跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.81) 您好!臺灣時間:2024/12/15 03:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張簡鵬崇
研究生(外文):Jangjian Peng-Chung
論文名稱:鎳離子螯合去氧核醣核酸之電性研究及其應用
論文名稱(外文):The Study of Charge Transport Through Nickel-chelated DNA and Its Application
指導教授:劉增豐張家靖
指導教授(外文):Liu Tzeng-FengChang Chia-Ching
學位類別:博士
校院名稱:國立交通大學
系所名稱:材料科學與工程系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
畢業學年度:98
語文別:中文
論文頁數:101
中文關鍵詞:去氧核醣核酸生物感測器負微分電阻電化學分子元件
外文關鍵詞:DNANi-DNAbiosensiorsnanodevicesNDRelectrochemical
相關次數:
  • 被引用被引用:0
  • 點閱點閱:399
  • 評分評分:
  • 下載下載:24
  • 收藏至我的研究室書目清單書目收藏:0
去氧核醣核酸 (DNA) 為自然界中一維的奈米線,其獨特的自組裝性常被應用於生物感測器,以及奈米導線模版的製作。然而其不佳的電導特性,則限制了 DNA 在分子元件發展與應用的潛能。在本研究中,我們將二價鎳離子於鹼性環境下,參雜入 DNA 分子的雙股螺旋中,形成 nickel DNA (Ni-DNA)。並藉由導電掃描探針顯微鏡,及電化學分析結果可知,Ni-DNA 的導電度較原本的 DNA 有大幅的改善。其電荷可能藉由Ni-DNA中,具有良好堆疊之鹼基對間的交互作用來作傳輸,而參雜在其中的鎳離子猶如存在於 DNA 分子中的電洞,使得電子更容易利用電子跳躍 (Electron hopping) 來做電荷的傳輸,並且在鹼基上電子最高填滿軌域 (HOMO) 與最低未填滿軌域 (LUMO) 之間的能隙也因鎳離子的參雜而降低。並且由電化學的分析中可知,DNA 分子中鹼基對的堆疊,對於電荷於 Ni-DNA 中的傳輸有顯著的影響。當鹼基對的堆疊產生變化時 (例如在序列中鹼基對發生錯誤配對,即造成 �� 軌域堆疊的扭曲),即使得電荷於 Ni-DNA 中的傳輸受到阻礙而呈現出較高的電阻值。藉由電荷於 Ni-DNA 中的傳輸特性,我們成功的將 Ni-DNA 導入至 DNA 生物感測器上的應用。對於 DNA 分子 序列中是否有鹼基對錯誤配對的情況,可以有效的檢測。並對於單一核�˙藻h型性(single nucleotide polymorphisms; SNPs) 的檢測提供了一個新的方向。
除此之外,Ni-DNA 還可以應用於固態的奈米電子元件上。在本研究中,我們將Ni-DNA 架於兩電極上,並經由電性量測的結果可知,參雜於 Ni-DNA 中的鎳離子會因電位的變化而產生氧化還原反應,此反應會使得 Ni-DNA 的電性上表現出負微分電阻的特性 (Negative differential resistance,NDR)。因此 Ni-DNA 具有極佳的電性分子元件之應用性。
DNA is a one-dimensional nanowire in nature, and it may not be used in nanodevices due to its low conductivity. In order to improve the conducting property of DNA, divalent nickel ions (Ni2+) are incorporated into the base pairs of DNA at pH ≧ 8.5 and nickel DNA (Ni-DNA) is formed. Meanwhile, electrochemical analyses by cyclic voltammetry and AC impedance show that the conductances of Ni-DNAs are better than that of native DNA by a factor of approximately 20 folds. UV spectroscopy and DNA base pair mismatch analyses of Ni-DNA show that electrons hoping through the ���{�� stacking of DNA base pairs may play a vital role for charge transport within Ni-DNA molecules. Meanwhile, the change in resistance that is caused by the mismatched of DNA can also be monitored by electrochemical. In this study, resistance increased exponentially with the number of mismatches. Accordingly, an intuitive and direct method for evaluating the numbers of DNA mismatches can possibly be achieved. Additionally, the exponential increase in the electrical resistance of mismatched Ni-DNA maybe caused by electron tunneling through the mismatch-induced potential barrier in Ni-DNA.
In addition, a molecular device that is composed of Ni-DNA molecules exhibits a negative differential resistance (NDR) behavior. When two gold electrodes were connected by Ni2+-chelated DNA (Ni-DNA) molecules which were converted from ��-DNA, not only the conductivity of DNA molecules were improved, but also an NDR device was formed at room temperature, in an ambient environment. Such NDR characteristics of a Ni-DNA device may have been caused by the redox reactions of Ni ions. This finding provides a highly potential for constructing electrical nano-devices from biological molecules. This biomaterial is a unique and designable one-dimensional bio-polymer for usage in biosensiors and nanodevices.
摘要 I
ABSTRACT II
誌謝 III
目錄 IV
表目錄 VII
圖目錄 VIII
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目的 1
第二章 文獻回顧 4
2.1 DNA 簡介 4
2.1.1 去氧核醣核�˙� 4
2.1.2 DNA 一級結構 5
2.1.3 DNA 二級結構 6
2.1.4 DNA 分子的光學特性 7
2.1.5 DNA分子的電子特性 8
2.1.6 DNA 分子的導電機制 11
2.1.6.1 超交換作用 (Superexchange model) 11
2.1.6.2 電荷跳躍 (Hopping modle) 12
2.2 M-DNA 簡介 13
2.2.1 金屬離子在 DNA 分子上的配位位置 13
2.2.2 M-DNA 的基本結構和特性 14
2.2.3 M-DNA helix的電荷傳輸特性 15
2.3 分子自組裝 (Self-assembly) 特性 16
2.3.1 分子自組裝種類 16
2.3.2 自組裝單分子層 [烷基硫醇 (RSH)] 16
2.4 電化學簡介 18
2.4.1 電化學反應系統 19
2.4.2 影響電化學反應系統的因素 21
2.4.3 電極動力學[76,78] 22
2.4.4 循環伏安分析法 (Cyclic Voltarmmetry,CV) 23
2.4.4.1 可逆系統 (Reversible System) 25
2.4.4.2 不可逆系統 (Irreversible System) 26
2.4.4.3 近可逆系統 (Quasi-reversible System) 26
2.4.5 交流阻抗分析法 (Alternating Current Impedance,AC) 26
2.4.6 等效電路 26
2.5 石英晶體微量天平分析法 29
2.6 電泳分析法 30
2.7 負微分電阻 (Negative differential resistance,NDR) 31
第三章 利用電化學法分析 DNA 與 M (Ni)-DNA 的導電特性 33
3.1 前言 33
3.2 實驗 34
3.2.1 實驗藥品、溶液配製與設備 34
3.2.2 實驗操作步驟 38
3.2.2.1 Ni-DNA 的置換 38
3.2.2.2 紫外光與可見光吸收光譜分析 38
3.2.2.3 電泳分析 38
3.2.2.4 金電極表面清洗 38
3.2.2.5 石英晶體微量天平分析 39
3.2.2.6 導電掃描探針顯微鏡分析 39
3.2.2.7 電化學系統 40
3.2.2.8 循環伏安法量測 42
3.2.2.9 交流阻抗法量測 42
3.3 結果與討論 42
3.3.1 DNA 分子自組裝於金電極表面的覆蓋率 42
3.3.2 以電泳分析以及 XPS 檢測 Ni-DNA 之形成 46
3.3.3 DNA 與 Ni-DNA 之間電子特性的差異 50
3.3.4 電化學分析 51
3.3.4.1 以循環伏安法分析 DNA 與 Ni-DNA 之電化學特性 51
3.3.4.1.1 不同電解質溶液系統對 DNA 分子電化學特性的影響 51
3.3.4.1.2 DNA 與 Ni-DNA 之電化學特性 55
3.3.4.1.3 Ni-DNA 的電導機制 55
3.3.4.2 以交流阻抗法分析 DNA 與 Ni-DNA 之電性 58
3.3.4.2.1 DNA 與 Ni-DNA 之阻抗圖譜 58
3.3.4.2.2 等效電路模擬 61
3.3.4.2.3 鹼基對堆疊對 Ni-DNA 電性的影響 63
3.3.5 Ni-DNA 於生物感測器上的應用 66
3.3.5.1 DNA 序列中鹼基對錯誤配對之檢測 67
3.4 結論 70
第四章 DNA 分子元件製作與電性量測 72
4.1 前言 72
4.2 實驗 72
4.2.1 實驗藥品、溶液配製與設備 72
4.2.2 實驗操作步驟 74
4.2.2.1 電極製作 75
4.2.2.2 DNA 溶液中多餘金屬離子及鹽類的透析 75
4.2.2.3 DNA 分子的electrostatic trapping 76
4.2.2.4 電性量測 77
4.2.2.5 DNA 分子影像分析 77
4.2.2.6 銀離子交換法 77
4.3 結果與討論 78
4.3.1 Ni-DNA 與 ��-DNA 之形貌分析 78
4.3.2 Electrostatic trapping 81
4.3.3 DNA 分子元件之電性量測 84
4.3.3.1 鹽類殘留對電性的影響 85
4.3.3.2 ��-DNA 與 Ni-DNA 之電性量測 86
4.3.3.3 Ni-DNA 分子元件之負微分電阻特性 87
4.3.3.4 不同掃描速率對負微分電阻的影響 89
4.4 結論 90
第五章 總結 92
參考文獻 93
[1] M. A. Reed, and T. Lee, Molecular Nanoelectronics, American Scientific Publishers
California, USA, 2003.
[2] S. Golka, C. Pflugl, W. Schrenk, G. Strasser, C. Skierbiszewski, M. Siekacz, I. Grzegory, and S. Porowski, Negative differential resistance in dislocation-free GaN/AlGaN double-barrier diodes grown on bulk GaN. Appl. Phys. Lett. 88 (2006) 172106.
[3] J. D. Le, Y. He, T. R. Hoye, C. C. Mead, and R. A. Kiehl, Negative differential resistance in a bilayer molecular junction. Appl. Phys. Lett. 83 (2003) 5518.
[4] H. Park, A. K. L. Lim, A. P. Alivisatos, J. Park, and P. L. McEuen, Fabrication of metallic electrodes with nanometer separation by electromigration. Appl. Phys. Lett. 75 (1999) 301.
[5] J. He, and S. M. Lindsay, On the Mechanism of Negative Differential Resistance in Ferrocenylundecanethiol Self-Assembled Monolayers. J. Am. Chem. Soc. 127 (2005) 11932.
[6] Y. Selzer, M. A. Cabassi, T. S. Mayer, and D. L. Allara, Thermally Activated Conduction in Molecular Junctions. J. Am. Chem. Soc. 126 (2004) 4052.
[7] Q. Tang, H. K. Moon, Y. Lee, S. M. Yoon, H. J. Song, H. Lim, and H. C. Choi, Redox-Mediated Negative Differential Resistance Behavior from Metalloproteins Connected through Carbon Nanotube Nanogap Electrodes. J. Am. Chem. Soc. 129 (2007) 11018.
[8] R. E. Holmlin, R. Haag, M. L. Chabinyc, R. F. Ismagilov, A. E. Cohen, A. Terfort, M. A. Rampi, and G. M. Whitesides, Electron Transport through Thin Organic Films in Metal-Insulator-Metal Junctions Based on Self-Assembled Monolayers. J. Am. Chem. Soc. 123 (2001) 5075.
[9] W. Liang, M. P. Shores, M. Bockrath, J. R. Long, and H. Park, Kondo resonance in a single-molecule transistor. Nature 417 (2002) 725.
[10] H. Park, J. Park, A. K. L. Lim, E. H. Anderson, A. P. Alivisatos, and P. L. McEuen, Nanomechanical oscillations in a single-C60 transistor. Nature 407 (2000) 57.
[11] J. Park, A. N. Pasupathy, J. I. Goldsmith, C. Chang, Y. Yaish, J. R. Petta, M. Rinkoski, J. P. Sethna, H. D. Abruna, P. L. McEuen, and D. C. Ralph, Coulomb blockade and the Kondo effect in single-atom transistors. Nature 417 (2002) 722.
[12] J. Chen, M. A. Reed, A. M. Rawlett, and J. M. Tour, Large On-Off Ratios and Negative Differential Resistance in a Molecular Electronic Device. Science 286 (1999) 1550.
[13] S. J. Wind, J. Appenzeller, and P. Avouris, Lateral Scaling in Carbon-Nanotube Field-Effect Transistors. Phys. Rev. Lett. 91 (2003) 058301.
[14] S. Kubatkin, A. Danilov, M. Hjort, J. Cornil, J.-L. Bredas, N. Stuhr-Hansen, P. Hedegard, and T. Bjornholm, Single-electron transistor of a single organic molecule with access to several redox states. Nature 425 (2003) 698.
[15] N. C. Seeman, DNA in a material world. Nature 421 (2003) 427.
[16] K. Keren, R. S. Berman, E. Buchstab, U. Sivan, and E. Braun, DNA-Templated Carbon Nanotube Field-Effect Transistor. Science 302 (2003) 1380.
[17] A. J. Storm, J. van Noort, S. de Vries, and C. Dekker, Insulating behavior for DNA molecules between nanoelectrodes at the 100 nm length scale. Appl. Phys. Lett. 79 (2001) 3881.
[18] E. Braun, Y. Eichen, U. Sivan, and G. Ben-Yoseph, DNA-templated assembly and electrode attachment of a conducting silver wire. Nature 391 (1998) 775.
[19] P. J. de Pablo, F. Moreno-Herrero, J. Colchero, J. G�曠ez Herrero, P. Herrero, A. M. Bar��, P. Ordej�曝, J. M. Soler, and E. Artacho, Absence of dc-Conductivity in lambda -DNA. Phys. Rev. Lett. 85 (2000) 4992.
[20] L. Cai, H. Tabata, and T. Kawai, Self-assembled DNA networks and their electrical conductivity. Appl. Phys. Lett. 77 (2000) 3105.
[21] D. Porath, A. Bezryadin, S. de Vries, and C. Dekker, Direct measurement of electrical transport through DNA molecules. Nature 403 (2000) 635.
[22] T. Shigematsu, K. Shimotani, C. Manabe, H. Watanabe, and M. Shimizu, Transport properties of carrier-injected DNA. The Journal of Chemical Physics 118 (2003) 4245.
[23] H.-W. Fink, and C. Schonenberger, Electrical conduction through DNA molecules. Nature 398 (1999) 407.
[24] A. Y. Kasumov, M. Kociak, S. Gueron, B. Reulet, V. T. Volkov, D. V. Klinov, and H. Bouchiat, Proximity-Induced Superconductivity in DNA. Science 291 (2001) 280.
[25] J. S. Lee, L. J. P. Latimer, and R. S. Reid, A cooperative conformational change in duplex DNA induced by Zn2+ and other divalent metal ions. Biochem. Cell Biol. 71 (1993) 162.
[26] Y. T. Long, C. Z. Li, H. B. Kraatz, and J. S. Lee, AC Impedance Spectroscopy of Native DNA and M-DNA. Biophys. J. 84 (2003) 3218.
[27] C. Z. Li, Y. T. Long, H. B. Kraatz, and J. S. Lee, Electrochemical Investigations of M-DNA Self-Assembled Monolayers on Gold Electrodes. J. Phys. Chem. B 107 (2003) 2291.
[28] P. Aich, S. L. Labiuk, L. W. Tari, L. J. T. Delbaere, W. J. Roesler, K. J. Falk, R. P. Steer, and J. S. Lee, M-DNA: a complex between divalent metal ions and DNA which behaves as a molecular wire. J. Mol. Biol. 294 (1999) 477.
[29] D. O. Wood, M. J. Dinsmore, G. A. Bare, and J. S. Lee, M-DNA is stabilised in G*C tracts or by incorporation of 5-fluorouracil. Nucl. Acids Res. 30 (2002) 2244.
[30] W. M. Becker, L. J. Kleinsmith, and J. Hardin, The World of the Cell The Benjamin/cummings publishing Company, San Francisco, 2006.
[31] J. D. Watson, and F. H. C. Crck, Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. Nature 171 (1953) 2.
[32] W. K. Purves, G. H. Orians, and H. C. Heller, Life: The Science of Biology, Sinauer Associates, 2001.
[33] D. D. Eley, and D. I. Spivey, Semiconductivity of organic substances. Part 9.—Nucleic acid in the dry state. Transactions of the Faraday Society 58 (1962) 5.
[34] R. G. Endres, D. L. Cox, and R. R. P. Singh, Colloquium: The quest for high-conductance DNA. Reviews of Modern Physics 76 (2004) 195.
[35] P. Carpena, P. Bernaola-Galvan, P. C. Ivanov, and H. E. Stanley, Metal-insulator transition in chains with correlated disorder. Nature 418 (2002) 955.
[36] D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, Localization of light in a disordered medium. Nature 390 (1997) 671.
[37] P. W. Anderson, Absence of Diffusion in Certain Random Lattices. Phys. Rev. 109 (1958) 1492.
[38] A. Rakitin, P. Aich, C. Papadopoulos, Y. Kobzar, A. S. Vedeneev, J. S. Lee, and J. M. Xu, Metallic Conduction through Engineered DNA: DNA Nanoelectronic Building Blocks. Phys. Rev. Lett. 86 (2001) 3670.
[39] Y. Zhang, R. H. Austin, J. Kraeft, E. C. Cox, and N. P. Ong, Insulating Behavior of lambda -DNA on the Micron Scale. Phys. Rev. Lett. 89 (2002) 198102.
[40] D. B. Hall, R. E. Holmlin, and J. K. Barton, Oxidative DNA damage through long-range electron transfer. Nature 382 (1996) 731.
[41] D. B. Hall, S. O. Kelley, and J. K. Barton, Long-Range and Short-Range Oxidative Damage to DNA: Photoinduced Damage to Guanines in Ethidium-DNA Assemblies. Biochemistry 37 (1998) 15933.
[42] J. Jortner, M. Bixon, T. Langenbacher, and M. E. Michel-Beyerle, Charge transfer and transport in DNA. Proceedings of the National Academy of Sciences of the United States of America 95 (1998) 12759.
[43] M. Bixon, B. Giese, S. Wessely, T. Langenbacher, M. E. Michel-Beyerle, and J. Jortner, Long-range charge hopping in DNA. Proceedings of the National Academy of Sciences of the United States of America 96 (1999) 11713.
[44] M. E. N���狑z, D. B. Hall, and J. K. Barton, Long-range oxidative damage to DNA: Effects of distance and sequence. Chem. Biol. 6 (1999) 85.
[45] T. T. Williams, D. T. Odom, and J. K. Barton, Variations in DNA Charge Transport with Nucleotide Composition and Sequence. J. Am. Chem. Soc. 122 (2000) 9048.
[46] B. Giese, J. Amaudrut, A.-K. Kohler, M. Spormann, and S. Wessely, Direct observation of hole transfer through DNA by hopping between adenine bases and by tunnelling. Nature 412 (2001) 318.
[47] H. A. Wagenknecht, Charge Transfer in DNA: From Mechanism to Application Wiley-VCH, 2005.
[48] A. K. Mahapatro, D. B. Janes, K. J. Jeong, and G. U. Lee, Electrical Behavior of Nano-scale Junctions with Well Engineered Double Stranded DNA Molecules, Nanotechnology, 2006. IEEE-NANO 2006. Sixth IEEE Conference on, 2006, pp. 66.
[49] J. Wang, Electrical conductivity of double stranded DNA measured with ac impedance spectroscopy. Physical Review B (Condensed Matter and Materials Physics) 78 (2008) 245304.
[50] X. Guo, A. A. Gorodetsky, J. Hone, J. K. Barton, and C. Nuckolls, Conductivity of a single DNA duplex bridging a carbon nanotube gap. Nat Nano 3 (2008) 163.
[51] B. Hartzell, B. McCord, D. Asare, H. Chen, J. J. Heremans, and V. Soghomonian, Comparative current--voltage characteristics of nicked and repaired lambda-DNA. Appl. Phys. Lett. 82 (2003) 4800.
[52] S. M. Iqbal, G. Balasundaram, S. Ghosh, D. E. Bergstrom, and R. Bashir, Direct current electrical characterization of ds-DNA in nanogap junctions. Appl. Phys. Lett. 86 (2005) 153901.
[53] Xu, Zhang, Li, and Tao, Direct Conductance Measurement of Single DNA Molecules in Aqueous Solution. Nano Lett. 4 (2004) 1105.
[54] E. Shapir, H. Cohen, A. Calzolari, C. Cavazzoni, D. A. Ryndyk, G. Cuniberti, A. Kotlyar, R. Di Felice, and D. Porath, Electronic structure of single DNA molecules resolved by transverse scanning tunnelling spectroscopy. Nat Mater 7 (2008) 68.
[55] P. Aich, H. B. Kraatz, and J. S. Lee, M-DNA: pH Stability, Nuclease Resistance and Signal Transmission. J. Biomol. Struct. Dyn. 11 (2000) 5.
[56] S. D. Wettig, G. A. Bare, R. J. S. Skinner, and J. S. Lee, Signal Transduction through Dye-Labeled M-DNA Y-Branched Junctions:  Switching Modulated by Chemical Reduction of Anthraquinone. Nano Lett. 3 (2003) 617.
[57] P. Aich, R. J. S. Skinner, S. D. Wettig, R. P. Steer, and J. S. Lee, Long Range Molecular Wire Behaviour in a Metal Complex of DNA. Journal of Biomolecular Structure and Dynamics
20 (2002) 6.
[58] S. S. Alexandre, J. M. Soler, L. Seijo, and F. Zamora, Geometry and electronic structure of M-DNA (M = Zn2+, Co2+, and Fe2+). Physical Review B (Condensed Matter) 73 (2006) 205112.
[59] G. M. Whitesides, and B. Grzybowski, Self-Assembly at All Scales. Science 295 (2002) 2418.
[60] S. Jakubith, H. H. Rotermund, W. Engel, A. von Oertzen, and G. Ertl, Spatiotemporal concentration patterns in a surface reaction: Propagating and standing waves, rotating spirals, and turbulence. Phys. Rev. Lett. 65 (1990) 3013.
[61] J. Aizenberg, A. J. Black, and G. M. Whitesides, Control of crystal nucleation by patterned self-assembled monolayers. Nature 398 (1999) 495.
[62] A. Kumar, N. L. Abbott, H. A. Biebuyck, E. Kim, and G. M. Whitesides, Patterned Self-Assembled Monolayers and Meso-Scale Phenomena. Acc. Chem. Res. 28 (1995) 219.
[63] P. E. Laibinis, G. M. Whitesides, D. L. Allara, Y. T. Tao, A. N. Parikh, and R. G. Nuzzo, Comparison of the structures and wetting properties of self-assembled monolayers of n-alkanethiols on the coinage metal surfaces, copper, silver, and gold. J. Am. Chem. Soc. 113 (1991) 7152.
[64] A. Ulman, Formation and Structure of Self-Assembled Monolayers. Chem. Rev. 96 (1996) 1533.
[65] F. Schreiber, Structure and growth of self-assembling monolayers. Prog. Surf. Sci. 65 (2000) 151.
[66] K. W. Kolasinski, Surface Science, John Wily & Sons Ltd., 2002.
[67] H. O. Finklea, D. A. Snider, J. Fedyk, E. Sabatani, Y. Gafni, and I. Rubinstein, Characterization of octadecanethiol-coated gold electrodes as microarray electrodes by cyclic voltammetry and ac impedance spectroscopy. Langmuir 9 (1993) 3660.
[68] C. Miller, P. Cuendet, and M. Graetzel, Adsorbed .omega.-hydroxy thiol monolayers on gold electrodes: evidence for electron tunneling to redox species in solution. J. Phys. Chem. 95 (1991) 877.
[69] I. Ruach-Nir, T. A. Bendikov, I. Doron-Mor, Z. Barkay, A. Vaskevich, and I. Rubinstein, Silica-Stabilized Gold Island Films for Transmission Localized Surface Plasmon Sensing. J. Am. Chem. Soc. 129 (2007) 84.
[70] P. Abad-Valle, M. T. Fern�鴨dez-Abedul, and A. Costa-Garc�朦, DNA single-base mismatch study with an electrochemical enzymatic genosensor. Biosens. Bioelectron. 22 (2007) 1642.
[71] T. G. Drummond, M. G. Hill, and J. K. Barton, Electrochemical DNA sensors. Nat Biotech 21 (2003) 1192.
[72] T. Ito, K. Hosokawa, and M. Maeda, Detection of single-base mismatch at distal end of DNA duplex by electrochemical impedance spectroscopy. Biosens. Bioelectron. 22 (2007) 1816.
[73] S. O. Kelley, E. M. Boon, J. K. Barton, N. M. Jackson, and M. G. Hill, Single-base mismatch detection based on charge transduction through DNA. Nucl. Acids Res. 27 (1999) 4830.
[74] Y. T. Long, C. Z. Li, T. C. Sutherland, H. B. Kraatz, and J. S. Lee, Electrochemical Detection of Single-Nucleotide Mismatches: Application of M-DNA. Anal. Chem. 76 (2004) 4059.
[75] M. Steichen, Y. Decrem, E. Godfroid, and C. Buess-Herman, Electrochemical DNA hybridization detection using peptide nucleic acids and [Ru(NH3)6]3+ on gold electrodes. Biosens. Bioelectron. 22 (2007) 2237.
[76] D. A. Skoog, F. J. Holler, and T. A. Nieman, Principles of Instrumental Analysis Thomson Learning 1998.
[77] J. Wolfenstine, and J. Allen, Ni3+/Ni2+ redox potential in LiNiPO4. J. Power Sources 142 (2005) 389.
[78] 鄭華生, 分析化學, 清大出版社, 新竹, 2007.
[79] Q. J. Chi, J. Zhang, and J. Ulstrup, Surface Microscopic Structure and Electrochemical Rectification of a Branched Alkanethiol Self-Assembled Monolayer. J. Phys. Chem. B 110 (2006) 1102.
[80] J. Heinze, Cyclic Voltammetry - Electrochemical Spectroscopy. New Analytical Methods (25). Angewandte Chemie International Edition in English 23 (1984) 831.
[81] 曹楚南, and 張鑒清, An introduction to electrochemical impedance spectroscopy, 科學出版社, 北京, 2002.
[82] J. E. B. Randles, Kinetics of rapid electrode reactions. Discussions of the Faraday Society 1 (1947) 11.
[83] P. Curie, and J. Curie, Crystal physics: Development by pressure of polar electricity in hemihedral crystals with inclined faces. C. R. Acad Sci. 91 (1880).
[84] 余樹楨, 晶體之結構與性質, 勃海堂文化, 臺北, 1987.
[85] D. A. Buttry, and M. D. Ward, Measurement of interfacial processes at electrode surfaces with the electrochemical quartz crystal microbalance. Chem. Rev. 92 (1992) 1355.
[86] D. A. Micklos, G. A. Freyer, and D. A. Crotty, DNA science: a first course, CSHL Press, New York, 2003.
[87] T. C. L. G. Sollner, W. D. Goodhue, P. E. Tannenwald, C. D. Parker, and D. D. Peck, Resonant tunneling through quantum wells at frequencies up to 2.5 THz. Appl. Phys. Lett. 43 (1983) 588.
[88] P. C. Jangjian, T. F. Liu, M. Y. Li, M. S. Tsai, and C. C. Chang, Room temperature negative differential resistance in DNA-based molecular devices. Appl. Phys. Lett. 94 (2009) 043105.
[89] S. Nokhrin, M. Baru, and J. S. Lee, A field-effect transistor from M-DNA. Nanotechnology 18 (2007) 095205.
[90] J. Kang, L. Zhuo, X. Lu, and X. Wang, Electrochemical behavior of dopamine at a quercetin-SAM-modified gold electrode and analytical application. J. Solid State Electrochem. 9 (2005) 114.
[91] C. Shengli, W. Bingliang, and Z. Hong, An EQCM study of the electrochemical behaviors of polycrystalline gold electrode in sulfuric acid solution. Wuhan Univ. J. Nat. Sci. 3 (1998) 102.
[92] R. P. Janek, W. R. Fawcett, and A. Ulman, Impedance Spectroscopy of Self-Assembled Monolayers on Au(111): Sodium Ferrocyanide Charge Transfer at Modified Electrodes. Langmuir 14 (1998) 3011.
[93] F. M. Herrero, P. Herrero, F. Moreno, J. Colchero, C. G. Navarro, J. G. Herrero, and A. M. Bar��, Topographic characterization and electrostatic response of M-DNA studied by atomic force microscopy. Nanotechnology 14 (2003) 128.
[94] A. D. Bokare, R. C. Chikate, C. V. Rode, and K. M. Paknikar, Iron-nickel bimetallic nanoparticles for reductive degradation of azo dye Orange G in aqueous solution. Applied Catalysis B: Environmental 79 (2008) 270.
[95] M. R. Vilar, A. M. Botelho do Rego, A. M. Ferraria, Y. Jugnet, C. Nogue?s, D. Peled, and R. Naaman, Interaction of Self-Assembled Monolayers of DNA with Electrons: HREELS and XPS Studies. The Journal of Physical Chemistry B 112 (2008) 6957.
[96] S. A. Krasnikov, N. N. Sergeeva, M. M. Brzhezinskaya, A. B. Preobrajenski, Y. N. Sergeeva, N. A. Vinogradov, A. A. Cafolla, M. O. Senge, and A. S. Vinogradov, An x-ray absorption and photoemission study of the electronic structure of Ni porphyrins and Ni N-confused porphyrin. J. Phys.: Condens. Matter 20 (2008) 235207.
[97] E. L. J. M. S. C. A. P. M. A. Galtayries, XPS study of the adsorption of NH3 on nickel oxide on Ni(111). Surf. Interface Anal. 30 (2000) 140.
[98] A. W. Peterson, R. J. Heaton, and R. M. Georgiadis, The effect of surface probe density on DNA hybridization. Nucleic Acids Res. 29 (2001) 5163.
[99] M. Yang, H. C. M. Yau, and H. L. Chan, Adsorption Kinetics and Ligand-Binding Properties of Thiol-Modified Double-Stranded DNA on a Gold Surface. Langmuir 14 (1998) 6121.
[100] R. J. S. Skinner, J. S. Lee, Y. F. Hu, D. T. Jiang, P. Aich, S. Wettig, J. Maley, and R. Sammynaiken, Local Structure of M-DNA at the Nitrogen K-edge: Evidence Towards a Metal Ion Induced Conduction Band in DNA. Journal of Nanoscience and Nanotechnology 5 (2005) 1557.
[101] J. G. Duguid, V. A. Bloomfield, J. M. Benevides, and G. J. Thomas, Raman spectroscopy of DNA-metal complexes. II. The thermal denaturation of DNA in the presence of Sr2+, Ba2+, Mg2+, Ca2+, Mn2+, Co2+, Ni2+, and Cd2+. 69 (1995) 2623.
[102] S. Roy, H. Vedala, A. D. Roy, D. h. Kim, M. Doud, K. Mathee, H. k. Shin, N. Shimamoto, V. Prasad, and W. Choi, Direct Electrical Measurements on Single-Molecule Genomic DNA Using Single-Walled Carbon Nanotubes. Nano Lett. 8 (2008) 26.
[103] R. L. McCreery, Molecular Electronic Junctions. Chem. Mater. 16 (2004) 4477.
[104] S. O. Kelley, and J. K. Barton, Electron Transfer Between Bases in Double Helical DNA. Science 283 (1999) 375.
[105] S. O. Kelley, R. E. Holmlin, E. D. A. Stemp, and J. K. Barton, Photoinduced Electron Transfer in Ethidium-Modified DNA Duplexes:  Dependence on Distance and Base Stacking. J. Am. Chem. Soc. 119 (1997) 9861.
[106] A. Charrier, N. Candoni, N. Liachenko, and F. Thibaudau, 2D aggregation and selective desorption of nanoparticle probes: A new method to probe DNA mismatches and damages. Biosens. Bioelectron. 22 (2007) 1881.
[107] X. Su, R. Robelek, Y. Wu, G. Wang, and W. Knoll, Detection of Point Mutation and Insertion Mutations in DNA Using a Quartz Crystal Microbalance and MutS, a Mismatch Binding Protein. Anal. Chem. 76 (2004) 489.
[108] S. Pan, X. Sun, and J. K. Lee, Stability of complementary and mismatched DNA duplexes: Comparison and contrast in gas versus solution phases. Int. J. Mass spectrom. 253 (2006) 238.
[109] H. T. Allawi, and J. SantaLucia, Jr., NMR solution structure of a DNA dodecamer containing single G*T mismatches. Nucl. Acids Res. 26 (1998) 4925.
[110] X. L. Gao, and D. J. Patel, NMR studies of A.C mismatches in DNA dodecanucleotides at acidic pH. Wobble A(anti).C(anti) pair formation. J. Biol. Chem. 262 (1987) 16973.
[111] K. L. Greene, R. L. Jones, Y. Li, H. Robinson, A. H. J. Wang, G. Zon, and W. D. Wilson, Solution Structure of a GA Mismatch DNA Sequence, d(CCATGAATGG)2, Determined by 2D NMR and Structural Refinement Methods. Biochemistry 33 (1994) 1053.
[112] T. Brown, W. N. Hunter, G. Kneale, and O. Kennard, Molecular structure of the G.A base pair in DNA and its implications for the mechanism of transversion mutations. Proc. Natl. Acad. Sci. USA 83 (1986) 2402.
[113] 莊達人, VLSI 製造技術, 高立圖書, 臺北, 1998.
[114] C. Li, W. Fan, B. Lei, D. Zhang, S. Han, T. Tang, X. Liu, Z. Liu, S. Asano, M. Meyyappan, J. Han, and C. Zhou, Multilevel memory based on molecular devices. Appl. Phys. Lett. 84 (2004) 1949.
[115] L. Esaki, New Phenomenon in Narrow Germanium p-n Junctions. Phys. Rev. 109 (1958) 603.
[116] R. A. Kiehl, J. D. Le, P. Candra, R. C. Hoye, and T. R. Hoye, Charge storage model for hysteretic negative-differential resistance in metal-molecule-metal junctions. Appl. Phys. Lett. 88 (2006) 172102.
[117] J. L. Pitters, and R. A. Wolkow, Detailed Studies of Molecular Conductance Using Atomic Resolution Scanning Tunneling Microscopy. Nano Lett. 6 (2006) 390.
[118] K. H. Yoo, D. H. Ha, J. O. Lee, J. W. Park, J. Kim, J. J. Kim, H. Y. Lee, T. Kawai, and H. Y. Choi, Electrical Conduction through Poly(dA)-Poly(dT) and Poly(dG)-Poly(dC) DNA Molecules. Phys. Rev. Lett. 87 (2001) 198102.
[119] J. M. Kim, T. Ohtani, J. Y. Park, S. M. Chang, and H. Muramatsu, DC electric-field-induced DNA stretching for AFM and SNOM studies. Ultramicroscopy 91 (2002) 139.
[120] M. Washizu, and O. Kurosawa, Electrostatic manipulation of DNA in microfabricated structures. Industry Applications, IEEE Transactions on 26 (1990) 1165.
[121] H. Choi, S. Choi, T. W. Kim, T. Lee, and H. Hwang, Nano-Scale Memory Characteristics of Silicon Nitride Charge Trapping Layer with Silicon Nanocrystals. Jpn. J. Appl. Phys. 45 (2006) L807.
[122] P. C. Jangjian, T. F. Liu, C. M. Tsai, M. S. Tsai, and C. C. Chang, Ni 2+ doping DNA: a semiconducting biopolymer. Nanotechnology 19 (2008) 355703.
[123] N. Kang, A. Erbe, and E. Scheer, Electrical characterization of DNA in mechanically controlled break-junctions. New J. Phys. 10 (2008) 023030.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊