(3.220.231.235) 您好!臺灣時間:2021/03/09 05:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:賴文燦
研究生(外文):Lai, Wen-Tsan
論文名稱:建立於奈米線場效電晶體上的高靈敏度、無須標記且即時偵測的腸病毒DNA生物感測器
論文名稱(外文):Poly crystalline silicon nanowire field effect transistor based biosensor for highly sensitive, label-free and real-time detection of enterovirus DNA
指導教授:楊裕雄
指導教授(外文):Yang, Yuh-Shyong
學位類別:碩士
校院名稱:國立交通大學
系所名稱:生物科技學系
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:英文
論文頁數:57
中文關鍵詞:奈米線場效電晶體腸病毒高靈敏度
外文關鍵詞:NanowireField-Effect TransistorEnterovirusHighly sensitive
相關次數:
  • 被引用被引用:0
  • 點閱點閱:326
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:87
  • 收藏至我的研究室書目清單書目收藏:0
腸病毒七十一型(Enterovirus 71)對世界各地的幼童而言是一種重要的致病原且比其他非小兒麻痺腸病毒具有高致病率及致死率,其感染屬於神經性症狀,受感染的病童平均會在三天內惡化成重症。過去的臨床確認檢驗方式需要先作病毒培養再進行病毒分離和藉由反轉錄聚合酶鏈鎖反應(RT-PCR),這些檢驗流程趕不上惡化成重症的時間,無法達到即時診斷出EV 71並作後續的醫療處置和疾病控管。在過去的文獻中,多晶矽奈米線場效電晶體可被製成且具有高靈敏度、無需標誌且即時偵測生物分子的生化感測器。將特定腸病毒的DNA序列有專一性的單股DNA序列先固定在多晶矽奈米線場效電晶體表面,將互補和非互補的DNA序列流過奈米線場效電晶體表面,能對DNA序列作專一性辨識而兩互補的DNA序列產生雜交反應使奈米線場效電晶體的導電度產生變化,最低濃度可偵測到fM (femto-molar,10-15M)。此結果表示多晶矽奈米線場線電晶體具有高靈敏度、無需標誌且可即時偵測的潛能,此特性可發展成生物感測系統用來偵測腸病毒的感染型別並應用於其他傳染病篩檢。
Enterovirus 71 (EV 71) is an important pathogen that causes higher morbidity and mortality in children around the world than those of other non-Polio enteroviruses. Its infection is neurotropic and even followed by rapid deterioration within average 3 days. The standard clinical methods for EV 71 identification require virus isolation in cell culture and reverse transcriptase polymerase chain reactions (RT-PCR). Virus isolation requires 5-10 days and hinders the subsequent treatment and disease control.
Poly silicon nanowire field effect transistor has been shown to function as transducer for high sensitive, label-free and real-time biosensing to detect enterovirus infection. The selectivity of target for detection can be achieved by surface modification on NWFET. In our research, specific antibody or DNA sequences that recognize capsid protein or nucleic acid will be immobilized on poly Si NWFET. Currently, we are able to distinguish between EV 71 and CA 16 DNAs by real-time electrical analysis. It will be a promising biosensor for rapid diagnosis of EV 71 or other epidemic diseases.

Abstract (Chinese) i
Abstract (English) iii
Acknowledgement iv
Contents v
Contents of Tables vii
Contents of Figures viii
Abbreviations ix
I Introduction 1
1-1 Enterovirus 1
1-1.1 Introduction of Enterovirus 1
1-1.2 Transmission pathway 2
1-1.3 Epidemiology 3
1-1.4 Current clinical diagnosis methods 3
1-1.4.1 Enterovirus isolation in cell culture 4
1-1.4.2 Enterovirus antisera neutralization test (NT) 4
1-1.4.3 Immunofluorescence assay (IFA) 5
1-1.4.4 Reverse transcription polymerase chain reaction (RT-PCR) 5
1-2 Applying poly crystalline silicon nanowire field effect transistor 6
II Materials and methods 8
2-1 Experimental materials 8
2-2 Instruments 11
2-3 Poly crystalline silicon NWFET fabrication process 11
2-4 Microfluidic system 12
2-5 Surface modification 13
2-6 Sample transport at kinetic equilibrium 14
2-7 Liquid phase electrical measurement 14
III Results and discussion 16
3-1 Nanowire chip selection in dry air condition 16
3-2 Biosensing of non-immobilized semiconductor device 16
3-3 Device characteristic verification in liquid phase 17
3-4 Enterovirus 71 (EV 71) DNA Biosensing 18
3-5 EV 71 DNA biosensing after hot water washed 20
3-6 CA 16 DNA Biosensing 20
IV Summary and Perspective 22
V Reference 23
VI Tables and Figures 30

1. 行政院衛生署疾病管制局. “腸病毒感染併發重症(含非小兒麻痺病毒之腸病毒感染症)”, 2007, [cited; Available from: http://www.cdc.gov.tw/index_info_info.asp?data_id=1007.
2. Huang, K.Y. and Lin, T.Y. “Enterovirus 71 infection and prevention”, Taiwan Epidemiology Bulletin, 2008, p. 415-426
3. Lin T.Y. et al. “The 1998 enterovirus 71 outbreak in Taiwan: Pathogenesis and management”, Clinical Infectious Diseases, 2002, 34, p. S52-S57.
4. King, A.M. et al. “Family Picornaviridae. In Virus Taxonomy., in Seventh Report of the International Committee on Taxonomy of Viruses”, San Diego: Academic Press., 2000, p. 657-678.
5. Lin, T.Y. et al. “Enterovirus 71 outbreaks, Taiwan: occurrence and recognition”, Emerging Infectious Diseases, 2003, 9(3): p. 291-293.
6. Wang, S.F. “An epidemiological analysis of enterovirus 71: Taiwan, 1998-2004”, Taiwan Epidemiology Bulletin, 2005, p. 125-153.
7. Wu, H.S. et al. “Update on the Molecular Epidemiology of Human Enterovirus 71 in Taiwan Since 1998”, International Journal of Infectious Diseases, 2008, Vol. 12 (Supplement 1).
8. Chang, L.Y. et al. “Comparison of enterovirus 71 and coxsackie-virus A16 clinical illnesses during the Taiwan enterovirus epidemic, 1998”, The pediatric infectious disease journal, 1999, 18(12): p. 1092-1096.
9. 行政院衛生署疾病管制局 “腸病毒感染併發重症臨床處理注意事項”, 2010.
10. 行政院衛生署疾病管制局 “傳染病防治工作手冊-腸病毒感染併發重症”, 2008.
11. 行政院衛生署疾病管制局 “腸病毒感染防治手冊”, 2007.
12. Wu, Y. et al. “Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures”, Nature, 2004, 430(6995): p. 61-65.
13. Schmidt, N.J. et al. “An apparently new enterovirus isolated from patients with disease of the central nervous system”, The journal of infectious disease, 1974, 129(3): p. 304-309.
14. Deibel, R. et al. “Isolation of a new enterovirus” Proceedings of the Society for Experimental Biology and Medicine, 1975. 148(1): p. 203-207.
15. Blomberg, J. et al. “New enterovirus type associated with epidemic of aseptic meningitis and-or hand, foot, and mouth disease” Lancet, 1974, 13(2): p. 112.
16. Tagaya, I. and Tachibana, K. “Epidemic of hand, foot and mouth disease in Japan, 1972-1973: difference in epidemiologic and virologic features from the previous one”, Japanese journal of medical science & biology, 1975, 28(4): p. 231-234.
17. Gilbert, G.L. et al. “Outbreak of enterovirus 71 infection in Victoria, Australia, with a high incidence of neurologic involvement”, Pediatric Infectious Disease Journal, 1988, 7(7): p. 484-488.
18. Shindarov, L.M. et al. “Epidemiological, clinical and pathomorphological characteristics of epidemic poliomyelitis-like disease caused by enterovirus 71”, Journal of Hygiene Epidemiology Microbiology and Immunology, 1979, 23(3): p. 284-295.
19. Nagy, G. et al. “Virological diagnosis of enterovirus type 71 infections: experiences gained during an epidemic of acute CNS diseases in Hungary in 1978”, Archives of Virology, 1982, 71(3): p. 217-227.
20. World Health Organization (WHO) “Outbreak of hand, foot and mouth disease in Sarawak. Cluster of deaths among infants and young children”, Weekly epidemiological record, 1997, 72, p. 211-212.
21. Ho, M.T. et al. “An epidemic of enterovirus 71 infection in Taiwan”, New England Journal of Medicine, 1999, 341(13): p. 929-935.
22. World Health Organization (WHO) “Enterovirus - non polio”, 2002 [cited; Available from: http://www.who.int/mediacentre/factsheets/fs174/en/index.html.
23. Shih, S.R. et al. “Genetic analysis of enterovirus 71 isolated from fatal and non-fatal cases of hand, foot and mouth disease during an epidemic in Taiwan, 1998”, Virus Research, 2000, 68(2): p. 127-136.
24. Rigonan, A.S. et al. “Use of monoclonal antibodies to identify serotypes of enterovirus isolates”, Journal of Clinical Microbiology, 1998, 36(7): p. 1877-1881.
25. Manzara, S. et al. “Molecular identification and typing of enteroviruses isolated from clinical specimens”, Journal of Clinical Microbiology, 2002, 40(12): p. 4554-4560.
26. Chen, T.C. et al. “Combining multiplex reverse transcription-PCR and a diagnostic microarray to detect and differentiate enterovirus 71 and coxsackievirus A16”, Journal of Clinical Microbiology, 2006, 44(6): p. 2212-2219.
27. Yan, J.J. et al. “Complete genome analysis of enterovirus 71 isolated from an outbreak in Taiwan and rapid identification of enterovirus 71 and coxsackievirus A16 by RT-PCR”, Journal of Medical Virology, 2001, 65(2): p. 331-339.
28. Lipson, S.M. et al. “Detection of precytopathic effect of enteroviruses in clinical specimens by centrifugation-enhanced antigen detection”, Journal of Clinical Microbiology, 2001, 39(8): p. 2755-2759.
29. Guney, C. et al. “Laboratory diagnosis of enteroviral infections of the central nervous system by using a nested RT-polymerase chain reaction (PCR) assay”, Diagnostic Microbiology and Infectious Disease, 2003, 47(4): p. 557-562.
30. Wang, S.Y. et al. “Early and rapid detection of enterovirus 71 infection by IgM-capture ELISA”, Journal of Virological Methods, 2004, 119(1): p. 37-43.
31. Lim, K.A. and Benyeshmelnick, M. “Typing of viruses by combinations od antiserum pools- application to typing of enteroviruses (Coxsackie and Echo)”, Journal of Immunology, 1960, 84(3): p. 309-317.
32. Tsao, K.C. et al. “Use of molecular assay in diagnosis of hand, foot and mouth disease caused by enterovirus 71 or coxsackievirus A 16”, Journal of Virological Methods, 2002, 102(1-2): p. 9-14.
33. Hu, J.T. et al. “Controlled growth and electrical properties of heterojunctions of carbon nanotubes and silicon nanowires”, Nature, 1999, 399, p. 48-51.
34. Cui, Y. and Lieber, C.M. “Functional nanoscale electronic devices assembled using silicon nanowire building blocks”, Science, 2001, 291(5505): p. 851-853.
35. Cui, Y. et al. “Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species”, Science, 2001, 293(5533): p. 1289-1292.
36. Hahm, J. and Lieber, C.M. “Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors”, Nano Letters, 2004, 4(1): p. 51-54.
37. Patolsky, F. et al. “Electrical detection of single viruses”, Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(39): p. 14017-14022.
38. Zheng, G.F. et al. “Multiplexed electrical detection of cancer markers with nanowire sensor arrays”, Nature Biotechnology, 2005, 23(10): p. 1294-1301.
39. Patolsky, F. et al. “Detection, stimulation, and inhibition of neuronal signals with high-density nanowire transistor arrays”, Science, 2006, 313(5790): p. 1100-1104.
40. Chen, Y. et al. “Silicon-based nanoelectronic field-effect pH sensor with local gate control” Applied Physics Letters, 2006, 89(22): p. 223512-223512-3.
41. Lud, S.Q. et al. “Field effect of screened charges: Electrical detection of peptides and proteins by a thin-film resistor”, Chemphyschem, 2006, 7(2): p. 379-384.
42. Stern, E. et al. “Label-free immunodetection with CMOS-compatible semiconducting nanowires”, Nature, 2007, 445(7127): p. 519-522.
43. Wong, S.S. et al. “Covalently functionalized nanotubes as nanometre-sized probes in chemistry and biology”, Nature, 1998, 394(6688): p. 52-55.
44. Campagnolo, C. et al. “Real-Time, label-free monitorine, of tumor antigen and serum antibody interactions”, Journal of Biochemical and Biophysical Methods, 2004, 61(3): p. 283-298.
45. Wu, G.H. et al. “Bioassay of prostate-specific antigen (PSA) using microcantilevers”, Nature Biotechnology, 2001, 19(9): p. 856-860.
46. Ogi, H. et al. “High-frequency wireless and electrodeless quartz crystal microbalance developed as immunosensor”, Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers, 2007, 46(7B): p. 4693-4697.
47. Michalet, X. et al. “Quantum dots for live cells, in vivo imaging, and diagnostics”, Science, 2005, 307(5709): p. 538-544.
48. Zhang, Y.C. and Heller, A. “Reduction of the nonspecific binding of a target antibody and of its enzyme-labeled detection probe enabling electrochemical immunoassay of an antibody through the 7 pg/mL-100 ng/mL (40fM-400pM) range”, Analytical Chemistry, 2005, 77(23): p. 7758-7762.
49. Shih, S.R. et al. “Serotype-specific detection of enterovirus 71 in clinical specimens by DNA microchip array”, Journal of Virological Methods, 2003, 111(1): p. 55-60.
50. Hsiao, C.Y. et al. “Novel poly-silicon nanowire field effect transistor for biosensing application”, Biosensors & Bioelectronics, 2009, p. 1223-1229.
51. Lin, H.C. et al. “A simple and low-cost method to fabricate TFTs with poly-Si nanowire channel”, IEEE Electron Device Letters, 2005, 26(9): p. 643-645.
52. Su, C.J. et al. “High-performance TFTs with Si nanowire channels enhanced by metal-induced lateral crystallization”, IEEE Electron Device Letters, 2006, 27(7): p. 582-584.
53. Lin, C.H. et al. “Ultrasensitive detection of dopamine using a polysilicon nanowire field-effect transistor”, Chemical Communications, 2008, 44, p. 5749-5751.
54. Lin, H.C. et al. “Water passivation effect on polycrystalline silicon nanowires”, Applied Physics Letters, 2007, 91(20): p. 202113.
55. Su, C.J. et al. “Operations of poly-Si nanowire thin-film transistors with a multiple-gated configuration”, Nanotechnology, 2007, 18, p. 215205
56. Li, Z. et al. “Sequence-specific label-free DNA sensors based on silicon nanowires”, Nano Letters, 2004, 4(2): p. 245-247.
57. Lin, C.H. et al. “Poly-silicon nanowire field-effect transistor for ultrasensitive and label-free detection of pathogenic avian influenza DNA”, Biosensors & Bioelectronics, 2009, 24(10): p. 3019-3024.
58. Jensen, K.K. et al. “Kinetics for hybridization of peptide nucleic acids (PNA) with DNA and RNA studied with the BIAcore technique”, Biochemistry, 1997, 36, p. 5072-5077.
59. Hook, F. et al. “Characterization of PNA and DNA immobilization and subsequent hybridization with DNA using acoustic-shear-wave attenuation measurements”, Langmuir, 2001, 17, p. 8305-8312.
60. Hahm, J.I. and Lieber, C.M. “Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors”, Nano Letters, 2004, 4(1), p. 51-54.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔