跳到主要內容

臺灣博碩士論文加值系統

(44.200.27.215) 您好!臺灣時間:2024/04/13 17:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:湯宗達
研究生(外文):Tang, Tsung-Ta
論文名稱:陽極氧化鋁薄膜基板及具溝槽之PDMS基板用於液晶配向及其配向特性之研究
論文名稱(外文):Study on the Alignment Properties of Liquid Crystal on the Substrate with Anodic Aluminum Oxide Films and the Grooved PDMS Substrate
指導教授:潘犀靈趙如蘋
指導教授(外文):Pan, Ci-LingPan, Ru-Pin
學位類別:博士
校院名稱:國立交通大學
系所名稱:光電工程系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:98
語文別:英文
論文頁數:165
中文關鍵詞:液態晶體液晶配向陽極氧化鋁薄膜兆赫波聚雙甲基矽氧烷溝槽基板
外文關鍵詞:liquid crystalliquid crystal alignmentanodic aluminum oxideTerahertzPDMSgrooved substrate
相關次數:
  • 被引用被引用:0
  • 點閱點閱:481
  • 評分評分:
  • 下載下載:72
  • 收藏至我的研究室書目清單書目收藏:0
液晶顯示器為目前市面上最為廣泛使用的顯示器。為了提供液晶分子在未驅動狀態下能夠整齊排列,通常使用傳統的磨刷聚亞醯胺薄膜作為液晶配向薄膜。由於傳統磨刷方式會產生靜電殘留、雜質顆粒污染及損壞驅動薄膜電晶體,且聚亞醯胺薄膜容易被強背光模組中的紫外光波段改變其配向特性。因此研究新穎的非接觸式配向法或無機的配向材料是最為迫切的研究主題。
本論文利用具多孔性的陽極處理氧化鋁薄膜做為液晶顯示元件的配向膜。陽極處理氧化鋁薄膜為一種無機且具有奈米孔洞陣列的透明薄膜。利用表面結構的液晶配向機制,此陽極處理氧化鋁薄膜具有很高的潛能可以作為液晶顯示元件的配向膜。本論文成功利用此一薄膜使液晶分子產生垂直配向。利用改變陽極處理電壓進而改變薄膜上之奈米孔洞大小,此薄膜之極角錨定強度也隨之改變。其極角錨定強度約為15×10-6 J/m2,約略小於傳統的垂直配向膜DMOAP之極角錨定強度38×10-6 J/m2。
除了改變奈米孔洞大小外,本論文中也利用蝕刻一次陽極處理氧化鋁薄膜並控制蝕刻時間,得到具有相同孔洞密度且具有不同孔洞寬深比之奈米孔洞陣列。由實驗發現具有較高寬深比之奈米孔洞陣列可以提供較大的極角錨定強度。此外在特定蝕刻時間下所產生的陽極處理氧化鋁薄膜可提供液晶分子水平配向能力。關於此一現象之配向機制,更多的研究及探討仍須進行。
此外利用兆赫波時域分析系統,對於陽極處理氧化鋁薄膜的光學特性,包括折射率與吸收特性進行分析。本論文研發一套配合兆赫波時域分析系統的光學係數分析程式。利用此程式可直接由兆赫波時域訊號計算出待測物的折射率及吸收特性,並大幅消除待測物所造成的多重反射雜訊。陽極處理氧化鋁薄膜的折射率會隨孔洞密度而改變且在兆赫波波段並沒有明顯的吸收峰。因此陽極處理氧化鋁薄膜也適合作為兆赫波下液晶元件的配向薄膜。
雖然水平錨定強度對於垂直樣品並不是指標參數,但本論文也討論對於水平錨定強度的量測修正。利用量測楔形樣品的強度變化條紋所計算出來之旋性液晶週期,來計算水平錨定強度可大幅減少因雙折射係數所造成的誤差由10%至1%。
除了利用多孔洞陽極處理氧化鋁薄膜作為垂直配向薄膜,本論文也嘗試使用奈米壓印技術,於PDMS基板上轉印出U型微溝槽結構,並使用氧電漿作表面改質作為水平配向薄膜。此一方式可以成功製作出可橈式的配向基板。
最後本論文已經成功嘗試將陽極處理氧化鋁薄膜製作於ITO透明導電薄膜上,並製作出可電控的液晶顯示元件。未來可以利用此一方式來製作以陽極氧化鋁薄膜作為配向膜之元件,並量測其電性反應或利用外加電場來量測其極角錨定強度。
In the past decades, the liquid crystal displays (LCDs) have been widely used in different applications. The rubbed polyimide thin film is the most common alignment layer for aligning liquid crystal without any applied field. The rubbing method usually introduces the static charge, dust contamination, and damages the driving thin-film transistors (TFT) devices. Because of the chemical structure of the polyimide, it is easy to be modified by the UV-light or the back light module. Therefore, the novel alignment method, which is non-contact and uses the inorganic alignment material, is desired.
In this thesis, the porous anodic aluminum oxide (AAO) thin film is used as the alignment layer of the LCDs. The AAO thin film is an inorganic and transparent thin film with nanopores array. Because of the nanopores array, the AAO thin film is an excellent candidate of the alignment layer. By controlling the anodizing voltage, the pore diameter of the AAO thin film can be varied between 15 nm and 65 nm, and the polar anchoring strength can also be modified. The polar anchoring strength of the AAO thin film is around 15×10-6 J/m2, which is smaller than one of the DMOAP, 38×10-6 J/m2.
Besides controlling the anodizing voltage and changing the pore diameter, the one-step AAO thin film can be etched with different etching time. Because the etching solution etches both the top and the wall of the AAO thin film, the etched AAO thin film has different aspect ratio with the same pore density. The AAO thin film with higher aspect ratio has the higher polar anchoring strength. In some specific etching time, the etched AAO thin film performs as a homogenous alignment layer. Further works are progressing to understand the mechanism of the homogenous alignment on the etched AAO thin film.
The optical properties of the AAO thin film, such as the complex refractive constants and the attenuation constant, are investigated by using the Terahertz Time-Domain Spectroscopy (THz-TDS). The optical constants analysis program is developed for calculating the optical constants by analyzing the time-domain signal directly. The multiple reflections have been considered in the program to cancel out the Febry-Perot effect. The refractive constant of the AAO thin film depends on the pore density of the AAO thin film. There is no obvious absorption peak in THz region. Therefore, the AAO thin film is suitable for THz application.
Although the azimuthal anchoring strength is not an important indication of the vertical alignment cell, it is also discussed in this thesis. The pitch value used in calculating the azimuthal anchoring strength can be modified by counting the fringes of the wedge cell. By using the modified pitch value, the error of the azimuthal anchoring strength can be reduced from 10% to 1%.
On the other hand, the grooved PDMS substrates are used as the homogenous alignment substrates. The PDMS substrates with the U-shape groove are imprinted by the nanoimprinting technology, and then treated by O2 plasma to change the surface property. The flexible LCDs are demonstrated by using the grooved PDMS substrates as the alignment substrates.
Finally, the prototypical electrically controllable LCDs with the AAO thin film as the alignment layer have been demonstrated in this thesis. In the future, the electric performance and the polar anchoring strength can be measured by applying the electric field.
中文摘要………………………………………………… i
Abstract……………………………………………… iii
誌謝………………………………………………….. v
Table of Contents…………………………………. vi
List of Figures………………………………………. x
List of Tables………………………………………………xiv
Chapter 1 Introduction - 1 -
1.1 Liquid crystals - 1 -
1.2 Liquid crystal display applications - 4 -
1.3 Rubbing alignment method - 5 -
1.4 Photoalignment method - 5 -
1.5 Ion beam bombardment method - 7 -
1.6 Chemical treatment method - 8 -
1.7 Other alignment method - 8 -
1.8 Mechanism of liquid crystal alignment - 9 -
1.9 Overview of this work - 10 -
References - 12 -
Figures - 17 -
Chapter 2 Strong vertical alignment of liquid crystal on anodic aluminum oxide film with different pore size- 21 -
2.1 Overview - 21 -
2.2 Experimental procedures - 21 -
2.3 Results and discussions - 23 -
2.3.2 Morphology of the anodic aluminum oxide surface - 24 -
2.3.3 Transmittance of the anodic aluminum oxide layer - 25 -
2.3.4 Alignment characterization - 25 -
2.3.5 Polar anchoring strength analysis - 26 -
2.3.6 Possible alignment mechanism - 28 -
2.4 Summaries - 28 -
References - 30 -
Tables - 31 -
Figures - 33 -
Figures - 33 -
Chapter 3 The alignment properties of liquid crystal on anodic aluminum oxide film with different aspect ratio - 45 -
3.1 Overview - 45 -
3.2 Experimental procedures - 45 -
3.3 Results and discussions - 46 -
3.3.1 Morphology of the anodic aluminum oxide surface - 46 -
3.3.2 Transmittance of the anodic aluminum oxide layer - 47 -
3.3.3 Alignment characterization - 47 -
3.3.4 Polar anchoring strength analysis - 48 -
3.3.5 Possible alignment mechanism - 49 -
3.4 Summaries - 50 -
References - 51 -
Figures - 53 -
Figures - 53 -
Chapter 4 The optical constants and birefringence of the anodic aluminum oxide in terahertz frequency range - 65 -
4.1 Overview - 65 -
4.2 Terahertz technology - 66 -
4.2.1 Generation of terahertz wave by using photoconductive antennas - 66 -
4.2.2 Detection of terahertz wave by using photoconductive antennas - 68 -
4.2.3 Terahertz time-domain spectroscopy (THz-TDS) - 69 -
4.3 Derivation of optical constants in terahertz frequency range - 71 -
4.3.1 Optical constants of the thin film with substrate - 71 -
4.3.2 Optical constants of the liquid crystal cell with two substrates - 74 -
4.3.3 Attenuation coefficient - 76 -
4.4 Results and discussions - 77 -
4.4.1 Water vapor absorption in THz range - 77 -
4.4.2 Optical constants of the fused silica substrate - 78 -
4.4.3 Optical constants of the anodic aluminum oxide - 79 -
4.4.4 Optical constants of the ferroelectric liquid crystal - 81 -
4.5 Summaries - 82 -
References - 84 -
Tables - 86 -
Figures - 87 -
Chapter 5 Homogenous alignment on the grooved PDMS substrate fabricated by the nanoimprinting technology - 101 -
5.1 Overview - 101 -
5.2 Polydimethylsiloxane (PDMS) - 101 -
5.3 Nanoimprinting technology - 103 -
5.4 Results and discussions - 103 -
5.4.1 Morphology of the imprinted PDMS substrate - 103 -
5.4.2 Contact angles of the imprinted PDMS substrate - 104 -
5.4.3 Alignment characterization of the imprinted PDMS substrate - 105 -
5.5 Summaries - 105 -
References - 107 -
Tables - 108 -
Figures - 109 -
Chapter 6 Optical method for measuring the azimuthal anchoring strength of liquid crystals using pitch values determined in imperfect sample - 115 -
6.1 Overview - 115 -
6.2 What is the azimuthal anchoring strength - 115 -
6.3 Method for pitch measurement in imperfect sample - 117 -
6.4 Theory and simulation for pitch measurement in imperfect sample - 118 -
6.5 Effect on the azimuthal anchoring strength - 121 -
6.6 Summaries - 124 -
References - 125 -
Figures - 127 -
Chapter 7 Future research topics about this thesis - 131 -
7.1 The anodic aluminum oxide alignment method - 131 -
7.2 The optical constants analysis in terahertz region - 132 -
References - 134 -
Figures - 135 -
Appendix A Anodic Aluminum Oxide (AAO) - 137 -
A.1 Overview - 137 -
A.2 Manufacture procedures - 137 -
A.3 Morphology - 139 -
A.4 The theoretical mechanism of AAO formation - 140 -
References - 143 -
Figures - 145 -
Appendix B The polar anchoring strength measurement - 149 -
B.1 Overview - 149 -
B.2 The theoretical expressions - 150 -
References - 153 -
Figures - 154 -
Appendix C The image processing program - ImageJ - 155 -
C.1 Overview - 155 -
C.2.1Threshold (Image->Adjust->Threshold) - 155 -
C.2.2 Smooth (Process->Smooth) - 156 -
C.2.3 Analyze particles (Analyze->Analyze particles) - 156 -
C.3 The algorithm of analysis process - 158 -
References - 158 -
Figures - 159 -
Curriculum Vitae ………………………………………………………..……..- 163 -
Chapter 1
[1] P. G. de Gennes, and J. Prost, “The Physics of Liquid Crystals,” Oxford University Press, ISBN 0-19-852024-7 (1994).
[2] L. M. Blinov, and V. G. Chigrinov, “Electrooptic Effects in Liquid Crystal Materials,” Springer-Verlag New York, ISBN 0-387-94030-8 (1994).
[3] S. Chandrasekhar, “Liquid Crystals,” 2nd Ed., Cambridge University Press, ISBN 0-521-42741-X (1992).
[4] B. R. Ratina, and R. Shashidhar, “Dielectric properties of 4`-n-alkyl-4-cyanobiphenyls in their nematic phases,” Pramana 6, 278 (1976).
[5] R. G. Horn, “Refractive indices and order parameters of two liquid crystals,” J. Phys. France 39, 105 (1978).
[6] T. Uchida, M. Hirano, and H. Sakai, “Director orientation of a ferroelectric liquid crystal on substrates with rubbing treatment: The effect of surface anchoring strength,” Liquid Crystals 5, 1127 (1989).
[7] W. M. Gibbons, P. J. Shannon, S. T. Sun, and B. J. Swetlin, “Surface-mediated alignment of nematic liquid crystals with polarized laser light,” Nature 351, 49 (1991).
[8] Y. Kawanishi, T. Tamaki, M. Sakyragi, T. Seki, Y. Suzuki, and K. Ichimura, “Photochemical induction and modulation of nematic homogenous alignment by the polarization photochromism of surface azobenzenes,” Langmuir 8, 2601 (1992).
[9] K. Ichimura, Y. Suzuki, T. Seki, A. Hosoki, and K. Aoki, “Reversible change in alignment mode of nematic liquid crystals regulated photochemically by command surfaces modified with an azobenzene monolayer,” Langmuir 4, 1214 (1988).
[10] M. Schadt, K. Schmitt, V. Kozinkov, and V. Chigrinov, “Surface-induced parallel alignment of liquid crystals by linearly polymerized photopolymers,” Jpn. J. Appl. Phys. 31, 2155 (1992).
[11] Y. Iimura, T. Saitoh, S. Kobayashi, and T. Hashimoto, “Liquid crystal alignment on photopolymer surfaces exposed by linearly polarized UV light,” J. Photopolymer Sci. and Tech. 8, 257 (1995).
[12] P. Chaudhari, J. Lacey, S. C. Alan Lien, and J. L. Speidell, “Atomic beam alignment of liquid crystals,” Jpn. J. Appl. Phys. 37, L55 (1998).
[13] P. Chaudhari, J. Lacey et al., “Atomic-beam alignment of inorganic materials for liquid-crystal displays,” Nature 411, 56 (2001).
[14] J. Stöhr, M. G. Samant, J. Lüning, A. C. Callegari, P. Chaudhari, J. P. Doyle, J. A. Lacey, S. A. Lien, S. Purushothaman, and J. L. Speidell, “Liquid crystal alignment on carbonaceous surfaces with orientational order,” Science 292, 2299 (2001).
[15] H. J. Ahn, S. J. Rho, K. C. Kim, J. B. Kim, B. H. Hwang, C. J. Park, and H. K. Baik, “Ion-beam induced liquid crystal alignment on diamond-like carbon and fluorinated diamond-like carbon thin films,” Jpn. J. Appl. Phys. 44, 4092 (2005).
[16] J. S. Gwag, K. H. Park, J. L. Lee, J. C. Kim, and T. H. Yoon, “Two-domain hybrid-aligned nematic cell fabricated by ion beam treatment of vertical alignment layer,” Jpn. J. Appl. Phys. 44, 1875 (2005).
[17] S. H. Lee, K. H. Park, J. S. Gwag, T. H. Yoon, and J. C. Kim, “A multimode-type transflective liquid crystal display using the hybrid-aligned nematic and parallel-rubbed vertically aligned modes,” Jpn. J. Appl. Phys. 42, 5127 (2003).
[18] H. Y. Wu, T. T. Tang, C. C.Wang, R. P. Pan, S. J. Chang, and J. C. Hwang, “Controllable alignment modes of nematic liquid crystals on argon ion beam bombarded polyimide films,” Mol. Cryst. Liq. Cryst. 475, 45 (2007).
[19] H. Y. Wu, and R. P. Pan, “Liquid crystal surface alignments by using ion beam sputtered magnetic thin films,” Appl. Phys. Lett. 91, 074102 (2007).
[20] R. P. Pan, H. Y. Wu, and C. F. Hsieh, “Liquid crystal surface alignment by using films composed of magnetic nanoparticles,” Proc. SPIE 6911, 691104 (2008).
[21] J. L. Janning, “Thin film surface orientation for liquid crystals,” Appl. Phys. Lett. 21, 173 (1972).
[22] Y. F. Lin, M. C. Tsou, and R. P. Pan, “Alignment of liquid crystals by ion etched grooved glass surfaces,” Chinese J. Phys. 43, 1066 (2005).
[23] D. W. Berreman, “Solid surface shape and the alignment of an adjacent nematic liquid crystal,” Phys. Rev. Lett. 28, 1683 (1972).
[24] C. W. Oseen, “The theory of liquid crystals,” Trans. Faraday Soc. 29, 883 (1933).
[25] F. C. Frank, “I. Liquid crystals. On the theory of liquid crystals,” Discuss. Faraday Soc. 25, 19 (1958).
[26] J. M. Geary, J. W. Goodby, A. R. Kmetz, and J. S. Patel, “The mechanism of polymer alignment of liquid-crystal materials,” J. Appl. Phys. 62, 4100 (1987).
[27] T. R. Tsai, C. Y. Chen, C. L. Pan, R. P. Pan, and X. C. Zhang, “Terahertz Time-Domain Spectroscopy Studies of the Optical Constants of the Nematic Liquid Crystal 5CB,” Appl. Opt. 42, 2372 (2003).
[28] R. P. Pan, T. R. Tsai, C. Y. Chen, and C. L. Pan, “Optical constants of two typical liquid crystals 5CB and PCH5 in the THz frequency range”, J. Bio. Phys. 29, 335 (2003).
[29] C. F. Hsieh, R. P. Pan, T. T. Tang, H. L. Chen, and C. L. Pan, “Voltage-controlled liquid-crystal terahertz phase shifter and quarter-wave plate,” Opt. Lett. 31, 1112 (2006).
[30] H. Y. Wu, C. F. Hsieh, T. T. Tang, R. P. Pan, and C. L. Pan, “Electrically tunable room-temperature 2�� liquid crystal terahertz phase shifter”, IEEE Phtonics Tech. Lett. 18, 1488 (2006).
[31] C. Y. Chen, T. R. Tsai, C. L. Pan, and R. P. Pan, “Room temperature terahertz phase shifter based on magnetically controlled birefringence in liquid crystals,” Appl. Phys. Lett. 83, 4497 (2003).
[32] F. J. Kahn, “Orientation of liquid crystals by surface coupling agents,” Appl. Phys. Lett. 22, 386 (1973).

Chapter 2
[1] T. Maeda and K. Hiroshima, “Vertically aligned nematic liquid crystal on anodic porous alumina,” Jpn. J. Appl. Phys. 43, L1004 (2004).
[2] T. Maeda and K. Hiroshima, “Tilted liquid crystal alignment on asymmertrically grooved porous alumina film,” Jpn. J. Appl. Phys. 44, L845 (2005).
[3] B. L. Van Horn, and H. H. Winter, “Analysis of the conoscopic measurement for uniaxial liquid-crystal tilt angles,” Applied Optics 40, 2089 (2001).
[4] Keithley Model 2400 Series SourceMeter�� User’s Manual, Chapter 3 Basic Souce-Measure Operation, 3-3.
[5] T. J. Scheffer, and J. Nehring,” Accurate determination of liquid-crystal tilt bias angles,” J. Appl. Phys. 48, 1783 (1977).
[6] K. H. Yang, and C. Rosenblatt, “Determination of the anisotropic potential at the nematic liquid crystal-to-wall interface,” Appl. Phys. Lett. 43, 62 (1983).

Chapter 3
[1] T. Maeda and K. Hiroshima, “Vertically aligned nematic liquid crystal on anodic porous alumina,” Jpn. J. Appl. Phys. 43, L1004 (2004).
[2] K. H. Yang, and C. Rosenblatt, “Determination of the anisotropic potential at the nematic liquid crystal-to-wall interface,” Appl. Phys. Lett. 43, 62 (1983).

Chapter 4
[1] B. Ferguson, and X.-C. Zhang, “Materials for terahertz science and technology,” Nat. Mater. 1, 26 (2002).
[2] B. Greene, P. Sateta, D. Dykaar, S. Schmitt-Rink, and S. L. Chuang, “Far-infrared light generation at semiconductor surface and its spectroscopic applications,” IEEE J. Quantum Electron 28, 2302 (1992).
[3] X.-C. Zhang, “Generation and detection of terahertz electromagnetic pulses from semiconductors with femtosecond optics,” J. Luminescence 66/67, 488 (1996).
[4] Ch. Fattinger, D. Grischkowsky, “Point source terahertz optics,” Appl. Phys. Lett. 53, 1480 (1988).
[5] M. van Exter, D. Grischkowsky, “Gharacterization of an optoelectronic terahertz beam system,” IEEE Trans. Microwave Theory Tech. 38, 1684 (1990).
[6] K. Sakai (Ed.), “Terahertz Optoelectronics,” Chapter 1 Introduction to Terahertz Pulses, Springer, (2004).
[7] D. H. Auston, K. P. Chueng, and P. R. Smith, “Picosecond photoconducting Hertzian dipoles,” Appl. Phys. Lett. 45, 284 (1984).
[8] D. Grischkowsky, S. Keiding, M. van Exter, and Ch. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B 7, 2006 (1990).
[9] L. Duvillaret, F. Garet, J.-F Roux, and J.-L Coutaz, ”Analytical modeling and optimization of terahertz time-domain spectroscopy experiments, using photoswitches as antennas,” IEEE Journal on Selected Topics in Quantum Electronics 7, 615 (2001).
[10] M. van Exter, Ch. Fattinger, and D. Grischkowsky, “High brightness terahertz beams characterized with an ultrafast detector,” Appl. Phys. Lett. 55, 337 (1989).
[11] M. van Exter, Ch. Fattinger, and D. Grischkowsky, “ Terahertz time-domain spectroscopy of water vapor,” Optics Letters 14, 1128 (1989).
[12] V. B. Podobedov, D. F. Plusquellic, and G.T. Fraser, “Investigation of the water-vapor continuum in the THz region using a multipass cell,” Journal of Quantitative Spectroscopy and Radiative Transfer 91, 287 (2005).
[13] C. M. Randall, and R. D. Rawcliffe, “Refractive indices of Germanium, Silicon, and Fused Quartz in the far infrared,” Appl. Opt. 6, 1889 (1967).
[14] D. Grischkowsky, S. Keiding, M. van Exter, and Ch. Fattinger, “Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,” J. Opt. Soc. Am. B 7, 2006 (1990).
[15] E. E. Russell and E. E. Bell, “Optical Constants of Sapphire in the Far Infrared,” J. Opt. Soc. Am. 57, 543 (1967).
[16] P. H. Bolivar, M. Brucherseifer, J. G. Rivas, R. Gonzalo, A. L. Reynolds, M. Holker, and P. de Maagt, “Measurement of the dielectric constant and loss tangent of high dielectric-constant materials at terahertz frequencies,” IEEE Transactions on Microwave Theory and Techniques 51, 1062 (2003).
[17] F. Rutz, M. Koch, L. Micele, and G. De Portu, ”Ceramic dielectric mirrors for terahertz range,” Appl. Opt. 45, 8070 (2006).
[18] S. Labbé-Lavigne, S. Barret, F. Garet, L. Duvillaret, and J.-L Coutaz, ”Far-infrared dielectric constant of porous silicon layers measured by terahertz time-domain spectroscopy,” J. Appl. Phys. 83, 6007 (1998).

Chapter 5
[1] Y. F. Lin, M. C. Tsou, and R. P. Pan, “Alignment of liquid crystals by ion etched grooved glass surfaces,” Chinese J. Phys. 43, 1066 (2005).
[2] J. C. McDonald, D. C. Duffy, J. R. Anderson, D. T. Chiu, H. Wu, O. J. A. Schueller, and G. M. Whitesides, “Fabrication of microfluidic systems in poly(dimethylsiloxane),” Electrophoresis 21, 27 (2000).
[3] S. Bhattacharya, A. Datta, J. M. Berg, and S. Gangopadhyay, “Studies on surface wettability of poly(dimethyl)siloxane (PDMS) and glass under oxygen-plasma treatment and correlation with bond strength,” Journal of Microelectromechanical systems 14, 590 (2005).
[4] H. Hillborg, J. F. Ankner, U. W. Gedde, G. D. Smith, H. K. Yasuda, and K. Wikstrom, “Crosslinked polydimethylsiloxane exposed to oxygen plasma studied by neutron reflectometry and other surface specific techniques,” Polymer 41, 6851 (2000).
[5] S. Y Chou, P. R. Krauss, and P. J. Renstrom, “Imprint of sub-25 nm vias and trenches in polymers,” Appl. Phys. Lett. 67, 3114 (1995).
[6] S. Y Chou, P. R. Krauss, and P. J. Renstrom, “Imprint lithography with 25-nanometer resolution,” Science 272, 85 (1996).
[7] S. Y Chou, P. R. Krauss, and P. J. Renstrom, “Nanoimprint lithography,” J. Vac. Sci. Technol. B 14, 4129 (1996).
[8] S. Y. Chou, P. R. Krauss, W. Zhang, L. Guo, and L. Zhuang, “Sub-10 nm imprint lithography and applications,” J. Vac. Sci. Technol. B 15, 2897 (1997).
[9] J. Haisma, M. Verheijen, K. van den Heuvel, and J. van den Berg, “Mold-assisted nanolithography: A process for reliable pattern replication,” J. Vac. Sci. Technol. B 14, 4124 (1996).

Chapter 6
[1] Y. Iimura, M. Kobayashi, and S. Kobayashi, “A New Method for Measuring the Azimuthal Anchoring Energy of a Nematic Liquid Crystal,” Jpn. J. Appl. Phys. Part 2 33, L434 (1994).
[2] T. Akahane, H. Kaneko, and M. Kimura, “Novel Method of Measuring Surface Torsional Anchoring Strength of Nematic Liquid Crystals,” Jpn. J. Appl. Phys. Part 1 35, 4434 (1996).
[3] J. G. Fonseca and Y. Galerne, “Simple method for measuring the azimuthal anchoring strength of nematic liquid crystals,” Appl. Phys. Lett. 79, 2910 (2001).
[4] M. Kawamura, Y. Goto, and S. Sato, “Determination of Anchoring Energy in Nematic Liquid Crystal Cells with Controllable Twist Angles Using a Stokes Parameter Method,” Jpn. J. Appl. Phys. Part 1 43, 6239 (2004).
[5] T. Oh-ide, S. Kuniyasu, and S. Kobayashi, “Surface Coupling between Nematic Liquid Crystals and Rubbed Polyimide Substrates for Pure Twist Deformation: Dependence on Rubbing Strength,” Mol. Cryst. Liq. Cryst. 164, 91 (1988).
[6] S. Faetti and G. C. Mutinati, “Light transmission from a twisted nematic liquid crystal: Accurate methods to measure the azimuthal anchoring energy,” Phys. Rev. E 68, 026601 (2003).
[7] Y. Sato, K. Sato, and T. Uchida, “Relationship between Rubbing Strength and Surface Anchoring of Nematic Liquid Crystal,” Jpn. J. Appl. Phys. Part 2 31, L579 (1992).
[8] R. Cano, “An explanation of Grandjean discontinuities,” Bull. Soc. Fr. Mineral. Cristallogr. 91, 20 (1968).
[9] Y. Saitoh and A. Lien, “An Improved Azimuthal Anchoring Energy Measurement Method Using Liquid Crystals with Different Chiralities,” Jpn. J. Appl. Phys. Part 1 39, 1743 (2000).

Chapter 7
[1] W. J. Chen, Z. M. Hsieh, S. W. Huang, H. Y. Su, T. T. Tang, R. P. Chao, C. L. Pan, C. K. Lee, and A. H. Kung, “Sub-Single-Cycle Optical Pulse Train with Constant Carrier Envelope Phase,” Phys. Rev. Lett. 100, 163906 (2008).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊