(18.210.12.229) 您好!臺灣時間:2021/02/26 09:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:王偉丞
研究生(外文):Wang, Wei-Chen
論文名稱:生鮮產品貨架壽命管理暨銷售指派
論文名稱(外文):Shelf Life Managnment and Sale Assignment for Fresh Products
指導教授:陳穆臻陳穆臻引用關係
指導教授(外文):Chen, Mu-Chen
學位類別:碩士
校院名稱:國立交通大學
系所名稱:交通運輸研究所
學門:運輸服務學門
學類:運輸管理學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:133
中文關鍵詞:生鮮產品供應鏈管理冷鏈貨架壽命倒傳遞類神經網路指派問題
外文關鍵詞:fresh productsupply chain managementcold chainshelf lifeback propagation neural network (BPN)assignment problem
相關次數:
  • 被引用被引用:9
  • 點閱點閱:401
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來國內外與食品安全有關的議題受到高度關注,且因資訊傳遞能力的提升,使得消費者要求更精準的食品相關資訊,促使了「食品產銷履歷」建置作業的推廣,詳細地記錄生鮮產品(fresh products)在配送、處理、運輸和儲存過程的溫度等相關資訊,而危害分析重要管制點(Hazard Analysis Critical Control Point, HACCP)等食品安全規章也因應而生。為了確保易腐(perishable)生鮮產品之品質,冷鏈與低溫物流管理已逐漸成為當前供應鏈管理的發展趨勢。諸位學者亦提出了造成產品品質變化之關鍵影響因子。有鑑於此,本研究將以倒傳遞類神經網路為基礎,發展一「貨架壽命預測模式」,以準確預測生鮮產品之貨架壽命,並以混合整數規劃(mixed integer programming, MIP)方式構建一「產品銷售指派模式」,針對模擬範例資料,求解在分級制度下的生鮮產品指派(assignment)與分配(allocation)問題。
分析結果顯示,本研究所提出以倒傳遞類神經網路(Back-Propagation Neural Network, BPN)為基礎之「貨架壽命預測模式」中,以「溫度」對品質變化的影響最為顯著,在有足夠的樣本資料時,可做為有效的貨架壽命預測工具。此外,經範例驗證後發現,「產品銷售指派模式」可以系統化、數學化的方法有效地解決產品指派與分配問題。並透過敏感度分析得知,各項成本參數的變動對模式目標值皆有顯著影響,且若能藉由準確預測的產品品質加以分級,並將有限的產品進行有效地指派與分配,可協助企業進行正確的管理決策,大幅提升其整體利潤。

In recent years, the issues about food safety have been highly concerned in global. Because of the advanced capacity of information exchange, consumers ask more accurate information about food and the application of “Food Traceability System” is promoted and developed constantly. The “Food Traceability System” records the temperature and other related information of the fresh products during distribution, processing, transportation and storage. Besides, the Hazard Analysis Critical Control Point (HACCP) and other food safety regulations have been also established due to the need. In the supply chain management, the cold chain logistics management has gradually become the trend in order to maintain the quality of perishable fresh products. Many researchers also proposed the key influencing factors that will cause the change in product quality. This research proposes the following two models. First, a “Shelf Life Prediction Model” based on the back-propagation neural network (BPN) is developed to accurately predict the shelf life of fresh products. Second, a “Products Sale Assignment Model” which is a Mixed Integer Program (MIP) is constructed to assign and allocate the fresh products under the grading system.
From the proposed “Shelf Life Prediction Model”, the results show that temperature is the most important variable that has the significant effect on the change of fresh foods quality. If there are sufficient sample data, this model can effectively predict the shelf life. In addition, with the numerical example, the “Products Sale Assignment Model” is a systematic and mathematical approach to effectively solve the problem of product assignment and allocation. And the results of the sensitivity analysis show that the changes in the cost parameters of the model will significantly impact the objective value. From the research findings mentioned above, if the shelf life prediction, quality grading for the products and product assignment and allocation are performed appropriately, managers can make the correct decisions for businesses and increase their overall profits.

摘要 i
Abstract ii
致謝 iv
目錄 vi
圖目錄 ix
表目錄 xi
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機 2
1.3 研究目的 3
1.4 研究流程 4
1.5 論文架構 6
第二章 文獻回顧 7
2.1 生鮮產品供應鏈之產銷體系 7
2.1.1 冷鏈(cold chain) 7
2.1.2 生鮮產品(fresh products) 10
2.1.3 農業產品(agri-products; agri-food) 12
2.1.4 海鮮產品(seafood) 15
2.2 食品安全 16
2.2.1 食品安全議題 16
2.2.2 食品產銷履歷 19
2.2.3 食品安全規章 22
2.2.3.1 危害分析重要管制點 23
2.2.2.2 相關品質標準 24
2.3 貨架壽命管理 26
2.3.1 貨架壽命(shelf life)管理概論 26
2.3.2 貨架壽命預測 29
2.4 預測方法 33
2.4.1 預測 34
2.4.2 迴歸分析 34
2.4.3 類神經網路 36
2.5 資源指派問題 44
2.6 小結 52
第三章 貨架壽命預測模式 53
3.1 研究架構 53
3.2 問題描述 54
3.3 倒傳遞類神經網路 54
3.3.1 模式架構 55
3.3.2 參數設定 56
3.3.3 模式演算法 57
第四章 產品銷售指派模式 63
4.1 問題描述 63
4.2 問題架構 64
4.3 產品銷售指派數學模式 65
4.3.1 假設條件 65
4.3.2 符號定義 66
4.3.3 目標函數建立 67
4.3.4 限制條件 69
第五章 範例驗證 74
5.1 貨架壽命預測模式 74
5.1.1 實驗設計 74
5.1.1.1 品質影響因素 74
5.1.1.2 海產衰敗與安全預測軟體 75
5.1.2 模式試驗結果: 77
5.1.2.1 變數範圍 78
5.1.2.2 樣本數 79
5.1.2.3 神經元個數 81
5.1.2.4 學習率(learning rate) 82
5.1.2.5 動量(momentum) 83
5.1.2.6 初始權重(initial weight) 83
5.2 產品銷售指派模式 85
5.2.1 實驗設計 85
5.3 模式應用 85
5.3.1 範例研究步驟 85
5.3.2 選定特定產品與資料之篩選程序 86
5.3.3 模式之參數設定與說明 86
5.3.3.1 產品價格 87
5.3.3.2 成本 87
5.3.3.3 環境條件 87
5.3.3.4 分級標準 88
5.3.3.5 顧客型態 88
5.3.4 貨架壽命預測模式預測結果 88
5.3.4.1 資料說明 88
5.3.5 產品銷售指派模式求解結果 89
5.3.6 敏感度分析 90
5.3.6.1 運輸成本變動 90
5.3.6.2 存貨成本變動 92
5.3.6.3 缺貨成本變動 94
5.3.6.4 殘值變動 96
5.3.6.5 貨架壽命預測值變動 98
5.3.6.6 參考溫度變動 101
5.4 小結 103
第六章 結論與未來研究方向 105
6.1 結論 105
6.2 未來研究方向 106
參考文獻 108
期刊論文 108
網頁 114
附錄一 116
附錄二 117
附錄三 122
附錄四 128

期刊論文
1. 甘志展、李明聰,2008,消費者對食品安全議題之風險認知與其消息來源可靠度之研究,食品市場資訊,第97卷,第4期,第1-10頁。
2. 行政院衛生署主任秘書室,2007,食品安全與營養白皮書簡要版,行政院衛生署。
3. 何山田,2002,低溫物流中心之規劃設計-以嘉豐物流中心為例,國立中山大學管理學院高階經營碩士學程專班碩士論文。
4. 宋輝、蕭艷、余望梅,2009,乳業冷鏈物流的發展現狀與對策研究,物流工程與管理,第31卷,第4期,第65-67頁。
5. 李宙奇,2004,貝氏統計隨機模式與時間序列模式運用於顧客價值分析之比較,國立中央大學資訊管理研究所碩士論文。
6. 李振昌譯,2006,The Wal-Mart Way─全球最大零售企業成功十二法則 初版,智庫股份有限公司,台北市。
7. 李學愚、沈玉振譯,2003,Essentials of Food Safety & Sanitation 3rd Edition,品度股份有限公司,台北市。
8. 林張群、陳可杰譯,民國96年,作業研究 十一版,新加坡商湯姆生亞洲私人有限公司台灣分公司,台北市。
9. 胡忠一,2009,農產運銷安全的基石─產銷履歷之發展現況與未來趨勢,農產品運銷研討會暨成果發表會。
10. 商業司,2008,中華民國電子商務年鑑,經濟部。
11. 許祖棟,2005,蓄冷式低溫物流系統之特性與成本分析,國立交通大學交通運輸研究所碩士論文。
12. 許進標著,民國97年,Excel函數與巨集 初版,碁峰資訊股份有限公司,台北市。
13. 陳穆臻,2008,ISO 22000、HACCP、ISO 9001、CCQI標準比較,交通大學交通運輸研究所。
14. 葉怡成著,民國92,類神經網路模式應用與實作 八版,儒林圖書有限公司,台北市。
15. 廖慶榮著,民國98年,作業研究 二版,華泰文化事業股份有限公司,台北市。
16. 榮泰生著,民國98年,Excel與研究方法 二版,五南圖書出版股份有限公司,台北市。
17. Abad, E., Palacio, F., Nuin, M., de Zarate, A. G., Juarros, A., Gomez, J. M. and Marco, S., 2009, RFID smart tag for traceability and cold chain monitoring of foods: Demonstration in an intercontinental fresh fish logistic chain, Journal of Food Engineering, 93, 394-399.
18. Ahumada, O. and Villalobos, J. R., 2009, Application of planning models in the agri-food supply chain: A review, European Journal of Operational Research, 196, 1-20.
19. Azanha, A. B. and Faria, J. A. F, 2005, Use of mathematical models for estimating the shelf-life of cornflakes in flexible packaging, Packaging Technology and Science, 18, 171-178.
20. Berry, M. J. and Linoff, G. S., 1997, Data Mining Technique For Marketing, Sale, And Customer Support, Wiley Computer.
21. Bhatt, H. V., 2009, Product and Food Traceability-Create Transparency, International Conference of Food Security and Traceability.
22. Blackburn, J. and Scudder, G., 2009, Supply Chain Strategies for Perishable Products: The Case of Fresh Produce, Production and Operations Management.
23. Bogataj, M., Bogataj, L. and Vodopivec, R., 2005, Stability of perishable goods in cold logistic chains, Int. J. Production Economics, 93-94, 345-356.
24. Chen, C. L., Kaber, D. B. and Dempsey, P. G., 2000, A new approach to applying feedforward neural networks to the prediction of musculoskeletal disorder risk, Applied Ergonomics, 31, 269-282.
25. Chiu, C. Y., 2009, The Current Situation Between the Two Sides of the Taiwan Straits in Law and Regulations of Food Products, its Relative Organizations, and Regulations on Communication, International Conference of Food Security and Traceability.
26. Dalgaard, P., Buch, P. and Silberg, S., 2002, Seafood Spoilage Predictor— development and distribution of a product specific application software, International Journal of Food Microbiology, 73, 343-349.
27. Davies, P. C., 1994, Design Issues in Neural Network Development, NEUROVE$T Journal, 5, 21-25.
28. Deloitte Consulting, 2006, Intelligent Cold Chain, Cool Pack─BioPharm Cold Chain Packaging & Distribution Information.
29. Department of agriculture, fisheries and forestry, 2004, Department of agriculture, fisheries a Food Industry.
30. Doan, X. T ., Kidd, P. T., Goodacre, R. and Grieve, B. D., 2008, Regression analysis for supply chain logged data: A simulated case study on shelf life prediction, 9th International Conference on Signal Processing (ICSP 2008), 2717-2720.
31. Freeman, J. A. and Skapura, D. M., 1991, Neural Networks: Algorithms applications, and Programming Techniques, Addison-Wesley, Reading, M.A.
32. Fu, B. and Labuza, T. P., 2003, Shelf-life prediction: theory and application.
33. Giannakourou, M. C. and Taoukis, P. S., 2003, Shelf life management using multiple component time temperature integrators, International Conference Engineering and Food(ICEF 2003).
34. Gyesley, S. W., 1991, Total Systems Approach to Predict Shelf Life of Packaged Foods, ASTM STP 1113-EB.
35. Hecht-Nielsen, R., 1990, Neurocomputing, Addison-Wesley, Menlo Park, CA.
36. Hough, G., Garitta, L. and Gomez, G., 2006, Sensory shelf-life predictions by survival analysis accelerated storage models, Food Quality and Preference, 17, 468-473.
37. Huang, Z. H., Song, Y. and Liu D. Y., 2007, The supply chain and management of fresh produce in China, CSR china.net.
38. Iijima, M., Komatsu, S. and Katoh, S., 1996, Hybrid just-in-time logistics systems and information networks for effective management in perishable food industries, Int. J. Production Economics, 44, 97-103.
39. Jansen-Vullers, M. C., van Dorp, C. A. and Beulens, A. J. M., 2003, Managing traceability information in manufacture, International Journal of Information Management, 23, 395-413.
40. Jedermanna, R., Ruiz-Garcia, L., Langa W., 2009, Spatial temperature profiling by semi-passive RFID loggers for perishable food transportation, Computers and electronics in agriculture, 65, 145-154.
41. Kanavouras, A., Coutelieris, F. A., 2006, Shelf-life predictions for packaged olive oil based on simulations, Food Chemistry, 96, 48-55.
42. Kang, S., 1991. An Investigation of the Use of Feedforward Neural Networks for Forecasting, Ph.D. Thesis, Kent State University.
43. Kobayashi, I., Takeno, T. and Sugawara, M., 2004, Data transmission code towards international EDI for seafood supply chain, Int. J. Production Economics, 87, 281-293.
44. Koutsoumanis, K., Giannakourou, M. C., Taoukis, P. S. and Nychas, G. J. E., 2002, International Journal of Food Microbiology, 73, 375-382.
45. Kuhn, H. W., 1955, The Hungarian method for the assignment problem, Naval Research Logistics, 2, 83-97.
46. Kumar, S., 2005, Neural Networks: a classroom approach International Edition, McGraw-Hill, Singapore.
47. Kuo, J. C. and Chen, M. C., 2010, Developing an advanced Multi-Temperature Joint Distribution System for the food cold chain, Food Control, 21, 559-566.
48. Labreche, S., Bazzo, S., Cade, S. and Chanie, E., 2005, Shelf life determination by electronic nose: application to milk, Sensors and Actuators B, 106, 199-206.
49. LeBlanc, L. J., Randels Jr. D. and Swann, T.K., 2000, Heery International's spreadsheet optimization model for assigning managers to construction projects, Interfaces, 30, 95.
50. Lin, S. C., 2000, On Soft Computing Theory and Knowledge Processing Technology, Journal of Educational Media and Library Sciences, 38, 148-173.
51. LINDO systems Inc., 2008, LINGO user’s guide, LINDO systems Inc., Illinois.
52. Lippmann, R.P., 1987, An introduction to computing with neural nets, IEEE ASSP Magazine, April, 4Maga
53. Lusine H. Aramyan, Alfons G. J. M. Oude Lansink, Jack G. A. J. van der Vorst and Olaf van Kooten, 2007, Performance measurement in agri-food supply chains: A case study, Supply Chain Management: An International Journal, 12, 304-315.
54. Matthias D. M., Robertson, J., Garrison, M. M., Newland, S. and Nelson, C., 2007, Freezing temperatures in the vaccine cold chain: A systematic literature review, Vaccine, 25, 3980-3986.
55. McKellar, R., C. and Lu, X., 2004, MODELING MICROBIAL RESPONSES in FOOD, CRC series in contemporary food science, the United States of America.
56. Moe, T., 1998, Perspectives on traceability in food manufacture, Trends in Food Science & Technology, 9, 211-214.
57. Montanari, R., 2008, Cold chain tracking: a managerial perspective, Trends in Food Science & Technology, 19 , 425-431.
58. Nelson, C., Froes, P., Van Dyck, A. M., Chavarrk-1, J., Boda, E., Coca, A., Crespo, G. and Lima, H., 2007, Monitoring temperatures in the vaccine cold chain in Bolivia, Vaccine, 25, 433-437.
59. Ollinger, M. and Ballenger, N., April 2003, Weighing Incentives for Food Safety in Meat and Poultry, Amber Waves.
60. Ovca, A., Jevšnik, M., 2009, Maintaining a cold chain from purchase to the home and at home: Consumer opinions, Food Control, 20, 167-172.
61. Pathumnakul, S., Piewthongngam, K. and Khamjan, S., 2009, Integratinga shrimp-growth function, farming skills information, and a supply allocation algorithm to manage the shrimp supply chain, Computers and Electronics in Agriculture, 66, 93-105.
62. Pentico, D. W., 2007, Assignment problems: A golden anniversary survey, European Journal of Operational Research, 176, 774.
63. Piergiovann, L., Fava, P, and Siciliano, A., 1995, A mathematical model for the prediction of water vapour transmission rate at different temperature and relative humidity combinations, Packaging Technology and Science, 8, 73-83.
64. Reed, C., 2005, Cold Chains Are Hot─EXECUTIVE SUMMARY, ChainLink Research.
65. Renaud, I. and Yacout, S., 1996, Resouce allocation and optimal product mix at a fish and seafood processing company, Computers ind. Engng, 31(1/2), 355-358.
66. Röhr, A., Lüddecke, K., Drusch, S., Müller, M. J. and Alvensleben, R. v., 2005, Food quality and safety─consumer perception and public health concern, Food Control, 16, 649-655.
67. Ross, T. and Dalgaard, P., 2004, Secondary models, Modeling Microbial Responses in Foods, 76-150.
68. Ross, T., 1996, Indices for performance evaluation of predictive models in food microbiology, J. Appl. Bacteriol, 81, 501-508.
69. Rumelhart, D. E., Hinton, G. E. and Williams, R. J., 1986, Learning internal representation by error propagation, Parallel Distributed Processing, 1, 318-362.
70. Schofield, A. and Docking, A., 2009, Sydney Fresh Food Supply Chains Opportunities and Alternatives, NSW Department of primary industries.
71. Sensitech, 2006, Cold chain intelligence is hot, Global retail bulletin, 171, 12-18.
72. Siripatrawan, U. and Jantawat, P., 2008, A novel method for shelf life prediction of a packaged moisture sensitive snack using multilayer perceptron neural network, Expert Systems with Applications, 34, 1562-1567.
73. Stringer, M. F., Hall, M. N. and The Breakdowns in Food Safety Group, 2007, A generic model of the integrated food supply chain to aid the investigation of food safety breakdowns, Food Control, 18, 755-765.
74. Suryanarayana, I., Braibanti, A., Rao, R. S., Ramam, V. A., Sudarsan, D. and Rao, G, N., 2008, Neural networks in fisheries research, Fisheries Research, 92, 115-139.
75. Tang, Z. and Fishwick, P. A., 1993, Feedforward neural nets as models for time series forecasting, ORSA Journal on Computing, 5, 374-385.
76. Techathawat, S. Varinsathien, P., Rasdjarmrearnsook, A., and Tharmaphornpilas, P., 2007, Exposure to heat and freezing in the vaccine cold chain in Thailand, Vaccine, 25, 1328-1333.
77. The Economist, 2009, Give us a supply chain that supplies sustainable growth, The Economist.
78. Toktas, B., Yen, J. W. and Zabinsky, Z. B., 2006, Addressing capacity uncertainty in resource-constrained assignment problems, Computers & Operations Research, 33, 724-745.
79. Tsiakis, P. and Papageorgiou, L., G., 2008, Optimal production allocation and distribution supply chain networks, Int. J. Production Economics, 111, 468-483.
80. van Schothorst, M., 2004, A simple guide to understanding and applying the Hazard Analysis Critical Control Point concept 3rd edition, International Life Sciences Institute, Belgium.
81. Vellido, A., Lisboa, P. J. G., and Vaughan, J., 1999, Neural Networks in Business a Survey of Applications (1992-1998), Expert System with Application, 17, 51-70.
82. Werbos P. J., 1974, Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Sciences., Masters thesis, Harvard University.
83. Williams, H.P, 1999, Model Building in Mathematical Programming, fourth edition, John Wiley, and Sons Ltd., Chichester, New York, Brisbane, Toronto, Singapore.
84. Winston, W. L., 2004, Operations Research: Application and Algorithms Fourth Edition, Thomson Learning, Belmont.
85. Wong, F. S., 1991, Time series forecasting using backpropagation neural networks, Neurocomputing, 2, 147-159.
86. Zanoni, B., Pagliarini, E., Galli, A. and Laureati, M., 2005, Shelf-life prediction of fresh blood orange juice, Journal of Food Engineering, 70, 512-517
87. Zhang, G., Habenicht, W. and Spie, W. E. L., 2003, Improving the structure of deep frozen and chilled food chain with tabu search procedure, Journal of Food Engineering, 60, 67-79.
88. Zhang, G., Patuwo, B. E. and Hu, M. Y., 1998, Forecasting with artificial neural networks: The state of the art, International Journal of Forecasting, 14, 35-62.
89. Zurada, J. M., 1992, Introduction to Artificial Neural Systems, West Publishing Company, St. Paul, MN.
網頁
1. 行政院農委會漁業署,2010,http://www.fa.gov.tw/,2010年5月11日下載。
2. 行政院衛生署食品資訊網,2010,http://food.doh.gov.tw,2010年5月16下載。
3. 行政院衛生署藥物食品檢驗局,2009,http://www.nlfd.gov.tw/ch/index.aspx,2009年10月8日下載。
4. 中華僑泰物流股份有限公司,2009,http://www.ctdc.com.tw/index0.htm,2009年9月11日下載。
5. 世界衛生組織(World Health Organization, WHO),2009,http://www.who.int/mediacentre/factsheets/fs237/en/,2009年10月5日下載。Agility-A New Logistics Leader,2009,http://www.agilitylogistics.com/EN/Pages/Landing.aspx,2009年9月9日下載。
6. CAS台灣優良農產品,2009,http://en.cas.org.tw/,2010年5月16下載。
7. Danish Agriculture and Food Council,2009,http://danishmeat.eu/DMRI/Product_quali/Eating_qualit/Publications/New_model_for.aspx,2009年8月20日下載。
8. Fashion life,2008, http://blog.roodo.com/fashionlife/archives/5954967.html,2009年9月20日下載。
9. ITIS智網,2009,http://www.itis.org.tw/index.jsp,2009年8月29日下載。
10. Portal-HVAC & Refrigeration news, events, training, books, magazines and directory online,2009,http://www.refrige.com/,2009年11月6日下載。
11. Tompkins Associates,2009,http://www.tompkinsinc.com/publications/competitive_edge/articles/05-09-food_supply_chain.asp,2009年8月25日下載。
12. Tyson,2009,http://www.tyson.com/,2009年9月15日下載。
13. Vons,2009,http://www.vons.com/IFL/Grocery/Home,2009年9月15日下載。
14. Wal-Mart,2009,http://www.walmart.com/,2009年9月15日下載。
15. Wegmans,2009,http://www.wegmans.com/,2009年9月15日下載。
16. YAHOO-Finance,2009,http://finance.yahoo.com/,2009年9月15日下載。

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔