跳到主要內容

臺灣博碩士論文加值系統

(44.222.189.51) 您好!臺灣時間:2024/05/20 15:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:薛力銘
研究生(外文):Hsueh, Lee-Ming
論文名稱:奈米尺度下Bi-Sn共晶合金之凝固機制探討
論文名稱(外文):A Study on Nanoscale Solidification Mechanism of Bi-Sn Eutectic Alloy
指導教授:朝春光劉增豐
指導教授(外文):Chao, Cheun-GuangLiu, Tzeng-Feng
學位類別:碩士
校院名稱:國立交通大學
系所名稱:材料科學與工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:60
中文關鍵詞:奈米尺度方向性凝固Bi-Sn共晶陽極氧化鋁
外文關鍵詞:nanoscaleunidirectional solidificationBi-SneutecticAAO
相關次數:
  • 被引用被引用:0
  • 點閱點閱:278
  • 評分評分:
  • 下載下載:18
  • 收藏至我的研究室書目清單書目收藏:0
本實驗使用20nm、45nm、170nm之陽極氧化鋁(AAO)為基板;利用真空壓鑄法由不同直徑、壓鑄溫度與冷卻方式製備之Bi-43Sn共晶奈米線,研究奈米尺度下Bi-43Sn共晶合金的凝固行為。在本研究中由TEM分析,Bi-43Sn共晶奈米線成節狀結構,乃由於高G/V值,使其成方向性凝固且因AAO的孔徑非常小,對流被抑制而形成富鉍及富鋁相交錯的節狀組織。隨奈米線直徑改變及壓鑄溫度與冷卻方式改變,其仍為節狀結構沒有太大變化,因這些製程參數改變對G/V值影響不大;由DSC分析顯示共晶溫度随奈米線直徑減小而下降;由EDS分析觀察到Bi-rich相的Bi與Sn-rich相中的Sn之成分會隨著Bi-43Sn奈米線壓鑄溫度的提高而降低。
摘要 I
ABSTRACT II
致謝 III
目錄 IV
表目錄 VII
圖目錄 VIII

第一章 緒論 1
第二章 文獻回顧 2
2-1凝固理論 2
2-1-1成核 2
2-1-2成長 3
2-2方向性凝固 4
2-2-1二元共晶系統與方向性凝固 6
2-2-2二元包晶系統與方向性凝固 7
2-3奈米晶體 10
2-3-1奈米共晶粒子 10
2-3-1 奈米線 11
2-4 奈米尺寸效應 13
2-4-1熔點 13
2-4-2奈米相圖 14
第三章 實驗方法 18
3-1陽極氧化鋁基板製備 18
3-2真空封管熔煉 20
3-3壓鑄鉍-錫共晶奈米線 20
3-4特性分析 24
3-4-1 X光繞射分析 24
3-4-2掃瞄式電子顯微鏡分析 24
3-4-4穿透式電子顯微鏡分析 25
3-4-5能量散射光譜儀 26
3-4-6示差掃描熱卡機 26
第四章 結果與討論 27
4-1 陽極氧化鋁基板 27
4-2 塊材分析 30
4-2-1表面形貌、組成成分 30
4-2-2 熱性質 30
4-2-3 X光繞射分析 30
4-3 不同直徑之Bi-43Sn奈米線分析 34
4-3-1形貌、結構與成分 34
4-3-2 X光繞射分析 35
4-3-3 熱性質分析 35
4-4 製程參數對Bi-43Sn奈米線之影響 44
4-4-1壓鑄溫度之影響 44
4-4-2冷卻方式之影響 44
4-5 Bi-43Sn奈米線之凝固機制探討 51
4-5-1單晶 51
4-5-2 節狀結構 51
第五章 結論 54
參考文獻 56


參考文獻

1. Yu, C., et al., "Growth Kinetics of Nickel Crystals in Nanopores." Cryst. Growth Des, Vol. 9, p. 3840-3843, 2009.
2. Zhang, G., et al., "Nanostructures for Thermoelectric Applications: Synthesis, Growth Mechanism, and Property Studies." Advanced Materials, Vol. 22, p. 1959-1962, 2010.
3. Law, M., et al., "Nanowire dye-sensitized solar cells." Nature Materials, Vol. 4, p. 455-459, 2005.
4. Elam, J., et al., "Conformal coating on ultrahigh-aspect-ratio nanopores of anodic alumina by atomic layer deposition." Chem. Mater, Vol. 15, p. 3507-3517, 2003.
5. Kovtyukhova, N., et al., "Layer-by-layer self-assembly strategy for template synthesis of nanoscale devices." Materials Science and Engineering: C, Vol. 19, p. 255-262, 2002.
6. Zhang, Z., J. Ying, and M. Dresselhaus, "Bismuth quantum-wire arrays fabricated by a vacuum melting and pressure injection process." Journal of Materials Research, Vol. 13, p. 1745-1748, 1998.
7. Zhang, Z., et al., "Processing and characterization of single-crystalline ultrafine bismuth nanowires." Chem. Mater, Vol. 11, p. 1659-1665, 1999.
8. Verhoeven, J.D., Fundamentals of physical metallurgy. 1975, N.Y.: John Wiley & Sons.
9. Chalmers, B., Principles of Solidification. 1982: Robert E. Krieger Publishing Company.
10. Mullins, W. and R. Sekerka, "Stability of a planar interface during solidification of a dilute binary alloy." Journal of Applied Physics, Vol. 35, p. 444, 1964.
11. 楊森 , 黃., 林鑫 ,周堯和, "定向凝固技術的研究進展." 兵器材料科學與工程, Vol. 2, p. 2000.
12. W. Kurz and D.J. Fisher, Fundamentals of solidification. 1992: Switzerland : Trans Tech Publications.
13. 林昱聖, 陳怡君, and 趙隆山, "束縛與非束縛成長之凝固實驗分析." 鑄造工程學刊, Vol. 143, p. 11-24, 2009.
14. Jackson, K. and J. Hunt, "Lamellar and rod eutectic growth." AIME MET SOC TRANS, Vol. 236, p. 1129-1142, 1966.
15. Cadirli, E. and M. Gunduz, "The dependence of lamellar spacing on growth rate and temperature gradient in the lead-tin eutectic alloy." Journal of Materials Processing Technology, Vol. 97, p. 74-81, 2000.
16. Kaya, H., et al., "Effect of growth rate and lamellar spacing on microhardness in the directionally solidified Pb-Cd, Sn-Zn and Bi-Cd eutectic alloys." Journal of Materials Science, Vol. 39, p. 6571-6576, 2004.
17. Cadirli, E., H. Kaya, and M. Gunduz, "Effect of growth rates and temperature gradients on the lamellar spacing and the undercooling in the directionally solidified Pb-Cd eutectic alloy." Materials Research Bulletin, Vol. 38, p. 1457-1476, 2003.
18. Kaya, H., E. Cadirli, and M. Gunduz, "Eutectic growth of unidirectionally solidified bismuth-cadmium alloy." Journal of Materials Processing Technology, Vol. 183, p. 310-320, 2007.
19. Boettinger, W., "The structure of directionally solidified two-phase Sn-Cd peritectic alloys." Metallurgical and Materials Transactions B, Vol. 5, p. 2023-2031, 1974.
20. Trivedi, R., "Theory of layered-structure formation in peritectic systems." Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science, Vol. 26, p. 1583-1590, 1995.
21. Park, J.S. and R. Trivedi, "Convection-induced novel oscillating microstructure formation in peritectic systems." Journal of Crystal Growth, Vol. 187, p. 511-515, 1998.
22. Trivedi, R. and J.S. Park, "Dynamics of microstructure formation in the two-phase region of peritectic systems." Journal of Crystal Growth, Vol. 235, p. 572-588, 2002.
23. SGTE alloy database. 2004; Available from: http://www.crct.polymtl.ca/fact/documentation/SGTE/SGTE_Figs.htm.
24. Johnson, E., et al., "Nanoscale lead-tin inclusions in aluminium." Journal of Electron Microscopy, Vol. 51, p. S201, 2002.
25. Hagege, S., "Morphology, structure and thermal behaviour of small eutectic Pb-Cd inclusions in aluminium." Philosophical Magazine Letters, Vol. 74, p. 259-266, 1996.
26. Lee, J.G. and H. Mori, "In-situ observation of alloy phase formation in nanometre-sized particles in the Sn-Bi system." Philosophical Magazine, Vol. 84, p. 2675-2686, 2004.
27. Masuda, H., "Ordered Metal Nanohole Arrays Made by a Two-Step." Science, Vol. 268, p. 1466-1466, 1995.
28. Zhang, Z.B., et al., "Processing and characterization of single-crystalline ultrafine bismuth nanowires." Chemistry of Materials, Vol. 11, p. 1659-1665, 1999.
29. Chen, C.C., et al., "Fabrication of single-crystal tin nanowires by hydraulic pressure injection." Nanotechnology, Vol. 17, p. 367-374, 2006.
30. Bisrat, Y., et al., "Highly ordered uniform single-crystal Bi nanowires: fabrication and characterization." Nanotechnology, Vol. 18, p. 2007.
31. Chen, J.H., et al., "Microstructure and properties of Pb nanowires fabricated by casting." Japanese Journal of Applied Physics, Vol. 47, p. 4815-4819, 2008.
32. Qi, W., "Size effect on melting temperature of nanosolids." Physica B: Condensed Matter, Vol. 368, p. 46-50, 2005.
33. Zhang, Z., J. Li, and Q. Jiang, "Modelling for size-dependent and dimension-dependent melting of nanocrystals." Journal of Physics D: Applied Physics, Vol. 33, p. 2653, 2000.
34. Zhang, Z., M. Zhao, and Q. Jiang, "Melting temperatures of semiconductor nanocrystals in the mesoscopic size range." Semiconductor Science and Technology, Vol. 16, p. L33-L35, 2001.
35. Jiang, Q., S. Zhang, and M. Zhao, "Size-dependent melting point of noble metals." Materials Chemistry and Physics, Vol. 82, p. 225-227, 2003.
36. Zhao, M. and Q. Jiang, "Melting and surface melting of low-dimensional In crystals." Solid State Communications, Vol. 130, p. 37-39, 2004.
37. Wang, X.W., et al., "Size-dependent melting behavior of Zn nanowire arrays." Applied Physics Letters, Vol. 88, p. 2006.
38. Tanaka, T. and S. Hara, "Thermodynamic evaluation of binary phase diagrams of small particle systems." Zeitschrift Fur Metallkunde, Vol. 92, p. 467-472, 2001.
39. Hajra, J. and S. Acharya, "Thermodynamics and phase equilibria involving nano phases in the Cu-Ag system." Journal of Nanoscience and Nanotechnology, Vol. 4, p. 899-906, 2004.
40. Lee, J., et al., "Phase diagrams of nanometer-sized particles in binary systems." Jom, Vol. 57, p. 56-59, 2005.
41. Park, J. and J. Lee, "Phase diagram reassessment of Ag-Au system including size effect." Calphad, Vol. 32, p. 135-141, 2008.
42. Lee, J., J. Park, and T. Tanaka, "Effects of interaction parameters and melting points of pure metals on the phase diagrams of the binary alloy nanoparticle systems: A classical approach based on the regular solution model." Calphad, Vol. 33, p. 377-381, 2009.
43. Lee, B.-J., C.-S. OH, and J.-H. Shim, "Thermodynamics Assessments of the Sn-In and Sn-Bi System." Journal of Electronic Materials, Vol. 25, p. 983-991, 1996.
44. Moser, Z., W. Gasior, and J. Pstrus, "Surface tension measurements of the Bi-Sn and Sn-Bi-Ag liquid alloys." Journal of Electronic Materials, Vol. 30, p. 1104-1111, 2001.
45. Gasior, W., et al., "Surface tension and thermodynamic properties of liquid Ag-Bi solutions." Journal of Phase Equilibria, Vol. 24, p. 40-49, 2003.
46. Kattner, U., Bi-Sn System, N.I.o.S.a.T. Metallurgy Division, Editor. 2003.



連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top