跳到主要內容

臺灣博碩士論文加值系統

(44.201.99.222) 您好!臺灣時間:2022/12/08 23:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王有志
研究生(外文):Wang, Yu-Chih
論文名稱:晶圓廠機台加工效率指標之建立及應用
論文名稱(外文):Constructing and Application of Running Efficiency Indices of Processing Tools in an IC Fab
指導教授:唐麗英唐麗英引用關係
指導教授(外文):Tong, Lee-Ing
學位類別:博士
校院名稱:國立交通大學
系所名稱:工業工程與管理學系
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:50
中文關鍵詞:生產力速度效率機台綜合效率生產週期加工效率
外文關鍵詞:productivityrunning efficiency (RUNE)rate efficiency (RE)overall equipment efficiency (OEE)cycle time
相關次數:
  • 被引用被引用:0
  • 點閱點閱:426
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
機台綜合效率(overall equipment efficiency, OEE)指標結合了機台生產良率 (quality efficiency, QE)、可生產率(available efficiency, AE)、操作效率(operational efficiency, OE)與速度效率(rate efficiency, RE)等四項指標,是一個廣為半導體業界用來評量機台生產力(productivity)的綜合指標,其中RE指標更是晶圓廠生產線管理者用來評量及監控機台是否維持在最大生產速度的一個常用指標。然而,RE指標容易受到生產環境的干擾,常無法準確評量出機台實際之速度效率,很容易喪失改善機台生產力的機會而導致機台產能降低及晶片生產週期延長。因此,本論文主要目的有二,其中之一是針對RE指標之缺失另提出一個適用於晶圓廠的加工效率 (running efficiency, RUNE) 指標來取代RE指標。RUNE 指標不僅不會受到生產環境的影響,且較RE指標更易找出造成機台生產速度異常降低的可能原因。本論文的另一個主要目的是提出一套RUNE指標的自動更新與管制方法。此方法不僅可針對不同處方(recipe)適時更新機台與機台各細部步驟的目標作業時間以隨時獲得即時的RUNE指標評量結果;另外,利用指數加權移動平均(exponentially weighted moving average, EWMA)管制圖監控機台RUNE指標,可以協助晶圓廠生產線管理者隨時將機台維持在最大生產速度的理想狀況。本論文最後以台灣某十二吋晶圓代工廠之機台為例,建立機台之RUNE指標及其EWMA管制圖,並利用問卷調查方法探討晶圓廠生產線管理者利用RE指標評估機台生產速度所可能導致之機台產能損失,以驗証本論文所提之RUNE指標確實較RE指標適合作為晶圓廠機台生產速度之評量指標。
Overall equipment efficiency (OEE) is a composite metric, which includes quality efficiency (QE), available efficiency (AE), operational efficiency (OE) and rate efficiency (RE). OEE is widely adopted in semiconductor manufacturing to assess and enhance the productivities of processing tools. The RE is a very popular index for fab managers to evaluate or monitor whether the processing tools keep their maximum production speeds. However, the RE is easily influenced by the production environment, and thus it can not be utilized to evaluate the actual production speeds of the processing tools. Consequently, the improvement opportunities and processing tool capacities are missed due to the biased measurement of RE. Therefore, this study develops a running efficiency (RUNE) to replace RE to help fab managers to keep the processing tools in their maximum production speeds. The RUNE is not affected by the production environment, and can be employed to identify the sources of equipment’s variations. Additionally, a RUNE management procedure is also proposed. The proposed procedure incorporates an automatic target-setting scheme to set the target production time of each recipe on every motion in equipment to obtain the updated RUNE value of equipment. An exponentially weighted moving average (EWMA) control chart is then utilized in the proposed procedure to monitor the RUNE value of equipment. A case study of a 300m IC foundry in Taiwan is utilized to obtain the RUNE values of tools and EWMA control charts of RUNE values to evalluate and monitor the production rate of tools. Finally, a survey is conducted to study the potential capacity losses of tools due to the biased RE measurement result. The RUNE is then proved to be more robust than RE, and thus can evaluate the true production speeds of the processing tools more accurately.
1. 第一章 緒 論 1
1.1 研究背景 1
1.2 研究目的 2
1.3 研究方法 3
1.4 研究架構 4
2. 第二章 文獻探討 5
2.1 機台綜合效率 5
2.1.1 機台綜合效率定義 5
2.1.2 機台綜合效率之相關研究 6
2.1.3 RE指標之實務應用 7
2.2 限制理論 10
2.3 多重平均數比較法 10
2.3.1 最小顯著差異法 11
2.3.2 鄧肯式多變域檢定法 12
2.3.3 紐曼–科爾氏法 12
2.3.4 杜凱氏法 13
2.4 適用於偵測較小偏移的管制圖 13
2.4.1 累積和管制圖 14
2.4.2 指數加權移動平均管制圖 15
2.5 問卷調查法 16
3. 第三章 RUNE指標之建構及管制方法與RUNE指標異常判斷標準之問卷調查 18
3.1 RUNE指標的定義 18
3.2 RUNE指標之建構流程 22
3.2.1 定義機台細部瓶頸步驟 22
3.2.2 篩選機台細部步驟與次瓶頸步驟之穩態資料 24
3.2.3 設定機台細部步驟之目標作業時間與計算其RUNE值 25
3.3 建構EWMA管制圖以監控機台之RUNE指標 26
3.4 問卷調查法探討生產線管理人員對RE指標之主觀判斷標準 29
4. 第四章 實例說明 31
4.1 定義機台瓶頸步驟與篩選其穩態資料 32
4.2 設定細部步驟目標作業時間及計算RUNE指標 33
4.3 EWMA管制圖分析結果 36
4.4 問卷調查比較利用RUNE指標與RE指標之評量差異 39
4.4.1 RUNE與RE指標之評量差異 39
4.4.2 RE指標評估偏差所可能造成之機台產能損失 41
5. 第五章 結論與建議 45
5.1 結論 45
5.2 未來發展方向 45
6. 參考文獻 47
附錄一 50

1. SEMATECH, Overall Equipment Efficiency (OEE) Guidebook Revision 1.0, SEMATECH Tech. Rep, 1995.
2. Semiconductor Equipment and Material International (SEMI) E79-0200, Standard for Definition and Measurement of Equipment Productivity, 2000.
3. Semiconductor Equipment and Material International (SEMI) E10-0701, Standard for Definition and Measurement of Equipment Reliability, Availability, and Maintainability, 2001.
4. Konopka, J. M., “Capacity utilization bottleneck efficiency system (CUBES),” IEEE Trans. On Components, Packaging and Manufacturing Technology, vol. 18, no. 3, pp. 484-491, 1995.
5. Pomorski, T., “Managing overall equipment effectiveness [OEE] to optimize factory performance,” Proc. 1997 IEEE Int. Symp. On Semiconductor Manufacturing (ISSM), pp. A33-A36, 1997.
6. Freck, R. W., “Using overall equipment effectiveness (OEE) and the equipment improvement process (EI) to improve Fab throughput,” Proc. 2000 IEEE/SEMI Advanced Semiconductor Manufacturing Conf. (ASMC), pp. 469-471, 2000.
7. Gouvêa da Costa, S. E. and Pinheiro de Lima, E., “Uses and misuses of the overall equipment effectiveness for production management,” Proc. IEEE SEMI Advanced Int. Semiconductor Manufacturing Sci. Symp., pp. 816-820, 2002.
8. Huang, S. H., Dismukes, J. P., Sui, J., Su, Q., Razzak, M. A., Bodhale, R., and Robinson, D. E., “Manufacturing productivity improvement using effectiveness metrics and simulation analysis,” Int. J. Prod. Res., vol. 41, no. 3, pp. 513-527, 2003.
9. Leachman, R. C., “Closed-loop measurement of equipment efficiency and equipment capacity, “ IEEE Trans. Semiconduct. Manufact., vol. 10, no. 1, pp. 84-97, 2000.
10. Jansson, P. and Lesshammar M., “Evaluation and improvement of manufacturing performance measurement systems–The role of OEE,” Int. J. Operations Prod. Manage., vol. 19, no. 1, pp. 55-78, 1999.
11. Ljungberg, O., “Measurement of overall equipment effectiveness as a basis for TPM activities,” Int. J. Operations & Production Management, vol. 18, no. 5, pp. 495-507, 1998.
12. Ron, A. J. and Rooda, J. E., “Equipment effectiveness: OEE revisted,” IEEE Trans. Semiconduct. Manufact., vol. 18, no. 1, pp. 190-196, 2005.
13. Goldratt, E. M., The Goal, New York: North River Press, 1984.
14. Fredendall, L. D. and Lea, B. R., “Improving the product mix heuristic in the theory of constraints,” International Journal of Production Research, vol. 35, no. 6, pp. 1535-1544, 1997.
15. Lewis, R. J., Activity-Based Models for Cost Management systems, Conn.: Quorum books, 1995.
16. 謝淑華、侯凱中,「以限制理論為基礎的晶圓製造系統派工法則研究」,國立臺灣大學台大工程學刊,第八十七期,97-108頁,2003。
17. Lockmy, A. and Spencer, M. S., “Performance measurement in a theory of constraints environment,” International Journal of Production Research, vol. 36, no. 8, pp. 2045-2060, 1998.
18. Blackstone, J. H. Jr. , “Theory of constraints –a status report,” International Journal of Production Research, vol. 39, no. 6, pp. 1053-1080, 2001.
19. Montgomery, D. C., Design and Analysis of Experiments, 4th ed., New York: John Wiley & Sons, 1996.
20. Duncan, D. B., “Multiple Range and Multiple F Tests,” Biometrics, vol. 11, no. 1, pp. 1-42, 1995.
21. Newman, D., “The Distribution of the Range in Samples from a Normal Independent Estimate of Standard Deviation,” Biometrika, vol. 31, pp. 20-30, 1939.
22. Keuls, M., “The Use of the Studentized Range in Connection with an Analysis of Variance,” Euphytica, vol. 1, pp. 112-122, 1952.
23. Tukey, J. W., “The problem of Multiple comparisons,” Unpublished Notes, Princeton University, Princeton, NJ, 1953.
24. Carmer, S. G. and Swanson, M. R., “Evaluation of Ten Pairwise Multiple Comparison Procedures by Monte Carlo Methods, “ Journal of the American Statistical Association, vol. 68, no. 314, pp. 66-74, 1973.
25. Montgomery, D. C., Introduction To Statistical Quality Control, 4th ed., New York: John Wiley & Sons, 2001.
26. Hawkins, D. M., “Cumulative Sum Control Charting: An Underutilized SPC tool,” Quality Engineering, vol. 5, no. 3, pp. 463-477, 1993.
27. Roberts, P. B., “Control chart tests based on geometric moving averages,” Technometrics, vol. 1, pp. 239-250, 1959.
28. 葉至誠、葉立誠,研究方法與論文寫作,初版,商鼎文化出版社,台北,1999。
29. 楊和炳,市場調查,初版,五南圖書公司,台北,1990。
30. 吳明隆,問卷分析與應用統計,二版,知城數位科技,台北,2005。
31. Taylor, G. D. and Heragu, S. S., “A comparison of mean reduction versus variance reduction in processing times in flow shops, ” Int. J. Production Res., vol. 37, no. 9, pp. 1919-1934, 1999
32. Delp, D., Si, J. and Fowler, J. W., “The development of the complete X-factor contribution measurement for improving cycle time and cycle time variability,” IEEE Trans. Semiconduct. Manufact., vol. 19, no. 3, pp. 352-362, 2006.
33. Dettmer, H. W., Goldratt’s Theory of Constraints: A System Approach to Continuous Improvement, Wisconsin: ASQ Quality Press, 1997
34. Lucas, J. M. and Saccucci, M. S., “Exponentially weighted moving average control schemes: properties and enhancements,” Technometrics, vol. 32, no. 1, pp.1-12, 1990.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top