|
[1] M. A. Reed, and T. Lee, Molecular Nanoelectronics, American Scientific Publishers California, USA, 2003. [2] S. Golka, C. Pflugl, W. Schrenk, G. Strasser, C. Skierbiszewski, M. Siekacz, I. Grzegory, and S. Porowski, Negative differential resistance in dislocation-free GaN/AlGaN double-barrier diodes grown on bulk GaN. Appl. Phys. Lett. 88 (2006) 172106. [3] J. D. Le, Y. He, T. R. Hoye, C. C. Mead, and R. A. Kiehl, Negative differential resistance in a bilayer molecular junction. Appl. Phys. Lett. 83 (2003) 5518. [4] H. Park, A. K. L. Lim, A. P. Alivisatos, J. Park, and P. L. McEuen, Fabrication of metallic electrodes with nanometer separation by electromigration. Appl. Phys. Lett. 75 (1999) 301. [5] J. He, and S. M. Lindsay, On the Mechanism of Negative Differential Resistance in Ferrocenylundecanethiol Self-Assembled Monolayers. J. Am. Chem. Soc. 127 (2005) 11932. [6] Y. Selzer, M. A. Cabassi, T. S. Mayer, and D. L. Allara, Thermally Activated Conduction in Molecular Junctions. J. Am. Chem. Soc. 126 (2004) 4052. [7] Q. Tang, H. K. Moon, Y. Lee, S. M. Yoon, H. J. Song, H. Lim, and H. C. Choi, Redox-Mediated Negative Differential Resistance Behavior from Metalloproteins Connected through Carbon Nanotube Nanogap Electrodes. J. Am. Chem. Soc. 129 (2007) 11018. [8] R. E. Holmlin, R. Haag, M. L. Chabinyc, R. F. Ismagilov, A. E. Cohen, A. Terfort, M. A. Rampi, and G. M. Whitesides, Electron Transport through Thin Organic Films in Metal-Insulator-Metal Junctions Based on Self-Assembled Monolayers. J. Am. Chem. Soc. 123 (2001) 5075. [9] W. Liang, M. P. Shores, M. Bockrath, J. R. Long, and H. Park, Kondo resonance in a single-molecule transistor. Nature 417 (2002) 725. [10] H. Park, J. Park, A. K. L. Lim, E. H. Anderson, A. P. Alivisatos, and P. L. McEuen, Nanomechanical oscillations in a single-C60 transistor. Nature 407 (2000) 57. [11] J. Park, A. N. Pasupathy, J. I. Goldsmith, C. Chang, Y. Yaish, J. R. Petta, M. Rinkoski, J. P. Sethna, H. D. Abruna, P. L. McEuen, and D. C. Ralph, Coulomb blockade and the Kondo effect in single-atom transistors. Nature 417 (2002) 722. [12] J. Chen, M. A. Reed, A. M. Rawlett, and J. M. Tour, Large On-Off Ratios and Negative Differential Resistance in a Molecular Electronic Device. Science 286 (1999) 1550. [13] S. J. Wind, J. Appenzeller, and P. Avouris, Lateral Scaling in Carbon-Nanotube Field-Effect Transistors. Phys. Rev. Lett. 91 (2003) 058301. [14] S. Kubatkin, A. Danilov, M. Hjort, J. Cornil, J.-L. Bredas, N. Stuhr-Hansen, P. Hedegard, and T. Bjornholm, Single-electron transistor of a single organic molecule with access to several redox states. Nature 425 (2003) 698. [15] N. C. Seeman, DNA in a material world. Nature 421 (2003) 427. [16] K. Keren, R. S. Berman, E. Buchstab, U. Sivan, and E. Braun, DNA-Templated Carbon Nanotube Field-Effect Transistor. Science 302 (2003) 1380. [17] A. J. Storm, J. van Noort, S. de Vries, and C. Dekker, Insulating behavior for DNA molecules between nanoelectrodes at the 100 nm length scale. Appl. Phys. Lett. 79 (2001) 3881. [18] E. Braun, Y. Eichen, U. Sivan, and G. Ben-Yoseph, DNA-templated assembly and electrode attachment of a conducting silver wire. Nature 391 (1998) 775. [19] P. J. de Pablo, F. Moreno-Herrero, J. Colchero, J. G�曠ez Herrero, P. Herrero, A. M. Bar��, P. Ordej�曝, J. M. Soler, and E. Artacho, Absence of dc-Conductivity in lambda -DNA. Phys. Rev. Lett. 85 (2000) 4992. [20] L. Cai, H. Tabata, and T. Kawai, Self-assembled DNA networks and their electrical conductivity. Appl. Phys. Lett. 77 (2000) 3105. [21] D. Porath, A. Bezryadin, S. de Vries, and C. Dekker, Direct measurement of electrical transport through DNA molecules. Nature 403 (2000) 635. [22] T. Shigematsu, K. Shimotani, C. Manabe, H. Watanabe, and M. Shimizu, Transport properties of carrier-injected DNA. The Journal of Chemical Physics 118 (2003) 4245. [23] H.-W. Fink, and C. Schonenberger, Electrical conduction through DNA molecules. Nature 398 (1999) 407. [24] A. Y. Kasumov, M. Kociak, S. Gueron, B. Reulet, V. T. Volkov, D. V. Klinov, and H. Bouchiat, Proximity-Induced Superconductivity in DNA. Science 291 (2001) 280. [25] J. S. Lee, L. J. P. Latimer, and R. S. Reid, A cooperative conformational change in duplex DNA induced by Zn2+ and other divalent metal ions. Biochem. Cell Biol. 71 (1993) 162. [26] Y. T. Long, C. Z. Li, H. B. Kraatz, and J. S. Lee, AC Impedance Spectroscopy of Native DNA and M-DNA. Biophys. J. 84 (2003) 3218. [27] C. Z. Li, Y. T. Long, H. B. Kraatz, and J. S. Lee, Electrochemical Investigations of M-DNA Self-Assembled Monolayers on Gold Electrodes. J. Phys. Chem. B 107 (2003) 2291. [28] P. Aich, S. L. Labiuk, L. W. Tari, L. J. T. Delbaere, W. J. Roesler, K. J. Falk, R. P. Steer, and J. S. Lee, M-DNA: a complex between divalent metal ions and DNA which behaves as a molecular wire. J. Mol. Biol. 294 (1999) 477. [29] D. O. Wood, M. J. Dinsmore, G. A. Bare, and J. S. Lee, M-DNA is stabilised in G*C tracts or by incorporation of 5-fluorouracil. Nucl. Acids Res. 30 (2002) 2244. [30] W. M. Becker, L. J. Kleinsmith, and J. Hardin, The World of the Cell The Benjamin/cummings publishing Company, San Francisco, 2006. [31] J. D. Watson, and F. H. C. Crck, Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. Nature 171 (1953) 2. [32] W. K. Purves, G. H. Orians, and H. C. Heller, Life: The Science of Biology, Sinauer Associates, 2001. [33] D. D. Eley, and D. I. Spivey, Semiconductivity of organic substances. Part 9.—Nucleic acid in the dry state. Transactions of the Faraday Society 58 (1962) 5. [34] R. G. Endres, D. L. Cox, and R. R. P. Singh, Colloquium: The quest for high-conductance DNA. Reviews of Modern Physics 76 (2004) 195. [35] P. Carpena, P. Bernaola-Galvan, P. C. Ivanov, and H. E. Stanley, Metal-insulator transition in chains with correlated disorder. Nature 418 (2002) 955. [36] D. S. Wiersma, P. Bartolini, A. Lagendijk, and R. Righini, Localization of light in a disordered medium. Nature 390 (1997) 671. [37] P. W. Anderson, Absence of Diffusion in Certain Random Lattices. Phys. Rev. 109 (1958) 1492. [38] A. Rakitin, P. Aich, C. Papadopoulos, Y. Kobzar, A. S. Vedeneev, J. S. Lee, and J. M. Xu, Metallic Conduction through Engineered DNA: DNA Nanoelectronic Building Blocks. Phys. Rev. Lett. 86 (2001) 3670. [39] Y. Zhang, R. H. Austin, J. Kraeft, E. C. Cox, and N. P. Ong, Insulating Behavior of lambda -DNA on the Micron Scale. Phys. Rev. Lett. 89 (2002) 198102. [40] D. B. Hall, R. E. Holmlin, and J. K. Barton, Oxidative DNA damage through long-range electron transfer. Nature 382 (1996) 731. [41] D. B. Hall, S. O. Kelley, and J. K. Barton, Long-Range and Short-Range Oxidative Damage to DNA: Photoinduced Damage to Guanines in Ethidium-DNA Assemblies. Biochemistry 37 (1998) 15933. [42] J. Jortner, M. Bixon, T. Langenbacher, and M. E. Michel-Beyerle, Charge transfer and transport in DNA. Proceedings of the National Academy of Sciences of the United States of America 95 (1998) 12759. [43] M. Bixon, B. Giese, S. Wessely, T. Langenbacher, M. E. Michel-Beyerle, and J. Jortner, Long-range charge hopping in DNA. Proceedings of the National Academy of Sciences of the United States of America 96 (1999) 11713. [44] M. E. N���狑z, D. B. Hall, and J. K. Barton, Long-range oxidative damage to DNA: Effects of distance and sequence. Chem. Biol. 6 (1999) 85. [45] T. T. Williams, D. T. Odom, and J. K. Barton, Variations in DNA Charge Transport with Nucleotide Composition and Sequence. J. Am. Chem. Soc. 122 (2000) 9048. [46] B. Giese, J. Amaudrut, A.-K. Kohler, M. Spormann, and S. Wessely, Direct observation of hole transfer through DNA by hopping between adenine bases and by tunnelling. Nature 412 (2001) 318. [47] H. A. Wagenknecht, Charge Transfer in DNA: From Mechanism to Application Wiley-VCH, 2005. [48] A. K. Mahapatro, D. B. Janes, K. J. Jeong, and G. U. Lee, Electrical Behavior of Nano-scale Junctions with Well Engineered Double Stranded DNA Molecules, Nanotechnology, 2006. IEEE-NANO 2006. Sixth IEEE Conference on, 2006, pp. 66. [49] J. Wang, Electrical conductivity of double stranded DNA measured with ac impedance spectroscopy. Physical Review B (Condensed Matter and Materials Physics) 78 (2008) 245304. [50] X. Guo, A. A. Gorodetsky, J. Hone, J. K. Barton, and C. Nuckolls, Conductivity of a single DNA duplex bridging a carbon nanotube gap. Nat Nano 3 (2008) 163. [51] B. Hartzell, B. McCord, D. Asare, H. Chen, J. J. Heremans, and V. Soghomonian, Comparative current--voltage characteristics of nicked and repaired lambda-DNA. Appl. Phys. Lett. 82 (2003) 4800. [52] S. M. Iqbal, G. Balasundaram, S. Ghosh, D. E. Bergstrom, and R. Bashir, Direct current electrical characterization of ds-DNA in nanogap junctions. Appl. Phys. Lett. 86 (2005) 153901. [53] Xu, Zhang, Li, and Tao, Direct Conductance Measurement of Single DNA Molecules in Aqueous Solution. Nano Lett. 4 (2004) 1105. [54] E. Shapir, H. Cohen, A. Calzolari, C. Cavazzoni, D. A. Ryndyk, G. Cuniberti, A. Kotlyar, R. Di Felice, and D. Porath, Electronic structure of single DNA molecules resolved by transverse scanning tunnelling spectroscopy. Nat Mater 7 (2008) 68. [55] P. Aich, H. B. Kraatz, and J. S. Lee, M-DNA: pH Stability, Nuclease Resistance and Signal Transmission. J. Biomol. Struct. Dyn. 11 (2000) 5. [56] S. D. Wettig, G. A. Bare, R. J. S. Skinner, and J. S. Lee, Signal Transduction through Dye-Labeled M-DNA Y-Branched Junctions: Switching Modulated by Chemical Reduction of Anthraquinone. Nano Lett. 3 (2003) 617. [57] P. Aich, R. J. S. Skinner, S. D. Wettig, R. P. Steer, and J. S. Lee, Long Range Molecular Wire Behaviour in a Metal Complex of DNA. Journal of Biomolecular Structure and Dynamics 20 (2002) 6. [58] S. S. Alexandre, J. M. Soler, L. Seijo, and F. Zamora, Geometry and electronic structure of M-DNA (M = Zn2+, Co2+, and Fe2+). Physical Review B (Condensed Matter) 73 (2006) 205112. [59] G. M. Whitesides, and B. Grzybowski, Self-Assembly at All Scales. Science 295 (2002) 2418. [60] S. Jakubith, H. H. Rotermund, W. Engel, A. von Oertzen, and G. Ertl, Spatiotemporal concentration patterns in a surface reaction: Propagating and standing waves, rotating spirals, and turbulence. Phys. Rev. Lett. 65 (1990) 3013. [61] J. Aizenberg, A. J. Black, and G. M. Whitesides, Control of crystal nucleation by patterned self-assembled monolayers. Nature 398 (1999) 495. [62] A. Kumar, N. L. Abbott, H. A. Biebuyck, E. Kim, and G. M. Whitesides, Patterned Self-Assembled Monolayers and Meso-Scale Phenomena. Acc. Chem. Res. 28 (1995) 219. [63] P. E. Laibinis, G. M. Whitesides, D. L. Allara, Y. T. Tao, A. N. Parikh, and R. G. Nuzzo, Comparison of the structures and wetting properties of self-assembled monolayers of n-alkanethiols on the coinage metal surfaces, copper, silver, and gold. J. Am. Chem. Soc. 113 (1991) 7152. [64] A. Ulman, Formation and Structure of Self-Assembled Monolayers. Chem. Rev. 96 (1996) 1533. [65] F. Schreiber, Structure and growth of self-assembling monolayers. Prog. Surf. Sci. 65 (2000) 151. [66] K. W. Kolasinski, Surface Science, John Wily & Sons Ltd., 2002. [67] H. O. Finklea, D. A. Snider, J. Fedyk, E. Sabatani, Y. Gafni, and I. Rubinstein, Characterization of octadecanethiol-coated gold electrodes as microarray electrodes by cyclic voltammetry and ac impedance spectroscopy. Langmuir 9 (1993) 3660. [68] C. Miller, P. Cuendet, and M. Graetzel, Adsorbed .omega.-hydroxy thiol monolayers on gold electrodes: evidence for electron tunneling to redox species in solution. J. Phys. Chem. 95 (1991) 877. [69] I. Ruach-Nir, T. A. Bendikov, I. Doron-Mor, Z. Barkay, A. Vaskevich, and I. Rubinstein, Silica-Stabilized Gold Island Films for Transmission Localized Surface Plasmon Sensing. J. Am. Chem. Soc. 129 (2007) 84. [70] P. Abad-Valle, M. T. Fern�鴨dez-Abedul, and A. Costa-Garc�朦, DNA single-base mismatch study with an electrochemical enzymatic genosensor. Biosens. Bioelectron. 22 (2007) 1642. [71] T. G. Drummond, M. G. Hill, and J. K. Barton, Electrochemical DNA sensors. Nat Biotech 21 (2003) 1192. [72] T. Ito, K. Hosokawa, and M. Maeda, Detection of single-base mismatch at distal end of DNA duplex by electrochemical impedance spectroscopy. Biosens. Bioelectron. 22 (2007) 1816. [73] S. O. Kelley, E. M. Boon, J. K. Barton, N. M. Jackson, and M. G. Hill, Single-base mismatch detection based on charge transduction through DNA. Nucl. Acids Res. 27 (1999) 4830. [74] Y. T. Long, C. Z. Li, T. C. Sutherland, H. B. Kraatz, and J. S. Lee, Electrochemical Detection of Single-Nucleotide Mismatches: Application of M-DNA. Anal. Chem. 76 (2004) 4059. [75] M. Steichen, Y. Decrem, E. Godfroid, and C. Buess-Herman, Electrochemical DNA hybridization detection using peptide nucleic acids and [Ru(NH3)6]3+ on gold electrodes. Biosens. Bioelectron. 22 (2007) 2237. [76] D. A. Skoog, F. J. Holler, and T. A. Nieman, Principles of Instrumental Analysis Thomson Learning 1998. [77] J. Wolfenstine, and J. Allen, Ni3+/Ni2+ redox potential in LiNiPO4. J. Power Sources 142 (2005) 389. [78] 鄭華生, 分析化學, 清大出版社, 新竹, 2007. [79] Q. J. Chi, J. Zhang, and J. Ulstrup, Surface Microscopic Structure and Electrochemical Rectification of a Branched Alkanethiol Self-Assembled Monolayer. J. Phys. Chem. B 110 (2006) 1102. [80] J. Heinze, Cyclic Voltammetry - Electrochemical Spectroscopy. New Analytical Methods (25). Angewandte Chemie International Edition in English 23 (1984) 831. [81] 曹楚南, and 張鑒清, An introduction to electrochemical impedance spectroscopy, 科學出版社, 北京, 2002. [82] J. E. B. Randles, Kinetics of rapid electrode reactions. Discussions of the Faraday Society 1 (1947) 11. [83] P. Curie, and J. Curie, Crystal physics: Development by pressure of polar electricity in hemihedral crystals with inclined faces. C. R. Acad Sci. 91 (1880). [84] 余樹楨, 晶體之結構與性質, 勃海堂文化, 臺北, 1987. [85] D. A. Buttry, and M. D. Ward, Measurement of interfacial processes at electrode surfaces with the electrochemical quartz crystal microbalance. Chem. Rev. 92 (1992) 1355. [86] D. A. Micklos, G. A. Freyer, and D. A. Crotty, DNA science: a first course, CSHL Press, New York, 2003. [87] T. C. L. G. Sollner, W. D. Goodhue, P. E. Tannenwald, C. D. Parker, and D. D. Peck, Resonant tunneling through quantum wells at frequencies up to 2.5 THz. Appl. Phys. Lett. 43 (1983) 588. [88] P. C. Jangjian, T. F. Liu, M. Y. Li, M. S. Tsai, and C. C. Chang, Room temperature negative differential resistance in DNA-based molecular devices. Appl. Phys. Lett. 94 (2009) 043105. [89] S. Nokhrin, M. Baru, and J. S. Lee, A field-effect transistor from M-DNA. Nanotechnology 18 (2007) 095205. [90] J. Kang, L. Zhuo, X. Lu, and X. Wang, Electrochemical behavior of dopamine at a quercetin-SAM-modified gold electrode and analytical application. J. Solid State Electrochem. 9 (2005) 114. [91] C. Shengli, W. Bingliang, and Z. Hong, An EQCM study of the electrochemical behaviors of polycrystalline gold electrode in sulfuric acid solution. Wuhan Univ. J. Nat. Sci. 3 (1998) 102. [92] R. P. Janek, W. R. Fawcett, and A. Ulman, Impedance Spectroscopy of Self-Assembled Monolayers on Au(111): Sodium Ferrocyanide Charge Transfer at Modified Electrodes. Langmuir 14 (1998) 3011. [93] F. M. Herrero, P. Herrero, F. Moreno, J. Colchero, C. G. Navarro, J. G. Herrero, and A. M. Bar��, Topographic characterization and electrostatic response of M-DNA studied by atomic force microscopy. Nanotechnology 14 (2003) 128. [94] A. D. Bokare, R. C. Chikate, C. V. Rode, and K. M. Paknikar, Iron-nickel bimetallic nanoparticles for reductive degradation of azo dye Orange G in aqueous solution. Applied Catalysis B: Environmental 79 (2008) 270. [95] M. R. Vilar, A. M. Botelho do Rego, A. M. Ferraria, Y. Jugnet, C. Nogue?s, D. Peled, and R. Naaman, Interaction of Self-Assembled Monolayers of DNA with Electrons: HREELS and XPS Studies. The Journal of Physical Chemistry B 112 (2008) 6957. [96] S. A. Krasnikov, N. N. Sergeeva, M. M. Brzhezinskaya, A. B. Preobrajenski, Y. N. Sergeeva, N. A. Vinogradov, A. A. Cafolla, M. O. Senge, and A. S. Vinogradov, An x-ray absorption and photoemission study of the electronic structure of Ni porphyrins and Ni N-confused porphyrin. J. Phys.: Condens. Matter 20 (2008) 235207. [97] E. L. J. M. S. C. A. P. M. A. Galtayries, XPS study of the adsorption of NH3 on nickel oxide on Ni(111). Surf. Interface Anal. 30 (2000) 140. [98] A. W. Peterson, R. J. Heaton, and R. M. Georgiadis, The effect of surface probe density on DNA hybridization. Nucleic Acids Res. 29 (2001) 5163. [99] M. Yang, H. C. M. Yau, and H. L. Chan, Adsorption Kinetics and Ligand-Binding Properties of Thiol-Modified Double-Stranded DNA on a Gold Surface. Langmuir 14 (1998) 6121. [100] R. J. S. Skinner, J. S. Lee, Y. F. Hu, D. T. Jiang, P. Aich, S. Wettig, J. Maley, and R. Sammynaiken, Local Structure of M-DNA at the Nitrogen K-edge: Evidence Towards a Metal Ion Induced Conduction Band in DNA. Journal of Nanoscience and Nanotechnology 5 (2005) 1557. [101] J. G. Duguid, V. A. Bloomfield, J. M. Benevides, and G. J. Thomas, Raman spectroscopy of DNA-metal complexes. II. The thermal denaturation of DNA in the presence of Sr2+, Ba2+, Mg2+, Ca2+, Mn2+, Co2+, Ni2+, and Cd2+. 69 (1995) 2623. [102] S. Roy, H. Vedala, A. D. Roy, D. h. Kim, M. Doud, K. Mathee, H. k. Shin, N. Shimamoto, V. Prasad, and W. Choi, Direct Electrical Measurements on Single-Molecule Genomic DNA Using Single-Walled Carbon Nanotubes. Nano Lett. 8 (2008) 26. [103] R. L. McCreery, Molecular Electronic Junctions. Chem. Mater. 16 (2004) 4477. [104] S. O. Kelley, and J. K. Barton, Electron Transfer Between Bases in Double Helical DNA. Science 283 (1999) 375. [105] S. O. Kelley, R. E. Holmlin, E. D. A. Stemp, and J. K. Barton, Photoinduced Electron Transfer in Ethidium-Modified DNA Duplexes: Dependence on Distance and Base Stacking. J. Am. Chem. Soc. 119 (1997) 9861. [106] A. Charrier, N. Candoni, N. Liachenko, and F. Thibaudau, 2D aggregation and selective desorption of nanoparticle probes: A new method to probe DNA mismatches and damages. Biosens. Bioelectron. 22 (2007) 1881. [107] X. Su, R. Robelek, Y. Wu, G. Wang, and W. Knoll, Detection of Point Mutation and Insertion Mutations in DNA Using a Quartz Crystal Microbalance and MutS, a Mismatch Binding Protein. Anal. Chem. 76 (2004) 489. [108] S. Pan, X. Sun, and J. K. Lee, Stability of complementary and mismatched DNA duplexes: Comparison and contrast in gas versus solution phases. Int. J. Mass spectrom. 253 (2006) 238. [109] H. T. Allawi, and J. SantaLucia, Jr., NMR solution structure of a DNA dodecamer containing single G*T mismatches. Nucl. Acids Res. 26 (1998) 4925. [110] X. L. Gao, and D. J. Patel, NMR studies of A.C mismatches in DNA dodecanucleotides at acidic pH. Wobble A(anti).C(anti) pair formation. J. Biol. Chem. 262 (1987) 16973. [111] K. L. Greene, R. L. Jones, Y. Li, H. Robinson, A. H. J. Wang, G. Zon, and W. D. Wilson, Solution Structure of a GA Mismatch DNA Sequence, d(CCATGAATGG)2, Determined by 2D NMR and Structural Refinement Methods. Biochemistry 33 (1994) 1053. [112] T. Brown, W. N. Hunter, G. Kneale, and O. Kennard, Molecular structure of the G.A base pair in DNA and its implications for the mechanism of transversion mutations. Proc. Natl. Acad. Sci. USA 83 (1986) 2402. [113] 莊達人, VLSI 製造技術, 高立圖書, 臺北, 1998. [114] C. Li, W. Fan, B. Lei, D. Zhang, S. Han, T. Tang, X. Liu, Z. Liu, S. Asano, M. Meyyappan, J. Han, and C. Zhou, Multilevel memory based on molecular devices. Appl. Phys. Lett. 84 (2004) 1949. [115] L. Esaki, New Phenomenon in Narrow Germanium p-n Junctions. Phys. Rev. 109 (1958) 603. [116] R. A. Kiehl, J. D. Le, P. Candra, R. C. Hoye, and T. R. Hoye, Charge storage model for hysteretic negative-differential resistance in metal-molecule-metal junctions. Appl. Phys. Lett. 88 (2006) 172102. [117] J. L. Pitters, and R. A. Wolkow, Detailed Studies of Molecular Conductance Using Atomic Resolution Scanning Tunneling Microscopy. Nano Lett. 6 (2006) 390. [118] K. H. Yoo, D. H. Ha, J. O. Lee, J. W. Park, J. Kim, J. J. Kim, H. Y. Lee, T. Kawai, and H. Y. Choi, Electrical Conduction through Poly(dA)-Poly(dT) and Poly(dG)-Poly(dC) DNA Molecules. Phys. Rev. Lett. 87 (2001) 198102. [119] J. M. Kim, T. Ohtani, J. Y. Park, S. M. Chang, and H. Muramatsu, DC electric-field-induced DNA stretching for AFM and SNOM studies. Ultramicroscopy 91 (2002) 139. [120] M. Washizu, and O. Kurosawa, Electrostatic manipulation of DNA in microfabricated structures. Industry Applications, IEEE Transactions on 26 (1990) 1165. [121] H. Choi, S. Choi, T. W. Kim, T. Lee, and H. Hwang, Nano-Scale Memory Characteristics of Silicon Nitride Charge Trapping Layer with Silicon Nanocrystals. Jpn. J. Appl. Phys. 45 (2006) L807. [122] P. C. Jangjian, T. F. Liu, C. M. Tsai, M. S. Tsai, and C. C. Chang, Ni 2+ doping DNA: a semiconducting biopolymer. Nanotechnology 19 (2008) 355703. [123] N. Kang, A. Erbe, and E. Scheer, Electrical characterization of DNA in mechanically controlled break-junctions. New J. Phys. 10 (2008) 023030.
|