surface Movements in Tunneling Works, Soft-Ground Tunneling-Failures and Displacement.” A. A. Balkema, pp. 5-12.
51.Attewell, P. B., Farmer, I. W. and Glossop, N. H (1974). “Ground Deformations Resulting from Shield Tunnelling in London Clay.” Canadian Geotechnical Journal, Vol. 11, No. 3, pp. 380-395.
52.Attewell, P. B., Glossop, N. H. and Farmer, I. W. (1976). “Ground Deformations Caused by Tunnelling in a Silty Alluvial Clay.” Ground Engineering, Vol. 11, No. 8, pp. 32-41.
53.Attewell, P. B. (1978). “Ground Movements Caused by Tunnelling in Soil.” Proceedings of International Conference on Large Movements and Structures, Pentech Press, London, pp. 812-948.
54.Attewell, P. B., Yeates, J. and Selby, A. R. (1986). “Soil Movements Induced by Tunnelling and Their Effects in Pipelines and Structures.” Blackie and Son Ltd., London.
55.Bian, J., Tao, J. and Guo, J. (2005). “The ground settlement monitoring of a shield tunnel.” Chinese Journal of Underground Space and Engineering, Vol. 1, No. 2, pp. 247-249. (in Chinese)
56.CECI Engineering Consultant Incorporation, (2009). “Taiwan Taoyuan International Airport access MRT system-construction proposal fot lot CUO2A.” Taipei, Taiwan.
57.Chieh Hsing Construction Co. and Shimizu Corporation Co. (2009). “Chu-Kung extra high voltage substation outlet 161kV power-cable turnkey project shield tunnel construction proposal.” August, Taipei, Taiwan.(in Chinese)
58.Clough, G. W. and Schmidt, B. (1981). “Design and Performance of Excavations and Tunnels in Soft Clay.” Soft Clay Engineering, Elsevier Science Ltd., Amsterdam, pp. 569-634.
59.Clough, G. W., Baker, W. H. and Mensah-Dwumah, F. (1979). “Ground Control for Soft Ground Tunnel Using Chemical Stabilization – A Case History Review.” Proc. Rapid Excavation and Tunnelling Conf., Vol.1, pp. 395-415.
60.Clough W. G., and Leca,E. (1993). “EPB Shield Tunneling in Mixed Face Conditions. ” Journal of Geotechnical Engineering , ASCE,Vol. 119, No. 10, pp 1640-1656.
61.Cording, E. J. and Hansmire, W. H. (1975). “Displacement around Soft Ground Tunnels.” Proceedings of 6th Pan-American Conference of Soil Mechanics and Foundation Engineering, Buenos Aires, pp. 571-633.
62.Eric, L. and Barry, N. (2006). “Settlement Induced by Tunneling in Soft Ground.” Tunneling and Underground Space Technology, Vol. 22, pp. 119-149.
63.Fang, Y. S., Lin, J. S and Su, C. S. (1994). “An Estimation of Ground Settlement due to Shield Tunnelling by the Peck-Fujita Method.” Canadian Geotechnical Journal, Vol. 31, No. 3, pp. 431-443.
64.Fang, Y. S., Lin, S. J. and Lin, J. S. (1993). "Time and Settlement in EPB Shield Tunneling, "Tunnels and Tunneling, November, 1993, pp.26-27.
65.Fujita, K. (1982). “Prediction of Settlements by Shield Tunnelling.” Proceedings of International Conference on Soil Mechanics, Vol. 1, pp. 239-246.
66.Glossop, N. H. and O’Reilly, M. P. (1982). “Settlement Caused by Tunnelling through Soft Marine Silty Clay.” Tunnels and Tunnelling, Vol. 14, No. 9, pp. 13-16
67.Guo, J., Tao, L.J. and Bian, J. (2005). “Ground surface settlement analysis during the subway tunnel excavation by shielding.” Journal of Beijing University of Technology, Vol. 31, No. 6, pp.589-592. (in Chinese)
68.Hanya, T. (1977). “Ground Movements due to Construction of Shield-Driven Tunnel.” Proceedings of the 9th International Conference on Soil Mechanics and Foundation Engineering, Tokyo, A. A. Balkema, pp. 759-789.
69.Hitachi Zosen Corporation, (1990). Shield Tunneling Menu, Japan.
70.Hsiung B. B. C, and Lu K. L., (2008). “Case record of A Bored Tunnel on Kaohsiung Rapid Transit System, Contract CR2.” Journal of GeoEngineering, Vol. 3, No. 1, pp. 41-48, April.
71.Hwang, R. N. and Moh, Z. C. (2006), “Prediction of Long-Term Settlements Induced by Shield Tunneling”, Journal of GeoEngineering, Vol. l., No. 2, pp. 63-70, December, Taipei, Taiwan.
72.Hwang, R.N., Ju, D. H., Tsai, M. S. and Fang, Y. S.(1995), "Soft Ground Tunneling in Taiwan," Proceedings, US/Taiwan Geotechnical Engineering Collaboration Workshop, Taipei, pp.77-90.
73.Japan Society of Civil Engineers(1996),“Japan standard for shield tunneling”, The Third Edition.(in Japanese)
74.Jia, R.H., Yang, J. S., Ma, T. and Liu, S.Y. (2009) “Field monitoring and numerical analysis of shield tunneling considering existing tunnels.” Chinese Journal of Geotechnical Engineering, Vol. 31, No. 3, pp. 425-430.(in Chinese)
75.Jin, H., Zhang, J., Wu, F. and Liu, Y. (2008). “Construction monitoring measurement deformation characteristics of shield driving under Capital Airport.” Urban Rapid Rail Transit, Vol. 21, No. 5. pp. 53-57.(in Chinese)
76.Kanji, M. A. (1979). “surface Displacement as a Consequence of Excavation Activities.” General Report of International Congress in Rock Mechanics, Montreal, Vol. 3.
77.Kitamura, M. and Ohbayashi, G. (1981). “Shield Tunneling Performance and Behavior of Soft Ground, Osaka, Japan.” Proc., Rapid Excavation and Tunnelling Conf., Vol.1, pp. 201-220.
78.Komiya, K., Soga,. K,. Akagi, H., Jafari, M. R. & Bolton, M. D. (2001). “Soil consolidation associated with grouting during shield tunneling in soft clayey ground.” Geotechnique 51, No. 10, pp. 835-846.
79.Lee, L. J. (2009) “Investigation of Subsurface Deformation Associated with Model Tunnels in a Granular Mass.” Tunneling and Underground Space Technology, Vol. 24, pp. 654-664.
80.Loganathan, N. and Poulos, H. G. (1998) “Analytical Prediction for Tunneling-Induced Ground Movements in Clays.” Journal of Geotechnical and Geoenvironmental Engineering, ASCE, Vol. 124, No. 9, pp. 846-856.
81.Mair, R. J., Taylor, R. N. and Bracegirdle, A. (1993). “Subsurface Settlement Profiles above Tunnels in clays.” Geotechnique, Vol. 43, No. 2, pp. 13-16.
82.Migliazza, M., Chiorboli, M. and Giani, G. P. (2009) “Comparison of analytical method , 3D finite element model with experimental subsidence measurement resulting from the extension of the Milan Underground.” Computer and Geotechnics, Vol. 36, pp. 113-124.
83.Moh, Z.C., Hulme, T. W. and Hwang, R. N. (1995), “Soft Ground Tunneling for Singapore and Taipei MRT System.” Bengt B. Broms Geotechnical Symposium, Singapore, December, 1995, pp. 1-8.
84.Moh, Z.c., Ju, D. H. and Hwang, R. N. (1996). “Ground Movements around Tunnels in Soft Ground.” Proceedings of International Symposium on Geotechnical Aspects of Underground Construction in Soft Ground, London, pp.36-42.
85.Mori, A. and Akagi, H. (1985). “Effects of Backfilling at Shield Work in Soft Cohesive Soil.” Proceedings of 11th International Conference on Soil Mechanics and Foundation Engineering, San Francisco, A. A. Balkema, Vol. 3, pp. 1667-1670.
86.O’Reilly, M. P. and New, G. M. (1982). “Settlements above Tunnels in the United Kingdom: Their Magnitude and Prediction.” Proceedings of Tunnelling ’82, Institution of Mining and Metallurgy, London, pp. 173-181.
87.O’Reilly, M. P., Riley, M. D., Barratt, D. A. and Johnson, P. E. (1980). “Comparison of Settlements Resulting from Three Methods of Tunnelling in Loose Cohesionless Soil.” Proceedings of 2nd International Conference on Ground Movements and Structures, Cardiff, Wales, pp. 359-376.
88.Peck, R. B. (1969). “Deep Excavation and Tunnelling in Soft Ground.” (State-of-the-Art Report), Proceedings of 7th International Conference on Soil Mechanics and Foundation Engineering, Mexico City, pp. 225-290.
89.Schmidt, B. (1974). “Prediction of Settlements due to Tunnelling in Soil: Three Case Histories.” Proceedings of 2nd Rapid Excavation Tunnelling Conference, San Francisco, Vol. 2, pp. 1179-1199.
90.Sowers, G.F. (1979). “Introductory Soil Mechanics and Foundations: Geotechnical Engineering.” Fourth Edition MacMillan Publishing Co., New York. pp. 80-83.
91.Takahashi, K., Matsumoto, S., Okochi, Y., and Komanobe, N. (2003). “Deformation of the neighboring ground by large section shield driving.” Proceeding, 38th Groung Engineering Conference, Akita, Japan, Vol. 5, pp. 857-858.(in Japanese)
92.Tonkin, M. (2005). “Consolidation by under-drainage in Limerick.” Tunnels & Tunneling International, Vol. 37, No. 10, pp. 26-29.
93.Chou, W. and Antonio, B. (2002). “Prediction of ground deformations in shallow tunnels in clay.” Tunneling and Underground Space Technology, Vol. 17, pp. 3-19.
94.Wu, B. R. and Lee, C. J. (2003). “Ground Movements and Collapse Mechanisms Induced by Tunneling in Clayey Soil.” International Journal of Physical Moedlling in Geotechnics, Tokyo, Vol. 4, No. 4,pp 15-29.
95.Yoshikoshi, W., Watanabe, O. and Takagi, N. (1978). “Prediction of Ground Settlements Associated with Shield Tunnelling.” Soils and Foundations, Japanese Society of Soil Mechanics and Foundation Engineering, Vol. 18, No. 4, pp. 47-59.
96.Zhou, S. and Wang, J. A. (2007). “The surface settlement analysis of curved tunnel shield.” Chinese Journal of Underground Space and Engineering, Vol. 3, No. 5. pp. 909-913.(in Chinese)

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔