(3.235.108.188) 您好!臺灣時間:2021/02/27 23:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:吳坤翰
研究生(外文):Wu, Kun-Han
論文名稱:金屬銦奈米粒子之合成、氧化控制及其光學特性之研究
論文名稱(外文):Novel synthesis and controlled oxidation of indium nanoparticles and their optical properties
指導教授:陳軍華陳軍華引用關係
指導教授(外文):Chen, Chun-Hua
學位類別:碩士
校院名稱:國立交通大學
系所名稱:材料科學與工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:142
中文關鍵詞:氧化速率應力燒結氧缺陷
外文關鍵詞:indiumoxidation ratestresssinteringoxygen vacancies
相關次數:
  • 被引用被引用:0
  • 點閱點閱:164
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文架構主要分為三個部分: (i) 五大類型In奈米結構的化學合成與結構分析、(ii) 實心In奈米球體氧化動力學分析、(iii) In奈米結構及其在不同氧化條件下In-In2O3奈米核殼(core-shell)結構之光學特性。
In奈米結構化學合成部分,本研究以基本化學還原法原理為基礎,嘗試新穎製程條件與步驟,成功合成實心In奈米球體(Solid In nano-sphere)、多面體In奈米結晶(Polyhedral In nano-crystal)、蟲蝕In奈米球體(Wormhole-like In nano-sphere)、In奈米線(In nano-wire)、In奈米粒子(In nano-particle)等五種各具特色之奈米結構。
以製備所得之實心In奈米球體,進一步在大氣中,於100°C、140°C、170°C、200°C、250°C等五個溫度下進行氧化實驗,並利用非臨場X光繞射技術(XRD),定量分析其氧化比例隨時間之變化、再藉由氧化速率方程式之探討,發現奈米In奈米球體其氧化行為視其氧化溫度在熔點之上或下而有所不同:熔點以上溫度由Cubic law描述,反之熔點以下溫度則由Parabolic law所描述。本研究發現奈米級In之氧化行為呈現二階段式氧化,亦即當氧化比例超過60%以上時,其氧化速率常數將下降1~2個數量級。此二階段氧化現象經實驗証實與高內部應力息息相關,此內部應力來自於氧化時,氧原子之向內擴散(N型氧化物特性),以及金屬In與In2O3熱膨脹係數之差異。此外,本研究亦發現隨氧化層厚度的不斷增加,導致表面應力增加誘發奈米球體破裂現象。此破裂現象隨著溫度的增加而加劇,然而當氧化溫度昇高至400°C時,反而因為高溫燒結效應,彌補了表面裂縫。
在In奈米粒子光學方面,發現UV-Vis吸收峰隨尺寸而有所不同,大尺寸(~250 nm)之In奈米粒子,其溶液顏色呈現深灰色;而小尺寸(~50 nm)之In奈米粒子,吸收峰在290 nm,其溶液顏色為褐色。而部分氧化之實心In奈米球體,其UV-Vis光譜則呈現純金屬電漿子效應與氧化物半導體能隙吸收之特性。其中In2O3層之最大吸收峰,隨氧化程度的增加而有相當明顯的紅位移現象,例如由250°C氧化50 min之322 nm,紅位移至氧化20 hr之359 nm。而PL光譜之分析中發現,其發光位置多為穩定之566 nm橘光,而發光強度隨氧化比例的增加而提昇。在高壓特殊氣氛下氧化所得之In2O3,其PL的發光強度與波長亦有別於上述正常大氣氧化之566 nm穩定橘光。

This thesis contains three main topics: (i) chemical synthesis and structural analysis of five novel Indium nanostructures, (ii) oxidation dynamics of solid Indium nano-sphere and (iii) the optical properties of the prepared In nanostructures and the In-In2O3 core-shell nano-particles partial oxidized under various conditions.
Firstly, we have newly synthesized five distinct indium nanostructures including solid In nano-spheres, polyhedral In nano-crystals, wormhole-like In nano-spheres, In nano-wires, and In nano-particles using a special designed chemical reduction method.
The prepared solid In nano-spheres were oxidized under atmosphere at different temperatures, 100°C, 140°C, 170°C, 200°C and 250°C. The ex-situ X-ray diffraction (XRD) patterns were repeatedly recorded and the oxidation time depedent In/In2O3 ratios were then quantatively obtained for analysis of the oxidation rate law. It is found that the oxidation behaviours can be well described with Cubic law and parabolic law for oxidation temperature above and below the melting temperature of indium bulk, respectively. A distinct two-step oxidation behavior was firstly demonstrated for the nano-scaled In spheres. The extremely high internal stress caused by the inward diffusion of oxygen atoms during oxidation (N-type oxide) as well as the thermal expansion coefficient mismatches between In and In2O3 should play as an important role for the two-step oxidation. Additionally, single or multiple cracks observed in the case of greatly oxidized In nano-spheres are reasonably considered as the relaxtion of such high internal stress. However, these cracks were re-sealed at very high oxidation temperature, e.g. 400°C, due to the sintering mechanism.
Optical properties including UV-Vis and PL spectra were systematically measured for the understanding of fundamentals of In and In/In2O3 core/shell nanostructures. The UV-Vis absorption spectrum shows a broaden absorption band for larger In nano-spheres (~250 nm), whereas a sharp peak around 290 nm can be found for smaller ones (~50 nm). The UV-Vis spectra of the partical oxidized In/In2O3 nano-spheres are the comprehensive absorption of the surface plasmon resonance of In metals and the optical band-gap of In2O3 semiconductors. The In2O3 thickness dependent absorption peak locates at 322 nm and 359 nm for 50 min and 20 hr oxidation time at 250°C, respectively. The PL spectra greatly vary with the oxidation conditions. For instance, a dense emission peak is typically observed around 566 nm for the case of oxidation under air, but a slight red-shifted peak over 600 nm is also frequently displayed for high pressure oxidation.

中文摘要 i
英文摘要 iii
目錄 v
圖表目錄 viii
第一章、緒論 1
1-1 量子限域效應(Quantum confinement effect) 2
1-2 量子穿隧效應(Quantum tunnelling effect) 3
1-3 庫侖阻塞效應(Coulomb blockade effect) 3
1-4 表面效應及熱、光性質(Surface effect, thermal and optical properties) 4
1-5 研究動機與目的 6
第二章、理論基礎與文獻回顧 8
2-1 銦(indium)的基本性質 8
2-2 奈米In之製備 9
2-2-1 物理法: 9
2-2-2 化學法: 14
2-3 表面電漿共振(SPR: Surface Plasmon Resonance) 21
2-3-1 奈米In 金屬之SPR現象 25
2-4 金屬氧化物 30
2-4-1 金屬氧化物的型態 30
2-4-2 Pilling-Bedworth rule 31
2-4-3 N-type、P-type 氧化物 32
2-4-5 金屬的氧化行為 34
2-4-6 金屬氧化速率方程式(Rate Laws) 35
2-4-7 銦的氧化行為 36
2-5 In2O3奈米結構之光致螢光(PL)特性 40
2-5-1 PL(Photoluminescence)發光原理 40
2-5-2 本質、缺陷發光的差異性 41
2-5-3 In2O3奈米結構之PL 特性 42
第三章、實驗方法與步驟 44
3-1 實驗藥品 44
3-2 實驗設備 45
3-3 實驗方法 46
3-3-1 奈米In之合成 46
3-3-2 實心In奈米球體(Solid In nano-sphere)製備方法 47
3-3-3 多面體In奈米結晶(Polyhedral In nano-crystal)製備方法 48
3-3-4 蟲蝕In奈米球體(Wormhole-like In nano-sphere)製備方法 49
3-3-5 In奈米線(In nano-wire)製備方法 50
3-3-6 In奈米粒子(In nano-particle)製備方法 51
3-4 奈米In之氧化實驗 52
3-4-1 In-In2O3( core-shell )奈米粒子之合成 52
3-5 奈米In與奈米In-In2O3粒子之鑑定與分析 53
3-5-1 X-Ray繞射分析 53
3-5-2 紫外光-可見光吸收光譜(UV-Vis) 53
3-5-3 場發射掃描式電子顯微鏡(FE-SEM) 54
3-5-4 場發射穿透式電子顯微鏡(FE-TEM) 54
3-5-5 光激發螢光光譜儀(PL) 55
第四章、實驗結果與討論 57
4-1 In奈米結構之合成與形貌結構分析 57
4-1-1 實心In奈米球體(Solid In Nano-sphere) 60
4-1-2 多面體In奈米結晶(Polyhedral In Nano-crystal) 62
4-1-3 蟲蝕In奈米球體(Wormhole-like In Nano-sphere) 66
4-1-4 In奈米線(In nano-wire) 70
4-1-5 In奈米粒子(In Nano-particle) 73
4-2 In奈米粒子的氧化探討 78
4-2-1 In奈米粒子之氧化動力學 78
4-2-2 In奈米粒子氧化動力分析 88
4-3 In與In-In2O3奈米結構之光學分析 103
4-3-1 In奈米結構之光學分析 103
4-3-2 In-In2O3(core-shell)奈米結構之光學分析 109
第五章、結論 125
第六章、未來展望 127
參考文獻 128
附錄
氧化百分比之XRD模擬計算 136
Rietveld 模擬分析 138
團聚成片狀In奈米結構 141
In2O3奈米粒子的熱致色變 142


1. 吳泰伯,奈米材料與技術.
2. P. Wright , Quantum Confinement Effects In Semiconductor Clusters , PH. D. (2000) thesis P5.
3. R. KuBo et al., Electrontic Properties of Metallic Fine Particles , J. Phys. Soc. Jpn. 17 (1962) 975.
4. 簡紋濱、陳怡然,奈米顆粒的磁性,物理雙月刊 28-5 (2006) 831
5. A.C. Phillips et al., Introduction To Quantum Mechanics, (2003) Ch5-2.
6. E.V. Anslyn et al., Modern Physical Organic Chemistry (2006) P435.
7. A. Beiser, Concepts of Modern Physics 6th (2003) P186.
8. 曹茂盛,奈米材料導論,(2002) Ch1.
9. 羅吉宗,戴明鳳,林鴻明,鄭振宗,奈米科技導論,2003 Ch2.
10. R.E. Cavicchi et al., Coulomb Suppression of Tuneling Rate From Small Metal Particles, Phys. Rev. Lett 52 (1984) 1453.
11. 馬中水,介觀物理基礎和近期發展幾個方面的簡單介紹,物理雙月刊 28-5 (2006) P764.
12. F. Y. Wu et al., Superconductivity In Zero-dimensional Indium Nano-particles ,
J. Appl. Phys. 101 (2007) 09G111.
13. M. Dippel et al., Size-Dependent Melting of Self-Assembled Indium
Nanostructures, Phys. Rev. Lett. 87 (2001) 095505-1.
14. X. M. Chen et al., Dynamic Mechanical Analyzer Study on Surface Melting of
Indium Nano-particles , SOLID STATE COMMUM 148 (2008) 374.
15. D. Xie et al., Thermal Stability of Indium Nanocrystals: A theoretical study ,
Mater. Chem. Phys. 96 (2006) 418.
16. S.H. Chen et al., Optical Absorption of Nanoscale Indium Particles in Ordered Array, Phys. Stat. Sol. (a) 191 (2002) 317.
17. P. Singh et al., A Novel Route for The Synthesis of Indium Nano-particles in Ionic Liquid, Mater Lett. 62 (2008) 4164.
18. N.H. Chou et al., Room-Temperature Chemical Sunthesis of Shape- Controlled Indium, J. AM. CHEM. SOC. 130 (2008) 8140.
19. P.K. Khanna et al.,Colloidal Synthesis of Indium Nano-particles by Sodium Reduction Method, Mater Lett 59 (2005) 1032.
20. H.Li et al., Synthesis of Indium Nanowires by Galvanic Displacement and Their Optical Properties, Nanoscale Res Lett 4 (2009) 47.
21. R.A. Ganeev et al., Structural, Optical, and Nonlinear Optical Properties of Indium Nano-particles Prepared by Laser Ablation, Appl. Phys. B 86 (2007) 337.
22. Y. Zhao et al., A Novel Solution Route for Preparing Indium Nano-particles, J. Phys. Chem. B 107 (2003) 7574.
23. Z. Wang et al., The Employment of Indium Nano-particles in Barbier-type Reaction of Allylic Chloride in Water, CHEM. LETT. 35 (2006) 498.
24. B.C. Ranu et al., Selective Reduction of Terminal Alkynes to Alkenes by Indium Metal, J. Org. Chem. 66 (2001) 5624.
25. M. Mahesh et al., Novel Deoxygenation Reaction of Epoxides by Indium, J. Org. Chem. 70 (2005) 4118.
26. J. Wang et al., Indium Microrod Tags for Electrochemical Detection of DNA Hybridization, Anal. Chem. 75 (2003) 6218.
27. F. Iacopi et al., Size-Dependent Characteristics of Indium-Seeded Si Nanowire Growth, Electrochem. Solid-State Lett. , 11 (2008) K98.
28. P. J. Al et al., In Situ Generation of Indium Catalysts to Grow Crystalline Silicon Nanowires at Low Temperature on ITO, J. Mater. Chem. 18 (2008) 5187.
29. A. Kramer et al., Investigation of Au and In as Solvents for The Growth of Silicon Nanowires on Si(111), Physica E 40 (2008) 2462.
30. Z.W. Wang et al., Structures and Energetics of Indium-Catalyzed Silicon Nanowires , Nano Lett. 9 (2009) 1467.
31. H. Yu et al., Two-Versus Three-Dimensional Quantum Confinement in Indium Phosphide Wires and Dots, Nature Materials 2 (2003) 517.
32. P.K. Khanna et al., Synthesis of Indium Phosphide Nano-particles via Catalytic Cleavage of Phosphorus Carbon Bond in n-trioctylphosphine by indium, Mater Chem Phys. 92 (2005) 54.
33. K. Soumitra et al.,Direct Synthesis of Indium Nanotubes from Indium Metal Source, Crystal Growth & Design 8 (2008) 344.
34. X. Maojie et al., Self-Organization of In Nanostructures on Si Surfaces, Appl. Phys. Lett. 94 (2009) 073109.
35. B. Balamurugana et al., Size-induced Stability and Structural Transition in Monodispersed Indium Nano-particles , Appl. Phys. Lett. 86 (2005) 083102.
36. J. Zhan et al., Fabrication of Metal–Semiconductor Nanowire Heterojunctions, Angew. Chem. Int. Ed. 44 (2005) 2140.
37. X.G. Feng et al., Preparation and Tribological Properties of Flower-like Indium Nano-particles, Acta Phys.-Chim. Sin. 24 (2008) 1864.
38. Z. Li et al., A Simple and Rapid Method for Preparing Indium Nano-particles from Bulk Indium via Ultrasound Irradiation, Mater Sci Eng. A 407 (2005) 7.
39. Y. Liu et al., Preparation of Nanocrystalline Indium Powders by use of γ-ray Radiation, Mater Lett 26 (1996) 81.
40. M. Tanaka et al., In Situ Observation of Indium Nano-particles Deposited on Si Thin Films by Ultrahigh Vacuum Field Emission Transmission Electron Microscope, Surface Science 433 (1999) 491.
41. K.H. Oh et al., Indium Nanowires Synthesized at an Ultrafast Rate, Adv. Mater. 20 (2008) 1093.
42. B.N. Flanders et al., Directed Growth of Single-Crystal Indium Wires, Appl. Phys. Lett. 88 (2006) 221907.
43. G. Hautier et al., Electrodeposited Free-Standing Single-Crystal Indium Nanowires, Electrochem. Solid-State Lett. 11 (2008) K47.
44. K. Soulantica et al., Synthesis and Self-Assembly of Monodisperse Indium Nano-particles Prepared from the Organometallic Precursor [In(h5-C5H5)], Angew. Chem. Int. Ed. 40 (2001) 448.
45. K. Soulantica et al., Selective Synthesis of Novel In and In3Sn Nanowires by an Organometallic Route at Room Temperature, Angew. Chem. Int. Ed. 40 (2001) 2984.
46. K. Soulantica et al., Synthesis of Indium and Indium Oxide Nano-particles from Indium Cyclopentadienyl Precursor and Their Application for Gas Sensing, Adv. Funct. Mater. 13 (2003) 553.
47. Y. Heng et al., Heterogeneous Seeded Growth: A Potentially General Synthesis of Monodisperse Metallic Nano-particles, J. Am. Chem. Soc. 120 (1998) 9545.
48. J.M. Nedeljkovic et al., Growth of InP Nanostructures via Reaction of Indium Droplets with Phosphide Ions: Synthesis of InP Quantum Rods and InP-TiO2 Composites , J. AM. CHEM. SOC. 126 (2004) 2635.
49. Q. Yang et al., Growth of One-Dimensional Hierarchical Multilayered Indium Nanostructures, Crystal Growth & Design 9 (2009) 3036.
50. H. Wei et al., Spontaneous Growth of Indium Nanostructures, J . Cryst . Growth 297 (2006) 300.
51. A. Krost et al., Indium Nanowires in Thick InGaN layers as Determined by x-ray analysis, Appl. Phys. Lett. 76 (2000) 1395.
52. G. Sheet et al., Clean Superconducting In Nanowires Encapsulated With in Insulating ZnS Nanotubes, Appl. Phys. Lett. 94 (2009) 053108.
53. Y. Lei et al., Highly Ordered Arrays of Metal/Semiconductor Core-Shell Nano-particles with Tunable Nanostructures and Photoluminescence, J. AM. CHEM. SOC. 127 (2005) 1487.
54. C. Tang et al., Preparation and Structure of Magnesium Oxide Coated Indium Nanowires, Chem. Phys. Lett. 382 (2003) 374.
55. J. Kim et al., Effect of Oxidation on Indium Solderability, J. Electron. Mater. 37 (2008) 483.
56. J. Cho et al., Oxidation and Reduction Behavior of Pure Indium, J. Mater. Res. 24 (2009) 386.
57. P.X. Gao et al., Metal/Semiconductor Core/Shell Nanodisks and Nanotube, Adv. Funct. Mater. 16 ( 2006) 53.
58. F. Chen et al., Application of Indium Nanowires to donor–acceptor Pair Luminescence, J. lumin. 128 (2008) 1856–1862.
59. S. Ohkouchi et al., Indium Nano-dot Arrays Formed by Field-induced Deposition with a Nano-Jet Probe for site-controlled InAs/GaAs quantum dots, Thin Solid Films, 464 (2004) 233.
60. Z.H. Han et al., Synthesis and Thermal Characterization of Phase- changeable Indium/Polyalphaolefin Nanofluids, Appl. Phys. Lett., 92 (2008) 243104.
61. Z.H. Han et al., Nanofluids with Enhanced Thermal Transport Properties, PHD thesis (2008).
62. E. Hammarberg et al., In0 Nanoparticle Synthesis Assisted by Phase- Transfer Reaction, Chem. Mater., 21 (2009) 771.
63. E. Hammarberg, Nanoscale Transparent Conductive Oxides via Microwave -assisted Polyol Synthesis, PHD thesis, (2008).
64. F.F Shi et al., Synthesis of Indium Nanoclusters and Formation of Thin Film Contacts on Plastic Substrates for Organic and Flexible Electronics Applications, Nanotechnology 18 (2007) 265301.
65. Y. Zhang et al., Synthesis of Indium Hollow Spheres and Nanotubes by a Simple Template-free Solvothermal Process, Inorg. Chem. Cummun. 7 (2004) 344.
66. Y. Xia et al., Some New Developments in The Synthesis, Functionalization, and Utilization of Monodisperse Colloidal Spheres, Adv. Funct. Mater. 15 (2005) 1907.
67. Y. Xia et al., Bottom-Up and Top-Down Approaches to the Synthesis of Monodispersed Spherical Colloids of Low Melting-Point Metals, Nano Lett., 4 (2004) 10.
68. P. Roth et al., Controlled Formation and Size-selected Deposition of Indium Nano-particles from a Microwave Flow Reactor on Semiconductor Surfaces, Appl. Phys. Lett. 87 (2005) 093105.
69. J.L. Dye et al., Nanoscale Metal Particles by Homogeneous Reduction with Alkalides or Electrides, J. Am. Chem. Soc. 113 (1991)1650.
70. Y. Xia et al., Galvanic replacement reaction: a simple and powerful route to hollow and porous metal nanostructures, INVITED REVIEW (Proc. IMechE 221 Part N: J. Nanoengineering and Nanosystems).
71. 邱國斌,蔡定平,金屬表面電漿簡介,物理雙月刊 28-2 (2006) P476.
72. T. Pal et al., Interparticle Coupling Effect on the Surface Plasmon Resonance of Gold Nanoparticle: From Theory to Applications, Chem. Rev., 107 (2007) 4797.
73. A.S. Grijalva et al., Classical Theoretical Characterization of the Surface Plasmon Absorption Band for Silver Spherical Nano-particles Suspended in Water and Ethylene Glycol, Physica 27 (2005) 104.
74. 陳浩銘,劉如熹,胡淑芬,金屬奈米粒子特性及其製作技術介紹,奈米通訊 第十二卷第四期.
75. S. Polosan et al., Isolate Nanocrystals of Indium In KCl Crystals, J. OPTOELECTRON. ADV. M., 5 (2003) 699.
76. Z. Ai et al., Interfacial Hydrothermal Synthesis of Cu@Cu2O Core-Shell Microspheres with Enhanced Visible-Light-Driven Photocatalytic Activity, J. Phys. Chem. C, 113 (2009) 20896.
77. L. Hongfang1 et al., Characteristics and Photocatalytic Effects of Zn/ZnO Nanowhiskers Compared with ZnO Nano-particles, Journal of Wuhan University of Technology-Mater Sci. Ed. Dec. (2007)
78. Y. Xiong et al., Size-Dependence of Surface Plasmon Resonance and Oxidation for Pd Nanocubes Synthesized via a Seed Etching Process, Nano Lett. 5 (2005) 7.
79. A.K. Sharma et al., Metal–semiconductor Nanocomposite Layer Based Optical Fibre Surface Plasmon Resonance sensor, J. Opt. A:Pure Appl. Opt. 9 (2007) 180.
80. A. Cabot et al.,VacancyCoalescence during Oxidation of Iron Nano-particles, J. AM. CHEM. SOC. 129 (2007) 10358.
81. X.H. Wei et al., Proteresis in Co:CoO core-shell nanoclusters, J.APPL PHYS. 103 (2008) 07D514.
82. S.C. Singh et al., Zn/ZnO core/shell nano-particles synthesized by laser ablation in aqueous environment: Optical and structural characterizations, Bull. Mater. Sci. 33 (2010) 1.
83. S. Kim et al., Fabrication of Zn/ZnO Nanocables through Thermal Oxidation of Zn Nanowires Grown by RF Magnetron Sputtering, J. Cryst. Growth 290 (2006) 485.
84. H. Zeng et al., Microstructure Control of Zn/ZnO Core/Shell Nano-particles and Their Temperature-Dependent Blue Emissions, J. Phys. Chem. B 111 (2007) 14311.
85. N. Birks et al., Introduction to the High-Temperature Oxidation of Metals, (2nd Edition) (2006).
86. D.J. Young et al., High Temperature Oxidation and Corrosion of Metals, (First edition 2008).
87. A.S. Khanna et al., Introduction to High Temperature Oxidation and Corrosion , (2002).
88. Wikipedia : http://en.wikipedia.org/wiki/Pilling-Bedworth_ratio
89. A. Ronnquist et al., The Oxidation of Copper: A REVIEW OF PUBLISHED DATA, The Institute of Metals 89 (1960).
90. B.E. Hopkins et al., Oxidation of Metals and Alloys, (First edition 1953).
91. P. Wu et al., Synthesis and Photoluminescence Property of Indium Oxide Nanowires, Appl. Sur. Sci. 255 (2008) 3201.
92. H. Zhu et al., Nanoporous In2O3 Nanocrystal Clusters: One-Step Synthesis, Thermal Stability and Optical Property, J. Phys. Chem. C 112 (2008) 4486.
93. X. Liu et al., Single-Crystalline Indium Hydroxide and Indium Oxide Microcubes: Synthesis and Characterization, J. Phys. Chem. C 112 (2008) 18426.
94. Z.D. Zhang et al., Tunable Synthesis of Various Hierarchical Structures of In(OH)3 and In2O3 Assembled by Nanocubes, Eur. J. Inorg. Chem., (2008) 1445.
95. X.C. Wu et al., Fabrication and Photoluminescence Characteristics of Single Crystalline In2O3 Nanowires, CHEM PHYS LETT 373 (2003) 28.
96. D. Bai et al., Controllable Synthesis and Field Emission Properties of In2O3 Nanostructures, Cryst. Res. Technol. 45 (2010) 173.
97. W.S. Seo et al., Preparation and Optical Properties of Highly Crystalline, Colloidal, and Size-Controlled Indium Oxide Nano-particles, Adv. Mater. 15 (2003) 795.
98. X.P. Shen et al., Construction and Photoluminescence of In2O3 Nanotube Array by CVD-Template Method, J. Cryst. Growth 276 (2005) 471.
99. B. Min et al., Synthesis of Single Crystalline In2O3 Nanowires and Their Photoluminescence Characteristics, Jpn. J. Appl. Phys. 45 (2006) 4988.
100. P. Guha et al., Direct Synthesis of Single Crystalline In2O3 Nanopyramids and Nanocolumns and Their Photoluminescence Properties, Appl. Phys. Lett. 85 (2004) 3851.
101. X.S. Peng et al., Synthesis and Photoluminescence of Single -Crystalline In2O3 Nanowires, J. Mater. Chem. 12 (2002) 1602.
102. Q. Tang et al., Size-Controllable Growth of Single Crystal In(OH)3 and In2O3 Nanocubes, Crystal Growth & Design 5 (2005) 147.
103. J. Yang et al., In(OH)3 and In2O3 Nanorod Bundles and Spheres: Microemulsion-Mediated Hydrothermal Synthesis and Luminescence Properties, Inorg. Chem. 45 (2006) 8973.
104. S. Maensiri et al., Indium Oxide (In2O3) Nano-particles Using Aloe vera Plant Extract: Synthesis and Optical Properties, J Optoelectro. Adv, Mater. 10 (2008) 161.
105. Y. Li et al., Large-area In2O3 Ordered Pore Arrays and Their Photoluminescence Properties, Appl. Phys. A 81 (2005) 269.
106. H. Zhou et al., Photoluminescence of Indium–oxide Nano-particles Dispersed Within Pores of Mesoporous Silica, Appl. Phys. Lett. 75, (1999) 495.
107. Z. Huang et al., Photoluminescence Properties of the In2O3 Octahedrons Synthesized by Carbothermal Reduction Method, Mater. Lett. 61 (2007) 5137.
108. H. Yang et al., In Situ Growth of Self-Assembled and Single In2O3 Nanosheets on the Surface of Indium Grains, Crystal Growth & Design. 8 (2008) 3155.
109. J. Du et al., Indium Hydroxide and Indium Oxide Nanospheres, Nanoflowers, Microcubes, and Nanorods: Synthesis and Optical Properties, Crystal Growth & Design, 8 (2008) 2313.
110. Y. Li et al., Single-crystalline In2O3 Nanotubes Filled with In, Adv.Mater. 15 (2003) 581.
111. T. Gao et al., Catalytic Growth of In2O3 Nanobelts by Vapor Transport, J. Cryst. Growth 290 (2006) 660.
112. S.T. Jean et al., Growth Mechanism and Photoluminescence Properties of In2O3 Nanotowers, Crystal Growth & Design 10 (2010) 2104.
113. C. Wang et al., Flower-like In2O3 Nanostructures Derived from Novel Precursor: Synthesis, Characterization, and Formation Mechanism, J. Phys. Chem. C 113 (2009) 7714.
114. J.S. Jeong et al., Synthesis and Characterization of High-quality In2O3 Nanobelts via Catalyst-free Growth Using a Simple Physical Vapor Deposition at Low Temperature, Chem. Phys. Lett. 384 (2004) 246.
115. M.S. Lee et al., Characterization of the Oxidized Indium Thin Films with Thermal Oxidation, Thin solid Films 279 (1996) 1.
116. P.D.C. King et al. Band Gap, Electronic Structure, and Surface Electron Accumulation of Cubic and Rhombohedral In2O3, PHYSICAL REVIEW B 79 (2009) 2052211.
117. S Das et al., Optical Properties of SnO2 Nano-particles and Nanorods Synthesized by Solvothermal Process, J. APPL. PHYS. 99 (2006) 114303.
118. B. Wiley et al., Shape-Controlled Synthesis of Metal Nanostructures: The Case of Silver, Chem. Eur. J. 11 (2005) 454.
119. C.X. Kan et al., Silver nanostructures with well-controlled shapes: synthesis, characterization and growth mechanisms, J. Phys. D: Appl. Phys. 41 (2008) 155304.
120. Y. Xia et al., Shape-Controlled Synthesis of Metal Nanocrystals: Simple Chemistry Meets Complex Physicsy, Angew. Chem. Int. Ed. 48 (2009) 60.
121. B. Li et al., In2O3 Hollow Microspheres: Synthesis from Designed In(OH)3 Precursors and Applications in Gas Sensors and Photocatalysis, Langmuir 22 (2006) 9380.
122. X. Zheng et al., Formation of vesicle-templated CdSe hollow spheres in an ultrasound-induced anionic surfactant solution, Ultrasonics Sonochemistry 9 (2002) 311.
123. H.W. Hubert et al. Vesicle Templating, Adv.Mater. 12 (2000) 1291
124. C. Guo et al., Aggregation of self-assembled Ni(OH)2 nanosheets under hydrothermal conditions, J Mater Sci: Mater Electron 20 (2009) 1118.
125. L. Zhu et al., In Situ Vesicle-template-interfaceRreaction to Self-encapsulated Microsphere CdS, J .Colloid Interface Sci. 273 (2004) 155.
126. K.M. Unruh et al., Melting and Freezing Behavior of Indium Metal in Porous Glasses, PHYSICAL REVIEW B 48 (1993) 9021.
127. K. Arnold et al., Matrix-Imposed Stress-Induced Shifts in the Photoluminescence of Single-Walled Carbon Nanotubes at Low Temperatures, Nano Lett. 4 (2004) 12.
128. A. Kadir et al., The Role of Hydrostatic Stress in Determining the Bandgap of InN Epilayers, Appl. Phys. Lett. 91 (2007) 111913.
129. T. Gryba et al., Acoustooptic Modulator Using the Stark Effect and Stress-Induced Bandgap Changes, IEEE J. QUANTUM ELECT. 35 (1999) 153.
130. A. Murali et al., Synthesis and Characterization of Indium Oxide Nano-particles, Nano Lett. 1 (2001) 287.
131. M. Quinten et al., Absorption and elastic scattering of light by particle aggregates, APPLIED OPTICS 32 (1993) 6173.
132. S.K. Ghosh et al., Interparticle Coupling Effect on the Surface Plasmon Resonance of Gold Nano-particles: From Theory to Applications, Chem. Rev. 107 (2007) 4797.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔