跳到主要內容

臺灣博碩士論文加值系統

(44.200.86.95) 您好!臺灣時間:2024/05/21 10:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林榕華
研究生(外文):Lin, Rong-Hwa
論文名稱:利用AFLP分析茄科細菌性斑點病菌之變異性並選殖與致病性相關之基因產物
論文名稱(外文):Using AFLP to analyze the diversity of Xanthomonas campestris pv. vesicatoria and cloning the pathogenesis-related genes
指導教授:彭慧玲彭慧玲引用關係黃秀珍黃秀珍引用關係
指導教授(外文):Peng, Hwei-LingHuang, Hsiou-Chen
學位類別:博士
校院名稱:國立交通大學
系所名稱:生物科技學系
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:英文
論文頁數:106
中文關鍵詞:增幅限制片段核酸多型性分析茄科細菌性斑點病第三型分泌系統XopE2 有效蛋白VirB/D4系統第四型分泌系統水平式基因轉移
外文關鍵詞:amplified restriction fragment length polymorphismbacterial spottype III secretion systemXopE2 effectorVirB/D4 systemtype IV secretion systemhorizontal gene transfer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:237
  • 評分評分:
  • 下載下載:49
  • 收藏至我的研究室書目清單書目收藏:0
由Xanthomonas campestris pv. vesicatoria (Xcv)引起的茄科植物細菌性斑點病,是台灣番椒及番茄栽培區之重要病害,需透過第三型分泌系統的調控機制和分泌的有效蛋白(effectors)引發其病原性。台灣之Xcv菌株為多樣性的族群,本研究中所採用的14株菌株依據澱粉分解酶之有無,可將菌株區分為A、B兩菌群,而利用增幅限制片段核酸多型性技術(AFLP) 亦可得到相同的結果。從AFLP的分析圖譜中篩選各菌株間有差異性之片段,並選殖出xopE2基因,xopE2基因在X. campestris pv. vesicatoria菌株間具高度保留性,可作為分類之指標。根據胺基酸序列所作樹狀親源分析,顯示A群菌株Xvt122與X. campestris pv. vesicatoria 85-10的親源關係較之B群菌株Xvt45為近。剔除Xcv Xvt45染色體上的xopE2基因會降低病原菌的感染力。然而,Xcv Xvt122的xopE2基因突變株並不會影響其病原性。此外,無論是Xcv Xvt122或Xcv Xvt45的XopE2蛋白(XopE2A和XopE2B)皆能透過第三型分泌系統抑制由HopPsyA所引發的過敏性反應,大量表現XopE2蛋白則會降低其在感病番茄品系的毒性,而這些生物性功能和XopE2蛋白所具有的保留性三元催化胺基酸(consensus catalytic triad )(159th cysteine)與His硫醇蛋白酶胺基酸(thiol-protease His residue)(47th histidine)無關。
2005年X. campestris pv. vesicatoria 85-10基因組解序後發現有Vir/Tra和Icm/DotT4SS兩套第四型分泌系統存在。X. campestris pv. vesicatoria的第三型分泌系統為致病性上不可或缺的分泌胞器,但對於其所具有的第四型分泌系統所扮演的角色所知甚少。本研究從建構好的X. campestris pv. vesicatoria A群菌株Xvt122和B群菌株Xvt45基因庫中選殖出與VirB/D4系統相關的基因,目前兩菌群所選殖出來的virB/D4基因組並非很完整,但以目前的結果顯示,A群菌株Xvt122的基因數和排列順序和X. campestris pv. campestris ATCC33913 (Xcc ATCC33913)相似,而B群菌株Xvt45的基因數和排列順序則和X. campestris pv. campestris B100 (Xcc B100)和X. axonopodis pv. citrus 306 (Xac 306)最為相似。兩菌株的VirB/D4基因組G+C含量遠較其兩側基因的G+C含量為低,其基因組下游具有IS4 family和ISxac4 transposase序列,可知,Xcv Xvt122和Xcv Xvt45的VirB/D4基因組是由其他菌屬經水平式基因轉移 (horizontal gene transfer) 而來。VirB/D4第四型分泌系統中,VirB4、VirB11及VirD4是保留性最高的組成蛋白,為此系統組合之能量提供者,Xcv Xvt45的virB4和virB11基因突變株,對寄主植物番茄病徴的發展和病原菌的生長並沒有影響,但Xcv Xvt122的virB4、virB11基因突變株,雖然發病指數沒有顯著差異,但對病原菌的生長卻有抑制作用。

The bacterial spot diseases on tomato (Lycopersicon spp.) and pepper (Capsicum spp.) causing by Xanthomonas campestris pv. vesicatoria (Xcv) are very destructive in Taiwan. The mechanism that Xcv causing this disease depends on type III secretion system (T3SS) and T3SS effectors. The recent study showed that strains of Xcv isolated in Taiwan were heterogeneous and could be divided into two genetically distinct groups (group A and group B). In this study, we proved that using the AFLP technique to discriminate Xcv group A from group B is feasible, and consequently, a XopE2 homologue was identified in all fourteen Xcv strains and it also could be used as an index for classification. Phylogenic analysis of XopE2 amino acid sequences indicated that XopE2 of Xcv Xvt122 (group A) has a closer genetic distance to XopE2 of Xcv 85-10 than to that of Xcv Xvt45 (group B). A single copy deletion of xopE2 within the genome caused a substantial reduction in virulence, but no effect of xopE2 mutation on virulence of Xvt122 were observed. Furthermore, our results revealed that XopE2 of Xcv Xvt122 or Xcv Xvt45 was able to suppress HR in a T3SS-dependent manner and the heterologously expressed XopE2 was sufficient to modulate the virulence on susceptible tomato plants. And those biological functions are not dependent on the consensus catalytic triad (159th cysteine) and thiol-protease His residue (47th histidine) of XopE2.
Recent genome sequencing projects have identified Vir/Tra and Icm/Dot T4SSs in X. campestris pv. vesicatoria 85-10, but their precise function awaits further investigation. In this study, we identified the VirB/D4 T4SSs from X. campestris pv. vesicatoria group A (Xvt122) and group B (Xvt45). Based on sequence analysis and gene composition, the virB/D4 cluster of Xcv Xvt122 shows the highest similarity with that of X. campestris pv. campestris ATCC33913;but the virB/D4 cluster of Xcv Xvt45 seems more homologous with that of X. campestris pv. campestris B100 and X. axonopodis pv. citrus 306 (Xac 306). Moreover, the G+C content of the virB/D4 cluster of Xcv Xvt122 or Xcv Xvt45 is lower than that of the neighborhood genes, and the presence of IS4 family and ISxac4 transposase in those loci suggests that the virB/D4 cluster may be a result of horizontal gene transfer from other bacteria. Because VirB4, VirB11 and VirD4, are the most conserved components of the T4SS, and they serve as an energy-consuming process for their assembly or function, we also generated the virB4 and virB11 knocked out mutants to assess the virulence of the genes on the host plant tomato. The inoculation assay revealed that the virB4 or virB11 deletion in Xcv Xvt45 retained its ability to develop disease symptoms and the bacterial growth on tomato Bony Best L305. In contrast, the virB4 or virB11mutation in Xcv Xvt122 reduced bacterial growth on its host tomato and pepper, but there were no effect on disease symptoms development.

目 錄
中文摘要………………………………………………………………….………………...i
英文摘要...............................................................................................................................iii
誌謝........................................................................................................................................v
目錄.......................................................................................................................................vi
表目錄...................................................................................................................................ix
圖目錄....................................................................................................................................x
縮寫字對照表…………………………………………..………………………...……….xii

第一章 緒論
1.1 Xanthomonas campestris pv. vesicatoria概述與分類................................................1
1.2增幅限制片段核酸多型性分析技術 (Amplified restriction fragment length polymorphism, AFLP)................................................................................................2
1.3病原島嶼 (Pathogenicity island, PAI).........................................................................3
1.4第三型分泌系統 (Type III secretion system, T3SS)..................................................4
1.5第四型分泌系統 (Type IV secretion system, T4SS)..................................................5
1.6植物防禦系統..............................................................................................................7
1.7研究目的......................................................................................................................8

第二章 利用AFLP分析茄科細菌性斑點病菌之變異性及探討XopE2有效蛋白與致病性的關係
2.1 前言……………………………………………………….……………........…......10
2.2 材料與方法
2.2.1供試菌株、質體及菌體生長環境………………………………...……..........13
2.2.2重組DNA技術………………..………………………………...…….…..….13
2.2.3染色體DNA (genomic DNA)之製備
(1) AFLP分析和染色體基因庫建構採用之法..................................................14
(2)南方轉漬雜合反應採用之法.........................................................................14
2.2.4 AFLP分析………….….......................…..........................………..…....….…15
2.2.5選殖與定序AFLP片段………..........................…………………...….……..15
2.2.6選殖與定序xopE2基因…................................................................................16
2.2.7染色體基因庫之建構
(1)染色體DNA以EcoRI作非完整截切 (partial digestion).............................16
(2)利用CopyControlTM BAC Cloning Kit (EPICENTRE)建構染色體基因庫..17
2.2.8南方轉漬雜合反應 (Southern hybridization)
(1)探針之製備..…………………….………………………………….…….…17
(2)轉漬DNA至Hybond-N濾膜..…………………………………....….….…18
(3)前雜合反應 (pre-hybridization)與雜合反應 (hybridization).…….....…….18
(4)洗滌與偵測.…………………….…………………………………….…..…18
2.2.9菌落雜合反應 (Colony hybridization)…........................................................19
2.2.10構築xopE2非極性突變菌株……...…………………..……….........…..….19
2.2.11單點突變株之構築 (Site-directed mutagenesis)……….…..…………….....20
2.2.12病原性測定……………………………………….………….......……….…22
2.2.13抑制過敏性反應之測定(Hypersensitive response-Suppressed assay)….….22
2.2.14以農桿菌為媒介作短暫性的基因表現(Agrobacterium-mediated
transient assay)...............................................................................................23
2.3 結果
2.3.1利用AFLP分析Xanthomonas campestris pv. vesicatoria菌株………....….24
2.3.2 xopE2基因在X. campestris pv. vesicatoria菌株間具高度保留性.…….….25
2.3.3 A群XopE2 (XopE2A)與X. campestris pv. vesicatoria 85-10 XopE2
的基因距離 (genetic distance) 較之B群XopE2 (XopE2B)為近……...…..25
2.3.4以xopE2兩側基因序列可區分出X. campestris pv. vesicatoria
A群和B群………………………………………………………………..….26
2.3.5 B群XopE2 (XopE2B)突變株會降低對寄主植物番茄的致病性
但A群XopE2 (XopE2A)突變株則不具影響作用………………….…...….27
2.3.6 大量表現 (overexpress) XopE2蛋白會抑制X. campestris
pv. vesicatoria對寄主植物番茄的毒力性………………….……....……….28
2.3.7 XopE2蛋白會透過第三型分泌系統抑制過敏性反應發生…………….…..30
2.4討論………………………………………………………..……..……………...….32
2.5圖表………………………………………………………..……..………..…….….36

第三章 選殖茄科細菌性斑點病菌第四型分泌系統及探討VirB4與VirB11蛋白與毒力的關係
3.1 前言...........................................................................................................................57
3.2 材枓與方法
3.2.1供試菌株、質體、菌體生長環境....................................................................60
3.2.2重組DNA技術..................................................................................................60
3.2.3染色體基因庫之建構.......................................................................................60
3.2.4菌落雜合反應 (Colony hybridization).............................................................60
3.2.5南方轉漬雜合反應 (Southern hybridization)..................................................60
3.2.6構築非極性突變株Xvt122ΔvirB4和Xvt45ΔvirB4之重組質體...................61
3.2.7構築非極性突變株Xvt122ΔvirB11和Xvt45ΔvirB11之重組質體……….....62
3.2.8病原性測定.......................................................................................................62
3.3 結果
3.3.1選殖茄科細菌性斑點病菌Xcv Xvt122和Xcv Xvt45第四型
分泌系統相關的基因組…………………………………………….……….63
3.3.2茄科細菌性斑點病菌Xcv Xvt122第四型分泌系統相關的基因組成…..…64
3.3.3茄科細菌性斑點病菌Xcv Xvt45第四型分泌系統相關的基因組成............66
3.3.4 virB4和virB11基因缺失株之構築與致病力分析……………………....….67
3.4 討論………………………………..………………………………………..……...69
3.5 圖表………………………………..…………………………………………....….72
第四章 結論……………………………………………………………..………………..91
參考文獻…………………………………………………………………..………….…...94
參考文獻

許秀恵、徐世典、曾國欽。1990。臺灣茄科植物細菌性斑點病菌之特性、病原型與血清型。植保會刊 32:59-69。
許淑瑩。1998。臺灣茄科植物細菌性斑點病菌之變異性及歸類。國立中興大學植物病理學研究所。碩士論文。
Abramovitch, R. B., Kim, Y. J., Chen, S., Dickman, M. B., and Martin, G. B. 2003. Pseudomonas type III effector AvrPtoB induces plant disease susceptibility by inhibition of host programmed cell death. EMBO J. 22: 60–69.
Alegria, M. C., Souza, D. P., Andrade, M. O., Docena, C., Khater, L., Ramos, C. H. I., and Da Silva., A. C. R. 2005. Identification of new protein-protein interactions involving the products of the chromosome- and plasmid-encoded Type IV secretion loci of the phytopathogen Xanthomonas axonopodis pv. citri. J. Bacteriol. 187:2315-2325.
Alfano, J. R., Bauer, D. W., Milos, T. M., and Collmer, A. 1996. Analysis of the role of the Pseudomonas syringae pv. syringae HrpZ harpin in elicitation of the hypersensitive response in tobacco using functionally non-polar hrpZ deletion mutations, truncated HrpZ fragments, and hrmA mutations. Mol. Microbiol. 19:715-728.
Alfano, J. R., and Collmer, A. 1997. The type III (Hrp) secretion pathway of plant pathogenic bacteria: trafficking harpins, avr proteins, and death. J. Bacteriol. 179:5655-5662.
Alfano, J. R., Kim, H.-S., Delaney, T. P., and Collmer, A. 1997. Evidence that the Pseudomonas syringae pv. syringae hrp-linked hrmA gene encodes an Avr-like protein that acts in an hrp-dependent manner within tobacco cells. Mol. Plant-Microbe Interact. 10:580-588.
Alfano, J. R., and Collmer, A. 2004. Type III secretion system effector proteins: Double agents in bacterial disease and plant defense. Annu. Rev. Phytopathol. 42:385-414.
Anderson, D. M., and Schneewind, O. 1997. A mRNA signal for the type III secretion of Yop proteins by Yersinia enterocolitica. Science 278:1140-1143.
Backert, S., and Meyer, T. F. 2006. Type IV secretion systems and their effectors in bacterial pathogenesis. Curr. Opin. Microbiol. 9:1-11.
Baker, C. J., Atkinson, M. M., and Collmer, A. (1987) Concurrent loss in Tn5 mutants of Pseudomonas syringae pv. syringae of the ability to induce the hypersensitive response and host plasma membrane K+/H+ exchange in tobacco. Phytopathology 77: 1268-1272.
Baron, C., O’Callaghan, D., Lanka, E. 2002. Bacterial secrets of secretion: Euroconference on the biology of type IV secretion processes. Mol. Microbiol. 43:1359-1365.
Baron, G., Thorstenson, Y. R., and Zambryski, P. C. 1997. The lipoprotein VirB7 interacts with VirB9 in the membranes of Agrobacterium tumefaciens. J. Bacteriol. 179:1211-1218.
Beaulieu, C., Minsavage, G. V., Canteros, B. I., and Stall, R. E. 1991. Biochemical and genetic analysis of a pectate lyase gene from Xanthomonas campestris pv. vesicatoria. Mol. Plant-Microbe Interact. 4:446-451.
Beck, E., Ludwig, G., Auerswaid, E. A., Reiss, B., and Schaller, H. 1982. Nucleotide sequence and exact localization of the neomycin phosphotransferase gene from transposon Tn5. Gene 19:327-336.
Bell, K. S., Sebaihia, M., Pritchard, L., Holden, M. T., Hyman, L. J., Holeva, M. C., Thomson, N. R., Bentley, S. D., Churcher L. J., Mungall, K. et al. 2004. Genome sequence of the enterobacterial phytopathogen Erwinia carotovora subsp. atroseptica and characterization of virulence factors. Proc. Natl. Acad. Sci. USA 101:11105-11110.
Bogdanove, A. J., Beer, S. V., Bonas, U., Boucher, C. A., Collmer, A., Coplin, D. L., Cornelis, G. R., Huang, H.-C., Hutcheson, S. W., Panopoulos, N. J., and Van Gilsegem, F. 1996. Unified nomenclature for broadly conserved hrp genes of phytopathogenic bacteria. Mol. Microbiol. 20:681-683.
Bouzar, H., Jones, J. B., Minsavage, G. V., Stall, R. E., and Scott, J. W. 1994. Proteins unique to phenotypically distinct groups of Xanthomonas campestris pv. vesicatotia revealed by silver staining. Phytopathology 84:39-44.
Bruning, A. M., and Gabriel, D. W. 2003. Xanthomonas citri: breaking the surface. Mol. Plant Pathol. 4:141-157.
Büttner, D., and Bonas, U. 2002. Getting across-bacterial type III effector proteins on their way to the plant cell. EMBO J. 21:5313-5322.
Cascales, E., and Christie, P. J. 2003. The versatile bacterial Type IV secretion systems. Nat. Rev. Microbiol. 1:137-149.
Cascales, E., and Christie, P. J. 2004a. Definition of a bacterial type IV secretion pathway for a DNA substrate. Science 304:1170-1173.
Cascales, E., and Christie, P. J. 2004b. Agrobacterium VirB10, an ATP energy sensor required for type IV secretion. Proc. Natl. Acad. Sci. USA 101:17228-17233.
Castañeda, A., Reddy, J. D., El-Yacoubi, B., and Gabriel, D. W. 2005. Mutagenesis of all eight avr genes in Xanthomonas campestris pv. campestris had no detected effect on pathogenicity, but one avr gene affected race specificity. Mol. Plant-Microbe Interact. 18:1306-1317.
Christie, P. J. 2001. TypeIV secretion: intercellular transfer of macromolecules by systems ancestrally related to conjugation machines. Mol. Microbiol. 40:294-305
Christie, P. J. 2004. Bacterial type IV secretion: the Agrobacterium VirB/D4 and related conjugation systems. Biochem. Biophys. Acta 1694:219-234.
Christie, P. J., Atmakuri, K., Krishnamoorthy, V., Jakubowski, S., Cascales, E. 2005. Biogenesis, architecture, and function of bacterial Type IV secretion systems. Annu. Rev. Microbiol. 59:451-85.
Collmer, A., Badel, J. L., Charkowski, A. O., Deng, W.-L., Fouts, D. E., Ramos, A. R., Rehm, A. H., Anderson, D. M., Schneewind, O., van Dijk, K., and Alfano, J. R. 2000. Pseudomonas syringae Hrp type secretion system and effector proteins. Proc. Natl. Acad. Sci. USA 97:8770-8777.
Collmer, A., Lindeberg, M., Petnicki-Ocwieja, T., Schneider, D. J., and Alfano, J. R. 2002. Genomic mining type III secretion system effectors in Pseudomonas syringae yields new picks for all TTSS prospectors. Trends Microbiol. 10: 462-469.
Cornelis, G. R. 2006. The type III secretion injectisome. Nat. Rev. Microbiol. 4:811-825.
Covacci, A., and Rappuoli, R. 1993. Pertussis toxin export requires accessory genes located downstream from the pertussis toxin operon. Mol. Microbiol. 8:429-434.
Covacci, A., Telford, J. L., Giudice, G. D., Parsonnet, J., and Rappuoli, R. 1999. Helicobacter pylori virulence and genetic geopraphy. Science 284:1328-1333.
Cunnas, S., Lindeberg, M., and Collmer, A. 2009. Pseudomonas syringae type III secretion system effectors: repertoires in search of functions. Curr. Opin. in Microbiol. 12:1-8.
da Silva, A. C. R., Ferro, J. A., Reinach, F. C., Farah, C. S., Furian, L. R., Quaggio, R. B., Monteiro-Vitorello, C. B., Van Sluys, M. A., Almeida, N. F., Alves, L. M. C., Amaral, A. M. do, Bertolini, M. C., Camargo, L. E., Camarotte, A., Cannavan, G., F., et al. 2002. Comparison of the genomes of two Xanthomonas pathogens with differing host specificities. Nature 417:459-463.
Das, A., and Xie, Y. H. 2000. The Agrobacterium T-DNA transport pore proteins VirB8, VirB9, and VirB10 interact with one another. J. Bacteriol. 182:758-763.
DebRoy, S., Thilmony, R., Kwack, Y. B., Nomura, K., and He, S. Y. 2004. A family of conserved bacterial effectors inhibits salicylic acid-mediated basal immunity and promotes disease necrosis in plants. Proc. Natl. Acad. Sci. USA 101:9927-9932
Dhar, S. K., Soni, R. K., Das, B. K., and Mukhopadhyay, G. 2003. Molecular mechanism of action of major Helicobacter pylori virulence factors. Mol. Cell. Biochem. 253:207-215.
Ding, Z., Atmakuri, K., and Christie, P. J. 2003. The outs and ins of bacterial type IV secretion substrates. Trends Microbiol. 11:527-535.
Economou, A., Christie, P. J., Fernandez, R. C., Palmer, T., Plano, G. V., and Pugsley, A. P. 2006. Secretion by numbers: protein traffic in prokaryotes. Mol. Microbiol. 62:308-319.
Engledow, A. S., Medrano, E. G., Mahenthiralingam, E., LiPuma, J. J. and Gonzalez, C. F. 2004. Involvement of a plasmid-encoded Type IV secretion system in the plant tissue watersoaking phenotype of Burkholderia cenocepacia. J. Bacteriol. 186:6015-6024.
Fenselau, S., and Bonas, U. 1995. Sequence and expression analysis of the hrpB pathogenicity operon of Xanthomonas campestris pv. vesicatoria which encode eight proteins with similarity to components of the Hrp, Ysc, Spa, and Fli secretion systems. Mol. Plant-Microbe Interact. 8:845-854.
Folkertsma, R. T., Rouppe van der Voort, J. N., de Groot, K. E., van Zandvoort, P. M., Schots, A., Gommers, F. J., Helder, J., and Bakker, J. 1996. Gene pool similarities of potato cyst nematode populations assessed by AFLP analysis. Mol. Plant-Microbe Interact. 9:47-54.
Fronzes, R., Christie, P. J., and Waksman, G. 2009. The structural biology of type IV secretion systems. Nat. Rev. Microbiol. 7:703-714.
Fujikawa, T., Ishihara, H., Leach, J. E., and Tsuyumu, S. 2006. Suppression of defense response in plants by the avrBs3/pthA gene family of Xanthomonas spp. Mol. Plant-Microbe Interact. 19:342-349.
Galan, J., and Collmer, A. 1999. Type III secretion machines: bacterial devices for protein delivery into host cells. Science 284:1322-1328.
Galan, J. E., and Wolf-Watz, H. 2006. Protein delivery into eukaryotic cells by type III secretion machines. Nature 444: 567-573.
Gomez-Gomez, L., and Boller, T. 2000. FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol. Cell 5: 1003–1011.
Gonzalez, C., Restrepo, S., Tohme, J., and Verdier, V. 2002. Characterization of pathogenic and nonpathogenic strains of Xanthomonas axonopodis pv. manihotis by PCR-based DNA fingerprinting techniques. FEMS Microbiol. Lett. 215:23-31.
Gophna, U., Ron, E. Z., and Graur, D. 2003. Bacterial type III secretion systems are ancient and evolved by multiple horizontal transfer events. Gene 312:151-163.
Grant, S. R., Fisher, E. J., Chang, J. H., Mole, B. M., and Dangl, J. L. 2006. subterfuge and manipulation: Type III effector proteins of phytopathogenic bacteria. Ann. Rev. Microbiol. 60:425-449.
Greenberg, J. T., Guo, A., Klessig, D. F., and Ausubel, F. M. 1994. Programmed cell death in plants: A pathogen-triggered response activated coordinately with multiple defense functions. Cell 77:551-563.
Groisman, E. A., and Ochman, H. 1996. Pathogenicity islands: bacterial evolution in quantum leaps. Cell 87:791-794.
Guo, M., Tian, F., Wamboldt, Y., and Alfano, J. R. 2009. The majority of the type III effector inventory of Pseudomonas syringae pv. tomato DC3000 can suppress plant immunity. Mol. Plant-Microbe Interact. 22: 1069-1080.
Gűrlebeck, D., Thieme, F., and Bonas, U. 2006. Type III effector proteins from the plant pathogen Xanthomonas and their role in the interaction with the host plant . J. Plant. Physiol. 163:233-255.
Hacker, J., and Kaper, J. B. 1999. The concept of pathogenicity islands, P. 1-11. In J. B. Kaper and J. Hacker (ed.), Pathogenicity Islands and Other Mobile Virulence Elements. American Society for Microbiology, Washington, D.C.
Hacker, J. and Kaper, J. B. 2000. Pathogenicity island and the evolution of microbes. Annu. Rev. Microbiol. 54:641-679.
Hauck, P., Thilmony, R., and He, S. Y. 2003. A Pseudomonas syringae type III effector suppresses cell wall-based extracellular defense in susceptible Arabidopsis plants. Proc. Natl. Acad. Sci. USA 100: 8577–8582.
He, S. Y., Huang, H. C., and Collmer, A. 1993. Pseudomonas syringae pv. syringae harpinPss: A protein that is secreted via the Hrp pathway and elicits the hypersensitive response in plants. Cell 73:1255-1266.
He, Y.-Q., Zhang, L., Jiang, B.-L., Zhang, Z.-C., Xu, R-Q., Tang, D.-J., Qin, J., Zhang, X., Liao, J., Cao, J.-R., Zhang, S.-S., Wei, M.-L., Liang, X.-X., Lu, G.-T., Feng, J.-X., Chen, B., Cheng, J., and Tang, J.-L. 2007. Comparative and functional genomics reveals genetic diversity and determinants of host specificity among reference strains and a large collection of Chinese isolates of the phytopathogen Xanthomonas campestris pv. campestris. Genome Biology 8:R218.
Hensel, M., Nilolaus, T., and Egelseer, C. 1999. Molecular and functional analysis indicates a mosaic structure of Salmonella pathogenicity island 2. Mol. Microbiol. 31:489-498.
Horsfall, J. G., and Barratt, R. W. 1945. An improved grading system for measuring plant disease. Phytopathology 35: 655. (Abstract)
Huang, H.-C., Schuurink, R., Denny, T. P., Atkinson, M. M., Baler, C. J., Yucel, I., et al. 1988. Molecular cloning of a Pseudomonas syringae pv. syringae gene cluster that enables Pseudomonas fluorescens to elicit the hypersensitive response in tobacco. J Bacteriol 170:4748-4756.
Hubber, A., Vergunst, A. C., Sullivan, J. T., Hooykans, P. J. J., and Ronson, C. W. 2004. Symbiotic phenotypes and translocated effector proteins of the Mesorhizobium loti strain R7A VirB/D4 typeIV secretion system. Mol. Microbiol. 54:561-574.
Hueck, C. J. 1998. Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol. Mol. Bio. Rev. 62:379-433.
Israel, D. A., Salama, N., Krishna, U., Rieger, U. M., Atherton, J. C., Falkow, S., and Peek, R. M. 2001. Helicobacter pylori genetic diversity within the gastric niche of a single human host. Proc. Natl. Acad. Sci. 98:14625-14630.
Jamir, Y., Guo, M., Oh, H. S., Petnicki-Ocwieja, T., Chen, S., Tang, X., Dickman, M. B., Collmer, A. and Alfano, J. R. 2004. Identification of Pseudomonas syringae Type III effectors that can suppress programmed cell death in plants and yeast. Plant J. 37:554-565.
Joardar, V.,Lindeberg, M., Jackson, R. W., Selengut, J., Dodson, R., Brinkac, L. M., Daugherty, S. C., Deboy, R., Durkin, A. S., Giglio, M. G. et al. 2005. Whole-genome sequence analysis of Pseudomonas syringae pv. phaseolicola 1448A reveals divergence among pathovars in genes involved in virulence and transposition. J. Bacteriol. 187:6488-6498.
Jones, A. M., and Dangl, J. L. 1996. Logjam at the Styx: programmed cell death in plants. Trends Plant Sci 1:114-119.
Jones, J. B., and Stall, R. E. 1998. Diversity among Xanthomonads pathogenic on pepper and tomato. Annu. Rev. Phytopathol. 36:41-58.
Jones, J. B., Bouzar, H., Stall, R. E., Almira, P. D., Roberts, P. D., Bowen, B. W., Sudberry, J., Strickler, P. M. and Chun, J. 2000. Systematic analysis of xanthomonads (Xanthomonas spp.) associated with pepper and tomato lesions. Int. J Syst. Evol. Microbiol. 50:1211-1219.
Jones, J. B., Lacy, G. H., Bouzar, H., Stall, R. E., and Schaad, N. W. 2004. Reclassification of the Xanthomonads associated with bacterial spot disease of tomato and pepper. System. Appl. Microbiol. 27:755-762.
Kang, L., Tang, X., and Mysore, K. S. 2004 Pseudomonas type III effector AvrPto suppresses the programmed cell death induced by two nonhost pathogens in Nicotiana benthamiana and Tomato. Mol. Plant-Microbe Interact. 17:1328-1336.
Kay, S., and Bonas, U. 2009. How Xanthomonas type III effectors manipulate the host plant. Curr. Opin. in Microbiol. 12:37-43.
Keen, N. T. 1990. gene-for-gene complementarity in plant-pathogen interactions. Annu. Rev. Genet. 24:447-463.
Kim, M. G., da Cunha, L., McFall, A. J., Belkhadir, Y., DebRoy, S., Dangl, J. L., and Mackey, D. 2005. Two Pseudomonas syringae type III effectors inhibit RIN4-regulated basal defense in Arabidopsis. Cell 121:749–759.
Klement, Z. 1982. Hypersensitivity. In M. S. Mount and G. H. Lacy (eds.) Phytopathogenic Prokaryoted, Vol. 2. Academic Press, New York, pp.149-177.
Kovach, M. E., Elzer, P. H., Hill, D. S., Rovertson, G. T., Farris, M. A., Roop II, R. M., and Peterson, K. M. 1995. Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166:175-176.
Kumar, R. B., Xie, Y. H. And Das, A. 2000. Subcellular localization of the Agrobacterium tumefaciens T-DNA transport pore proteins: VirB8 is essential for the assembly of the transport pore. Mol. Microbiol. 36:608-617.
Lawley, T. D., Klimke, W. A., Gubbins, M. J., and Frost, L. S. 2003. F factor conjugation is a true type IV secretion system. FEMS Microbiol. Lett. 224:1-15.
Li, J., Wolf, S. G., Elbaum M., and Tzfira, T. 2005. Exploring cargo transport mechanics in the type IV secretion systems. Trends Microbiol. 13:295-298
Lin, J.-J., Kuo, J., and Ma, J. 1996. A PCR-based DNA fingerprinting technique: AFLP for molecular typing of bacteria. Nucleic Acids Research 24:3649-3650.
Lindeberg, M, Stavarinides, J., Chang, J. H., Alfano, J. R., Collmer, A., Dangl, J. L., Greenberg, J. T., Mansfield, J. W., and Guttman, D. S. 2005. Proposed guidelines for a unified nomenclature and phylogenetic analysis of type III Hop effector proteins in the plant pathogen Pseudomonas syringae. Mol. Plant-Microbe Interact. 18:275-282.
Lindgren, P.B., Peet, R. C., and Panopoulos, N. J. 1986. Gene cluster of Pseudomonas syringae pv. “phaseclicola” controls pathogenidity of bean plants and hypersensitivity on nonhost plants. J. Bacteriol. 168:512-522.
Llosa, M. and O’Callaghan, D. 2004. Euroconference on the biology of type IV secretion processes: bacterial gates into the outer world. Mol. Microbiol. 53:1-8.
Lopez-Solanilla, E., Bronstein, P. A., Schneider, A. R., and Collmer, A. 2004. HopPtoN is a Pseudomonas syringae Hrp (type III secretion system) cysteine protease effector that suppresses pathogen-induced necrosis associated with both compatible and incompatible plant interactions. Mol. Microbiol. 54:353-365.
Louws, F. J., Fulbright, D. W., Stephen, C. T., and Bruijn, F. J. 1995. Differentiation of genomic structure by rep-PCR fingerprinting to rapidly classify Xanthomonas campestris pv. vesicatoria. Phytopathology 85:528-536.
Makarova, K. S., Aravind, L., and Koonin, E. V. 1999. A superfamily of archaeal, bacterial, and eukaryotic proteins homologous to animal transglutaminases. Protein Sci. 8:1714-1719.
Mansfield, J., Bennett, M., Bestwick, C., and Woods-Tör, A. 1997. Phenotypic expression of gene-for-gene interaction involving fungal and bacterial pathogens: variation from recognition to response. In Crute, I. R., Holub, E. B., Burdon, J. J. (eds), The Gene-for-Gene Relationship in Plant-Parasite Interactions. Wallingford: CAB International, pp. 265-291.
Marie, C., Broughton, W. J., and Deakin, W. J. 2001. Rhizobium type III secretion systems: Legume charmers or alarmers? Curr. Opin. Plant Biol. 4:336-342.
Marques, M. V., da Silva, A. M., and Gomes, S. L. 2001. Genetic organization of plasmid pXF51 from the plant pathogen Xylella fastidiosa. Plasmid 45:184-199.
Metz, M., Dahlbeck, D., Morales, C. Q., Sady, B. A., Clark, E. T., and Staskawicz, B. J. 2005. The conserved Xanthomonas campestris pv. vesicatoria effector protein XopX is a virulence factor and suppresses host defense in Nicotiana benthamiana. Plant. J. 41:801-814.
Mudgett, M. B. 2005 New insights to the function of phytopathogenic bacterial type III effectors in plants. Annu. Rev. Plant Biol. 56:509-531.
Nagai, H., and Roy, C. R. 2003. Show me the substrates: modulation of host cell function by type IV secretion systems. Cell. Microbiol. 5:373-383.
Noël, L., Thieme, F., Nennstiel, D., and Bonas, U. 2001. cDNA-AFLP analysis unravels a genome-wide hrpG-regulon in the plant pathogen Xanthomonas campestris pv. vesicatoria. Mol. Microbiol. 41:1271-1281.
Noël, L., Thieme, F., Nennstiel, D., and Bonas, U. 2002. Two novel type III-secreted proteins of Xanthomonas campestris pv. vesicatoria are encoded within the hrp pathogenicity island. J. Bacteriol. 184:1340-1348.
Nimchuk, Z. L., Marois, E., Kjemtrup, S., Leister, R. T., Katagiri, F., and Dangl, J. L. 2000. Eukaryotic fatty acylation drives plasma membrane targeting and enhances function of several Type III effector proteins from Pseudomonas syringae. Cell 101:353-363.
Nimchuk, Z. L., Fisher, E. J. Desveaux, D., Chang, J. H., and Dangl, J. L. 2007. The HopX (AvrPphE) family of Pseudomonas syringae Type III effectors require a catalytic triad and a novel N-terminal domain for function. Mol. Plant-Microbe Interact. 20:346-357.
Nurnberger, T., Brunner, F., Kemmerling, B., and Piater, L. 2004. Innate immunity in plants and animals: striking similarities and obvious differences. Immunol. Rev. 198: 249–266.
O’Neill, N. R., van Berkum, P., Lin, J. J., Kuo, J., Ude, G. N., Kenworthy, W. and Saunders, J. A. 1997. Application of amplified restriction fragment length polymorphism for genetic characterization of Colletotrichum pathogens of alfalfa. Phytopathology 87:745-750.
Pizza, M., Bognoli, M., Manetti, R., Covacci, A., and Rappuoli, R. 1990. The subunit S1 is important for pertussis toxin secretion. J. Biol. Chem. 265:17759-17763.
Plano, G. V., Day, J. B., and Ferracci, F. 2001. Type III export: new uses for an old pathway. Mol. Microbiol. 40:284-293.
Qian, W., Jia, Y., Ren, S. X., He, Y. Q., Feng, J. X., Lu, L. F., Sun, Q., Ying, G., Tang, D. J., Tang, H. et al. 2005. Comparative and functional genomic analyses of the pathogenicity of phytopathogen Xanthomonas campestris pv. campestris. Genome Res. 15:757-767.
Restrepo, S., Duque, M., Tohme, J., and Verdier, V. 1999. AFLP fingerprinting: an efficient technique for detecting genetic variation of Xanthomonas axonopodis pv. manihotis. Microbiology 145:107-114.
Robert-Seilaniantz, A., Shan, L., Zhou, J. M., and Tang, X. 2006. The Pseudomonas syringae pv. tomato DC3000 Type III effector HopF2 has a putative myristoylation site required for its avirulence and virulence functions. Mol. Plant-Microbe Interact. 19:130-138.
Rohde, M., Puls, J., Buhrdorf, R., Fischer, W., and Haas, R. 2003. A novel sheathed surface organelle of the Helicobacter pylori cag type IV secretion system. Mol Microbiol. 49: 219-234.
Rohmer, L., Guttman, D. S., and Dangl, J. L. 2004. Diverse evolutionary mechanisms shape the type III effector virulence factor repertoire in the plant pathogen Pseudomonas syringae. Genetics 167:1341-1360.
Sagulenko, E., Sagulenko, V., Chen, J., and Christie, P. J. 2001. Roke of Agrobacterium Vir B11 ATPase in T-pilus assembly and substrate selection. J. Bacteriol. 183: 5813-5825.
Salanoubat, M., Genin, S., Artiguenave, F., Gouzy, J., Mangenot, S., Arlat, M., Billault, A., Brottier, P., Camus, J. C., Cattolico, L. et al. 2002. Genome sequence of the plant pathogen Ralstonia solanacearum. Nature 415: 497-502.
Sambrook, J., Maniatis, T. I., and Fritsch, E. F. 1989. Molecular Cloning: A Laboratory Manual, 2rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.
Sawada, H., Suzuki, F., Matsuda, I., and Saitou, N. 1999. Phylogenetic analysis of Pseudomonas syringae pathovars suggests the horizontal gene transfer of argK and evolutionary stability of hrp gene cluster. J. Mol. Evol. 49:627-644.
Schechter, L. M., Vencato, M., Jordan, K. L., Schneider, S. E., Schneider, D. J., and Collmer, A. 2006. Multiple approaches to a complete inventory of Pseudomonas syringae pv. tomato DC3000 type III secretion system effector proteins. Mol. Plant-Microbe Interact. 19:1180-1192.
Schulein, R., and Deho, C. 2002. The VirB/VirD4 type IV secretion system of Bartonella is essential for establishing intraerythrocytic infection. Mol. Microbiol. 46:1053-1067.
Segal, G., Feldman, M., and Zusman, T. 2005. The Icm/Dot type-IV secretion systems of Legionella pneumophila and Coxiella burnetii. FEMS Microbiol. Rev. 29:65-81.
Seubert, A., Hiestand, R., de la Cruz, F., and Dehio, C. 2003. A bacterial conjugation machinery recruited for pathogenesis. Mol. Microbiol. 49:1253-1266.
Shan, L., Thara,V. K., Martin, G. B., Zhou, J.-M., and Tang, X. 2000. The Pseudomonas AvrPto protein is differentially recognized by tomato and tobacco and is localized to the plant plasma membrane. Plant Cell 12:2323-2337.
Simpson, A. J. G., Reinach, F. C., Arruda, P., Abreu, F. A., Acencio, M., Alvarenga, R., Alves, L. M. C., Araya, J. E., Baia, G. S., Baptista, C. S., Barros, M. H., Bonaccorsi, E. D., Bordin, S., Bové, J. M., Briones, M. R. S., Bueno, M. R. P., Camargo, A. A. et al. 2000. The genome sequence of the plant pathogen Xylella fastidiosa. Nature 406:151-157.
Spudich, G. M., Fernandez, D., Zhou, X. R., and Christie, P. J. 1996. Intermolecular disulfide bonds stabilize VirB7 homodimers and VirB7/VirB9 heterodimers during biogenesis of the Agrobacterium tumefaciens T-complex transport apparatus. Proc. Natl. Acad. Sci. USA 93:7512-7517.
Stall, R. E., Beaulieu, Egel, C., D., Hodge, N. C., Leite, R. P., Minsavage, G. V., Bouzar, H., Jones, J. B., Alvarez, A. M. and Benedict, A. A. 1994. Two genetically diverse groups of strains are included in Xanthomonas campestris pv. vesicatoria. Int. J. Syst. Bacteriol., 44:47-53.
Stall, R. E., Jones, J. B., and Minsavage, G. V. 2009. Durability of resistance in tomato and pepper to xanthomonads causing bacterial spot. Annu. Rev. Phytopathol. 47:265-284.
Staskawicz, B. J., Mudgett, M. B., Dangl, J., and Galan, J. E. 2001 Common and contrasting themes of plants and animal diseases. Science 292:2285-2289.
Stein, M., Rappuoli, R., Covacci, A. 2000. Tyrosine phosphorylation of the Helicobacter pylori CagA antigen after cag-driven host cell translocation. Proc. Natl. Acad. Sci. USA 97:1263-1268.
Stevens, C., Bennett, M. A., Athanassopoulos, E., Tsiamis, G., Taylor, J. D., and Mansfield, J. W. 1998 Sequence variations in alleles of the avirulence gene avrPphE.R2 from Pseudomonas syringae pv. phaseloicola lead to loss of recognition of the AvrPphE protein within bean cells and a gain in cultivar-specific virulence. Mol. Microbiol. 29:165-177.
Sundin, G. W. 2007. Genomic insights into the contribution of phytopathogenic bacterial plasmids to them evolutionary history of their hosts. Annu. Rev. Phytopathol. 45:129-151.
Thieme, F., Koebnik, R., Bekel, T., Berger, C., Boch, J., Buttner, D., Caldana, C., Gaigalat, L., Goesmann, A., Kay, S., Kirchner, O., Lanz, C., Linke, B., A. C., McHardy, Meyer F., Mittenhuber, G., Nies, D. H., Niesbach-Klosgen, U., Patschkowski, T., Ruckert, C., Rupp, O., Schneiker, S., Schuster, S. C., Vorholter F.-J., Weber, E., Puhler, A., Bonas, U., Bartels, D.,and Kaiser, O. 2005. Insights into genome plasticity and pathogenicity of the plant pathogenic bacterium Xanthomonas campestris pv. vesicatoria revealed by the complete genome sequence. J. Bacteriol. 187:7254-7266.
Thieme, F., Szczesny, R., Urban, A., Kirchner, O. Hause, G., and Bonas, U. 2007. New type III effectors from Xanthomonas campestris pv. vesicatoria trigger plant reactions dependent on a conserved N-myristoylation motif. Mol. Plant-Microbe Interact. 20:1250-1261
Tsiamis, G., Mansfield, J. W., Hockenhull, R., Jackson, R. W., Sesma, A., Athanassopoulos, E., Bennett, M. A., Stevens, C., Vivian, A., Taylor, J. D., and Murillo, J. 2000. Cultivar-specific avirulence and virulence functions assigned to avrPphF in Pseudomonas syringae pv. phaseolicola, the cause of bean halo-blight disease. EMBO J.19:3204-3214.
Vauterin, L. Swings, J., Kersters, K., Gillis, M., Mew, T. W., Schroth, M. N., Palleroni, N. J., Hildebrand, D. C., Stead, D. E., Civerolo, E. L., Hayward, A. C., Maraîte, H., Stall, R. E., Vidaver, A. K., and Bradbury, J. F. 1990. Towards an improved taxonomy of Xanthomonas. Int. J. Syst. Bacteriol. 40: 312-316.
Vauterin, L., Hoste, B., Kersters, K., and Swing, J. 1995. Reclassification of Xanthomonas. Int. J. Syst. Bacteriol. 45:472-489.
Vauterin, L., Rademaker, J., and Swings, J. 2000. Synopsis on the taxomomy of the genus Xanthomonas. Phytopathology 90:677-682.
Vincent, C. D., Friedman, J. R., Jeong, K. C., Buford, E. C., Miller, J. L., and Vogel, J. P. 2006. Identification of the core transmembrane complex of the Legionella Dot/Icm type IV secretion system. Mol. Microbiol. 62:1278-1291.
Vogel, J. P., and Isberg, R. R. 1999. Cell biology of Legionella pneumophila. Curr. Opin. Microbiol. 2:30-34.
Vos, P., Hoger, R., Bleeker, M., van de Lee, T., Hornes, M., Frijter, A., Pot, J., Peleman, J., Kuiper, M., and Zabeau, M. 1995. AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res. 23:4407-4414.
Weiss, A. A., Johnson, F. D., and Burns, D. L. 1993. Molecular characterization of an operon requires for pertussis toxin secretion. Proc. Natl. Acad. Sci. USA 90:2970-2974.
Yuan, Q., Carle, A., and Gao, C., et al. 2005 Identification of the VirB4-VirB8-VirB5-
VirB2 pilus assembly sequence of type IV secretion systems. J. Biol. Chem. 280:26349-26359.
Zhao, Y., Ma, Z., and Sundin, G. W. 2005. Comparative genomic analysis of the pPT23A plasmid family of Pseudomonas syringae. J. Bacteriol. 187:2113-2126.
Zhu, W., Yang, B., Chittoor, J. M., Johnson, L. B., and White, F. F. 1998. AvrXa10 contains an acidic transcriptional activation domain in the functionally conserved C terminus. Mol. Plant-Microbe Interact. 11: 824–832.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top