(3.235.108.188) 您好!臺灣時間:2021/02/25 07:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:牛牧群
研究生(外文):Niu, Mu-Chun
論文名稱:溶劑對有機空間電荷限制電晶體之影響與超薄吸收層對有機太陽能電池之影響
論文名稱(外文):The influence of the solvent on the polymer space-charge-limited transistor and the influence of the extemely-thin absorber on the organic solar cell
指導教授:孟心飛
指導教授(外文):Meng, Hsin-Fei
學位類別:碩士
校院名稱:國立交通大學
系所名稱:物理研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:52
中文關鍵詞:超薄吸收層高沸點溶劑空間電荷限制電晶體載子遷移率
外文關鍵詞:extremely-thin absorberhigh-boiling-point solventspace-charge-limited transistorcarrier mobility
相關次數:
  • 被引用被引用:0
  • 點閱點閱:184
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文針對兩種重要的有機電子元件進行研究,這些元件分別是有機垂直式電晶體與有機太陽能電池。第一部份,我們針對目前較為成功的垂直式電晶體來進行研究,也就是空間電荷限制電晶體(space-charge-limited transistor , SCLT)。SCLT 之工作原理和真空管三極體相似,其結構是在有機二極體中埋入金屬基極控制垂直方向的電流。然而,目前有機材料過低的垂直載子遷移率,導致此元件的輸出電流密度約只有1 mA/cm^2。在本論文中,我們將使用高沸點溶劑搭配solvent annealing 慢乾製程來製備主動層,讓材料在孔洞狀基極結構中的垂直載子遷移率從4×10-5 cm^2/V-s 大幅地提升到 2×10-3 cm2/V-s。此元件之輸出電流密度可高達100 mA/ cm^2 且仍維持其良好的開關比及電流增益。另外此元件可簡單的擴大其主動區至1cm^2 來輸出大電流供高功率元件使用。第二部份,我們藉由在N-type 和P-type 半導體的介面間放入吸收層,實現了一種新的有機太陽能電池概念。當入射光被吸收時,激子會在吸收層產生並拆解為電子-電洞對,接著經過傳輸通道被收集至電極導出。N-type 和P-type 半導
體分別為ZnO 及poly(9,9’-dioctylfluorene-co-N(4-butylphenyl)diphenylamine(TFB),而Lead phthalocyanine (PbPc)則是做為吸收層。我們為了瞭解PbPc 和TFB 厚度對太陽能電池之特性的影響,於是將這兩種材料的厚度在相同結構下做了許多測試。最後我們發現在PbPc 厚度50 nm,TFB 厚度20 nm 時元件可表現出最佳的外部量子效應。
This work focus on the development of two important organic electronic devices those are organic vertical transistor and organic solar cell. In the first part, the influence of the solvent on the electrical characteristics of the polymer vertical transistor, namely polymer space-charge-limited transistor, is investigated. The space-charge-limited transistor (SCLT) is a solid-state version of vacuum tube triode, with a metal grid embedded in an organic diode to control its vertical current.However, so far its current density is only 1 mA/cm2 due to the poor vertical mobility of the polymer. In this dissertation we demonstrate that the polymer vertical mobility can be greatly enhanced by a slow drying process using high-boiling-point solvent, i.e. solvent annealing, in a textured surface with 200 nm scale defined by the base. The
vertical columns promote the chain alignment of poly(3-hexylthiophene-2,5-diyl) (P3HT) during the slow solvent annealing and result in an ordered structure unattainable in planar substrate. The vertical mobility is raised from 4×10-5 cm^2/V-s to 2×10-3 cm^2/V-s and the SCLT can deliver output current density as high as 100 mA/cm^2 while maintaining good current gain and on-off ratio. With such high current density 100 mA current output can be delivered by a 1cm2 active area which is very easy to fabricate with high reliability. In the second part, a new hybrid solar cell concept is realized by using a layer of absorber lies at the interface between an n-type semiconductor and p-type
semiconductor. The exciton, generated in the absorber as incident light is absorbed, transforms into a separated electron and hole pair and then driven through transport
channels to the collecting electrodes. The n-type and p-type semiconductor is ZnO and poly(9,9’-dioctylfluorene-co-N(4-butylphenyl)diphenylamine (TFB) respectively. Lead phthalocyanine (PbPc) is utilized as absorber. Various thickness of PbPc and TFB are tested in order to understand the influence of PbPc and TFB thickness on the solar cell characteristics. It is found that 50 nm PbPc and 20 nm TFB result in highest external quantum efficiency (EQE).

目錄
中文摘要---------------------------------------------------I
英文摘要-------------------------------------------------III
致謝-------------------------------------------------------V
目錄-------------------------------------------------------X
圖目錄----------------------------------------------------XI
表目錄---------------------------------------------------XII
第一章 緒論------------------------------------------------1
1-1 研究背景-----------------------------------------------1
1-2 研究動機-----------------------------------------------2
1-3 論文架構-----------------------------------------------4
第二章 有機材料簡介與元件操作原理--------------------------5
2-1 有機材料之特性與簡介-----------------------------------5
2-1-1 新穎結構空間限制電荷電晶體使用之有機材料-------------6
2-1-2 超薄吸收層太陽能電池所使用之有機材-------------------8
2-2 金屬-半導體接面---------------------------------------10
2-3 有機共軛高分子載子傳輸理論----------------------------13
2-3-1塊材限制與空間電荷限制電流理-------------------------13
2-3-2界面限制中的熱離子發射理論以及穿隧效-----------------14
2-4 真空管原理--------------------------------------------16
2-5 新穎結構空間電荷限制電晶體----------------------------17
2-6 有機太陽能電發電原理與結構----------------------------19
第三章 實驗製程-------------------------------------------20
3-1 有機二極體製程----------------------------------------21
3-2 新穎結構空間電荷限制電晶體製程------------------------22
3-3 材料分析與驗證樣品之製程------------------------------24
3-4 超薄吸收層有機太陽能電池的製程------------------------25
第四章 溶劑對有機空間電荷限制電晶體之影響-----------------26
4-1 不同溶劑與製程條件對P3HT 二極體的影響-----------------27
4-2 不同溶劑與製程條件對P3HT空間電荷限制電晶體的影響------29
4-3 材料分析以及結果驗證----------------------------------35
第五章 超薄吸收層對有機太陽能電池的影響-------------------43
第六章 結論和未來展望-------------------------------------47
6-1 結論--------------------------------------------------48
6-2 未來展望----------------------------------------------49
參考文獻--------------------------------------------------51
_ [1] H. Shirakawa, E. J. Louis, A. G. MacDiarmid, C. K. Chiang, and A. J. Heeger, J. Chem. Soc. ,Chem.Commun. 578 (1977)
_ [2] S.R.Tseng, S.C.Lin, H.F. Meng*, H.H. Liao, C.H.Ye, H.C. Lai, S.F. Horng, Appl. Phys. Lett. 2006, 88, 163501
_ [3] T. Someya, T. Sekitani, S. Iba, Y. Kato, H. Kawaguchi, T. Sakurai, Porc. Natl. Acad. Sci. 2004, 101, 9966.
_ [4] T. Sekitani, H. Nakajima, H. Maeda, T. Fukushima, T. Aida, K. Hata, T.Someya, Nat. Mater. 2009, 8, 494.
_ [5] K. Kudo, D.X. Wang, M. Iizuka, S. Kuniyoshi, K. Tanaka, Thin Solid Films 1998, 331, 51.
_ [6] K. Fujimoto, T. Hiroi, K. Kudo, M. Nakamura, Adv. Mater. 2007, 19, 525.
_ [7] Y.C. Chao, H.F. Meng, S.F. Horng, Appl. Phys. Lett. 2006, 88, 223510.
_ [8] Y. C. Chao, H. F. Meng, S. F. Horng, C. S. Hsu, Org. Electron. 2008, 9, 310.
_ [9] Y. C. Chao, Y. C. Lin, M. Z. Dai, H. W. Zan, H. F. Meng, Appl. Phys. Lett. 2009, 95, 203305.
_ [10] Y. C. Chao, C. Y. Chen, H. W. Zan, H. F. Meng, J. Phys. D: Appl. Phys. 2010, 43, 205101.
_ [11] Susmita Pal, Arun K. Nandi J. Appl. Polymer Sci. 2006, 6 , 101
_ [12] H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M. W. Langeveld-Voss, A. J. H. Spiering, R. A. J. Janssen, E.W. Meijer, P. Herwig, D. M. de Leeuw, Nature , 1999, 401, 685
_ [13] H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M. W. Langeveld-Voss, A. J. H. Spiering, R. A. J. Janssen, E. W. Meijer, Synth. Met. 2000, 111–112, 129
_ [14] D. H. Kim, Y. D. Park, Y. Jang, H. Yang, Y. H. Kim, J. I. Han, D. G. Moon, S. Park, T. Chang, C. Chang, M. Joo, C. Y. Ryu, K. Cho, Adv. Fun. Mat. 2005, 77-82 , 15
_ [15] Jiguang Dai, Xiaoxia Jiang, Haibo Wang, Donghang Yana Appl. Phy. Lett. 2007, 91, 253503
_ [16] N. F. Mott and D. Gurney. Electronic Processes in Ionic Crystals. Oxford,
_ [17] K. Kudo, S. Tanaka, M. Iizuka, and M. Nakamura, Thin Solid Films, 2003, 438, 330
_ [18] Y. Watanabe, and K. Kudo, Appl. Phys. Lett. 2005, 87, 223505
_ [19] K.P. Kim, A. Mohammed Hussain1, D.K. Hwang1, S.H. Woo, H.K. Lyu, S.H. Baek, Youngman Jang1, J.H. Kim, Jpn. J. Appl. Phys. 2009, 48, 021601
_ [20] G. Li, V. Shrotriya, J. Huang, Y. Yao, T.Moriarty, K. Emery, Y. Yang, Nat. Mater. 2005, 4, 864.
_ [21] J. S. Kim, Y. Park, D. Y. Lee, J. H. Lee, J. H, Park, J. K. Kim, K. Cho, Adv. Funct. Mater. 2010, 20, 540.
_ [22] P. J. Brown, D. S. Thomas, A. Kohler, J S. Wilson, J. S. Kim, C. M. Ramsdale, H. Sirringhaus, R. H. Friend, Phys. Rev. B 2003, 67, 064203.
_ [23] J. Clark, C. Silva, R. H. Friend, F. C. Spano, Phys. Rev. Lett. 2007, 98, 206406.
_ [24] F. C. Spano, J. Clark, C. Silva, R. H. Friend, J. Chem. Phys. 2009, 130, 074904.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
系統版面圖檔 系統版面圖檔