|
1. 行政院衛生署疾病管制局. “腸病毒感染併發重症(含非小兒麻痺病毒之腸病毒感染症)”, 2007, [cited; Available from: http://www.cdc.gov.tw/index_info_info.asp?data_id=1007. 2. Huang, K.Y. and Lin, T.Y. “Enterovirus 71 infection and prevention”, Taiwan Epidemiology Bulletin, 2008, p. 415-426 3. Lin T.Y. et al. “The 1998 enterovirus 71 outbreak in Taiwan: Pathogenesis and management”, Clinical Infectious Diseases, 2002, 34, p. S52-S57. 4. King, A.M. et al. “Family Picornaviridae. In Virus Taxonomy., in Seventh Report of the International Committee on Taxonomy of Viruses”, San Diego: Academic Press., 2000, p. 657-678. 5. Lin, T.Y. et al. “Enterovirus 71 outbreaks, Taiwan: occurrence and recognition”, Emerging Infectious Diseases, 2003, 9(3): p. 291-293. 6. Wang, S.F. “An epidemiological analysis of enterovirus 71: Taiwan, 1998-2004”, Taiwan Epidemiology Bulletin, 2005, p. 125-153. 7. Wu, H.S. et al. “Update on the Molecular Epidemiology of Human Enterovirus 71 in Taiwan Since 1998”, International Journal of Infectious Diseases, 2008, Vol. 12 (Supplement 1). 8. Chang, L.Y. et al. “Comparison of enterovirus 71 and coxsackie-virus A16 clinical illnesses during the Taiwan enterovirus epidemic, 1998”, The pediatric infectious disease journal, 1999, 18(12): p. 1092-1096. 9. 行政院衛生署疾病管制局 “腸病毒感染併發重症臨床處理注意事項”, 2010. 10. 行政院衛生署疾病管制局 “傳染病防治工作手冊-腸病毒感染併發重症”, 2008. 11. 行政院衛生署疾病管制局 “腸病毒感染防治手冊”, 2007. 12. Wu, Y. et al. “Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures”, Nature, 2004, 430(6995): p. 61-65. 13. Schmidt, N.J. et al. “An apparently new enterovirus isolated from patients with disease of the central nervous system”, The journal of infectious disease, 1974, 129(3): p. 304-309. 14. Deibel, R. et al. “Isolation of a new enterovirus” Proceedings of the Society for Experimental Biology and Medicine, 1975. 148(1): p. 203-207. 15. Blomberg, J. et al. “New enterovirus type associated with epidemic of aseptic meningitis and-or hand, foot, and mouth disease” Lancet, 1974, 13(2): p. 112. 16. Tagaya, I. and Tachibana, K. “Epidemic of hand, foot and mouth disease in Japan, 1972-1973: difference in epidemiologic and virologic features from the previous one”, Japanese journal of medical science & biology, 1975, 28(4): p. 231-234. 17. Gilbert, G.L. et al. “Outbreak of enterovirus 71 infection in Victoria, Australia, with a high incidence of neurologic involvement”, Pediatric Infectious Disease Journal, 1988, 7(7): p. 484-488. 18. Shindarov, L.M. et al. “Epidemiological, clinical and pathomorphological characteristics of epidemic poliomyelitis-like disease caused by enterovirus 71”, Journal of Hygiene Epidemiology Microbiology and Immunology, 1979, 23(3): p. 284-295. 19. Nagy, G. et al. “Virological diagnosis of enterovirus type 71 infections: experiences gained during an epidemic of acute CNS diseases in Hungary in 1978”, Archives of Virology, 1982, 71(3): p. 217-227. 20. World Health Organization (WHO) “Outbreak of hand, foot and mouth disease in Sarawak. Cluster of deaths among infants and young children”, Weekly epidemiological record, 1997, 72, p. 211-212. 21. Ho, M.T. et al. “An epidemic of enterovirus 71 infection in Taiwan”, New England Journal of Medicine, 1999, 341(13): p. 929-935. 22. World Health Organization (WHO) “Enterovirus - non polio”, 2002 [cited; Available from: http://www.who.int/mediacentre/factsheets/fs174/en/index.html. 23. Shih, S.R. et al. “Genetic analysis of enterovirus 71 isolated from fatal and non-fatal cases of hand, foot and mouth disease during an epidemic in Taiwan, 1998”, Virus Research, 2000, 68(2): p. 127-136. 24. Rigonan, A.S. et al. “Use of monoclonal antibodies to identify serotypes of enterovirus isolates”, Journal of Clinical Microbiology, 1998, 36(7): p. 1877-1881. 25. Manzara, S. et al. “Molecular identification and typing of enteroviruses isolated from clinical specimens”, Journal of Clinical Microbiology, 2002, 40(12): p. 4554-4560. 26. Chen, T.C. et al. “Combining multiplex reverse transcription-PCR and a diagnostic microarray to detect and differentiate enterovirus 71 and coxsackievirus A16”, Journal of Clinical Microbiology, 2006, 44(6): p. 2212-2219. 27. Yan, J.J. et al. “Complete genome analysis of enterovirus 71 isolated from an outbreak in Taiwan and rapid identification of enterovirus 71 and coxsackievirus A16 by RT-PCR”, Journal of Medical Virology, 2001, 65(2): p. 331-339. 28. Lipson, S.M. et al. “Detection of precytopathic effect of enteroviruses in clinical specimens by centrifugation-enhanced antigen detection”, Journal of Clinical Microbiology, 2001, 39(8): p. 2755-2759. 29. Guney, C. et al. “Laboratory diagnosis of enteroviral infections of the central nervous system by using a nested RT-polymerase chain reaction (PCR) assay”, Diagnostic Microbiology and Infectious Disease, 2003, 47(4): p. 557-562. 30. Wang, S.Y. et al. “Early and rapid detection of enterovirus 71 infection by IgM-capture ELISA”, Journal of Virological Methods, 2004, 119(1): p. 37-43. 31. Lim, K.A. and Benyeshmelnick, M. “Typing of viruses by combinations od antiserum pools- application to typing of enteroviruses (Coxsackie and Echo)”, Journal of Immunology, 1960, 84(3): p. 309-317. 32. Tsao, K.C. et al. “Use of molecular assay in diagnosis of hand, foot and mouth disease caused by enterovirus 71 or coxsackievirus A 16”, Journal of Virological Methods, 2002, 102(1-2): p. 9-14. 33. Hu, J.T. et al. “Controlled growth and electrical properties of heterojunctions of carbon nanotubes and silicon nanowires”, Nature, 1999, 399, p. 48-51. 34. Cui, Y. and Lieber, C.M. “Functional nanoscale electronic devices assembled using silicon nanowire building blocks”, Science, 2001, 291(5505): p. 851-853. 35. Cui, Y. et al. “Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species”, Science, 2001, 293(5533): p. 1289-1292. 36. Hahm, J. and Lieber, C.M. “Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors”, Nano Letters, 2004, 4(1): p. 51-54. 37. Patolsky, F. et al. “Electrical detection of single viruses”, Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(39): p. 14017-14022. 38. Zheng, G.F. et al. “Multiplexed electrical detection of cancer markers with nanowire sensor arrays”, Nature Biotechnology, 2005, 23(10): p. 1294-1301. 39. Patolsky, F. et al. “Detection, stimulation, and inhibition of neuronal signals with high-density nanowire transistor arrays”, Science, 2006, 313(5790): p. 1100-1104. 40. Chen, Y. et al. “Silicon-based nanoelectronic field-effect pH sensor with local gate control” Applied Physics Letters, 2006, 89(22): p. 223512-223512-3. 41. Lud, S.Q. et al. “Field effect of screened charges: Electrical detection of peptides and proteins by a thin-film resistor”, Chemphyschem, 2006, 7(2): p. 379-384. 42. Stern, E. et al. “Label-free immunodetection with CMOS-compatible semiconducting nanowires”, Nature, 2007, 445(7127): p. 519-522. 43. Wong, S.S. et al. “Covalently functionalized nanotubes as nanometre-sized probes in chemistry and biology”, Nature, 1998, 394(6688): p. 52-55. 44. Campagnolo, C. et al. “Real-Time, label-free monitorine, of tumor antigen and serum antibody interactions”, Journal of Biochemical and Biophysical Methods, 2004, 61(3): p. 283-298. 45. Wu, G.H. et al. “Bioassay of prostate-specific antigen (PSA) using microcantilevers”, Nature Biotechnology, 2001, 19(9): p. 856-860. 46. Ogi, H. et al. “High-frequency wireless and electrodeless quartz crystal microbalance developed as immunosensor”, Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers, 2007, 46(7B): p. 4693-4697. 47. Michalet, X. et al. “Quantum dots for live cells, in vivo imaging, and diagnostics”, Science, 2005, 307(5709): p. 538-544. 48. Zhang, Y.C. and Heller, A. “Reduction of the nonspecific binding of a target antibody and of its enzyme-labeled detection probe enabling electrochemical immunoassay of an antibody through the 7 pg/mL-100 ng/mL (40fM-400pM) range”, Analytical Chemistry, 2005, 77(23): p. 7758-7762. 49. Shih, S.R. et al. “Serotype-specific detection of enterovirus 71 in clinical specimens by DNA microchip array”, Journal of Virological Methods, 2003, 111(1): p. 55-60. 50. Hsiao, C.Y. et al. “Novel poly-silicon nanowire field effect transistor for biosensing application”, Biosensors & Bioelectronics, 2009, p. 1223-1229. 51. Lin, H.C. et al. “A simple and low-cost method to fabricate TFTs with poly-Si nanowire channel”, IEEE Electron Device Letters, 2005, 26(9): p. 643-645. 52. Su, C.J. et al. “High-performance TFTs with Si nanowire channels enhanced by metal-induced lateral crystallization”, IEEE Electron Device Letters, 2006, 27(7): p. 582-584. 53. Lin, C.H. et al. “Ultrasensitive detection of dopamine using a polysilicon nanowire field-effect transistor”, Chemical Communications, 2008, 44, p. 5749-5751. 54. Lin, H.C. et al. “Water passivation effect on polycrystalline silicon nanowires”, Applied Physics Letters, 2007, 91(20): p. 202113. 55. Su, C.J. et al. “Operations of poly-Si nanowire thin-film transistors with a multiple-gated configuration”, Nanotechnology, 2007, 18, p. 215205 56. Li, Z. et al. “Sequence-specific label-free DNA sensors based on silicon nanowires”, Nano Letters, 2004, 4(2): p. 245-247. 57. Lin, C.H. et al. “Poly-silicon nanowire field-effect transistor for ultrasensitive and label-free detection of pathogenic avian influenza DNA”, Biosensors & Bioelectronics, 2009, 24(10): p. 3019-3024. 58. Jensen, K.K. et al. “Kinetics for hybridization of peptide nucleic acids (PNA) with DNA and RNA studied with the BIAcore technique”, Biochemistry, 1997, 36, p. 5072-5077. 59. Hook, F. et al. “Characterization of PNA and DNA immobilization and subsequent hybridization with DNA using acoustic-shear-wave attenuation measurements”, Langmuir, 2001, 17, p. 8305-8312. 60. Hahm, J.I. and Lieber, C.M. “Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors”, Nano Letters, 2004, 4(1), p. 51-54.
|