跳到主要內容

臺灣博碩士論文加值系統

(44.211.117.197) 您好!臺灣時間:2024/05/22 01:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳梅香
研究生(外文):Chern, Mei-Shiang
論文名稱:探討鷹架式網路形成科學議題課程對國小學生形成科學議題能力與科學探究能力之影響
論文名稱(外文):Explore the impact of scaffolding on web-based identifying scientific issue learning content on 6th grade students’ abilities of identifying scientific issue and inquiry
指導教授:佘曉清佘曉清引用關係
指導教授(外文):She, Hsiao-Ching
學位類別:碩士
校院名稱:國立交通大學
系所名稱:教育研究所
學門:教育學門
學類:綜合教育學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:152
中文關鍵詞:形成科學議題科學探究網路學習
外文關鍵詞:scientific issuescientific inquiryweb-based learning
相關次數:
  • 被引用被引用:17
  • 點閱點閱:491
  • 評分評分:
  • 下載下載:80
  • 收藏至我的研究室書目清單書目收藏:7
本研究結合多媒體網路環境,發展「網路形成科學性議題課程」,將國小六年級自然與生活科技課程以探究教學為主軸,透過鷹架式(scaffolding)形成科學議題課程與非鷹架式(Non- scaffolding)形成科學議題課程,進行實驗比較,企圖瞭解兩種不同教模式對學生形成科學議題能力、科學概念建構、科學推理能力之差異。同時針對兩組學生在網路的學習課程進行分析,以深入了解學生形成科學議題與科學探究能力之成長。
研究採用實驗研究法之準實驗設計,對象為新竹市某國小六年級四個班的學生。依研究設計分為二組教學模式,實驗組為鷹架式網路形成科學議題課程,共二個班63人,對照組為非鷹架式網路形成科學議題課程,共二個班60人。兩組學生進行五個單元十六個主題的網路形成科學議題課程與探究實驗,比較兩組學生在「形成科學議題能力測驗」「科學概念建構測驗」、「科學推理測驗」之前測、後測及追蹤測成績的差異,同時針對學生在兩種網路學習課程進行分析,以深入了解學生在形成科學議題、形成假設、找出變數、科學解釋能力等科學探究能力之成長比較。
結果顯示,在形成科學議題測驗,鷹架組顯著優於非鷹架組的學生;在科學概念建構測驗,鷹架組優於非鷹架組的學生,但未達顯著差異,從個別t檢定中可發現,兩組學生都能促進學習成效與學習的保留效果。在科學推理測驗,兩組學生後測成績皆有進步,鷹架組略優於非鷹架組的學生,但未達顯著差異。迴歸分析中發現,科學概念後測對形成科學議題後測最具解釋力。
其次在網路形成科學議題學習歷程方面:(一)在量化分析顯示,以單因子重複量數分析結果,鷹架組的學生在單元一到單元五的網路課程中,「形成科學議題」、「形成假設」、「找出變數」與「科學解釋」等面向的表現上均顯著優於非鷹架組的學生,各單元間也有呈現顯著的成長趨勢。在質性分析顯示,鷹架組較非鷹架組的學生能表現出較多「能辨識關鍵特徵(key feature)所形成的科學議題,有完整的操作變因與應變變因,可進行探究實驗」的高層級科學議題。也能表現較多「用科學原理原則做出結果的正確科學概念解釋」的高層級科學解釋。

This study was to explore the difference between scaffolding and non-scaffolding web-based learning on students’ concept construction, scientific reasoning, scientific inquiry ability and competencies in identifying scientific issues. A total of 123 6th graders recruited from four average-achievement classes of a middle school in Taiwan participated in this study. Sixty three of them received scaffolding web-based learning for three units, and the other sixty students received non-scaffolding web-based learning for three units as well. In addition to the learning from web-based environment, they also did inquiry activity at laboratory according to the question, hypotheses, variables, and design they formulate at web-based learning. They return to the web-based learning environment to provide their scientific explanations received from their inquiry activity.
The content dependent conception Test (CDCT), Scientific Reasoning Test (SRT) and content dependent PISA Test (CDPISA) were administered to all students before, directly after and after the eighth week of learning. The results indicated that scaffolding group’s students’ outperform than non-scaffolding group on CDCT, SRT and CDPISA and reach statistical significant difference level except SRT. For students’ web learning results, the following dimensions were analyzed: identifying scientific issues, identifying variables, formulate hypothesis and scientific explanation. All of these together were the measure for students’ inquiry ability performance. The result indicated that scaffolding group outperform than no-scaffolding group regardless identifying scientific issues, identifying variables, formulate hypothesis and scientific explanation. The qualitative analyses of identifying scientific issues and scientific explanation all indicated that scaffolding group performed more higher levels of identifying scientific issues and scientific explanations than to the non-scaffolding group.

中文摘要 ……………………………………………………………. i
英文摘要 ……………………………………………….…………… iii
誌 謝 ……………………………………………….…………… v
目 錄 ……………………………………………….…………… vii
表 目 錄 ……………………………………………….…………… ix
圖 目 錄 ……………………………………………….…………… xi
第一章 緒論..................................................................................... 1
第一節 研究背景與動機................................................................. 1
第二節 研究目的............................................................................. 3
第三節 研究問題與假說………………………............................. 5
第四節 名詞解釋............................................................................. 6
第五節 研究範圍與限制................................................................. 7

第二章 文獻探討............................................................................. 8
第一節 形成科學議題..................................................................... 8
第二節 科學探究............................................................................. 11
第三節 科學推理............................................................................. 18
第四節 鷹架理論............................................................................. 20
第五節 網路化科學學習…………………………......................... 24

第三章 研究設計.............................................................................. 27
第一節 研究對象.............................................................................. 27
第二節 研究設計.............................................................................. 28
第三節 研究流程.............................................................................. 29
第四節 研究工具.............................................................................. 31
第五節 教學設計.............................................................................. 40
第六節 資料蒐集與分析……………………………...................... 41

第四章 研究結果與討論.................................................................. 43
第一節 形成科學議題教學分析...................................................... 43
第二節 網路形成科學議題學習歷程分析...................................... 52

第五章 結論與建議.......................................................................... 91
第一節 結論與討論.......................................................................... 91
第二節 建議…….............................................................................. 94


參考文獻...................................................................................................... 96

附錄
附錄一 形成科學議題測驗…………………………………………...…. ..105
附錄二 科學概念測驗…………………………………………………….. 120
附錄三 科學推理測驗…………………………………………………….. 133
附錄四 教學活動設計…………………………………………………….. 141
附錄五 鷹架活動設計……………………………………………………. .145

一、中文部份
丁素雯(2008)。以探究式教學提升學生探究能力與學習動機之行動研究。國立彰化師範大學科學教育研究所碩士論文,未出版,彰化市。
王美芬、熊召弟(1995)。國民小學自然科教材教法。台北市:心理出版社。
王翠妃(2008)。探究教學對國中資優學生創造力和科學推理之影響。國立彰化師範大學科學教育研究所碩士論文,未出版,彰化市。
王靜如、周金燕與蔡瑞芬(2003)。科學本質與科學探究。屏東教大科學教育,23,3-17。
谷瑞勉(譯)(1999)。鷹架兒童的學習。臺北市:心理出版社有限公司。
林煥祥(2009)。科學素養的評量。科學發展,438,66-69。
林煥祥、李暉、林素微與劉聖忠(2008)。臺灣參加 PISA 2006成果報告。行政院國家科學委員會(計畫編號:NSC 95-2522-S-026-002)。
林曉芳(2009)。影響中學生科學素養差異之探討:以臺灣、日本、南韓和香港在PISA2006資料為例。教育研究與發展期刊,5(4),77-108
洪振方(2003)。探究式教學的歷史回顧與創造性探究模式之探討。高雄師大學報,15,641-662。
張春興(1996)。教育心理學。台北:東華書局。
教育部(2003)。國民中小學九年一貫課程總綱綱要。台北市:教育部。
教育部和國科會(2002)。科學教育白皮書。台北市:教育部。
莊明樺(2009)。探討純粹比對類比與傳達屬性類比網路課程對國小學生科學概念建構與類比推理能力之影響。國立交通大學教育研究所碩士論文,未出版,新竹市。
陳倩嫻(2008)。探討數位論證學習課程對中學生科學概念建構與論證能力之影響。國立交通大學教育研究所碩士論文,未出版,新竹市。
黃台珠等 (2002)。促進理解之科學教學。台北:心理出版社。
楊秀停、王國華(2007)。實施引導式探究教學對於國小學童學習成效之影響。科學教育學刊, 15(4), 439-459。
謝州恩、吳心楷(2005)。探究情境中國小學童科學解釋能力成長之研究。師大學報。50(2),55-84。

二、英文部份
Abd-El-Khalick, F., & Akerson, V. L. (2004). Learning as conceptual change: Factors mediating the development of preservice elementary teachers' views of nature of science. Science Education, 88(5), 785-810.
Aleven, V. A. W. M. M., & Koedinger, K. R. (2002). An effective metacognitive strategy: Learning by doing and explaining with a computer-based cognitive tutor. Cognitive Science, 26, 147–179.
American Association for the Advancement of Science (AAAS) (1989). Science for all Americans: A project 2061 report on literacy goals in science, mathematics and technology. Washington, DC: AAAS.   
Anderson, R. C., Armbruster, B. B., & Roe, M. (1990). Improving the education of reading teachers. Daedalus, 119, 187-210.
Anderson, R. D. (2002). Reforming science teaching: What research says about inquiry? Journal of Science Teacher Education, 13(1), 1-12.
Ashcraft, P. G. (2006). A comparison of student understanging of seasons using inquiry and didactic teaching methods. AIP Conference Proceedings, 818, 85-88.
Azevedo, R., Cromley, P. G. & Seibert, D. (2004). Does adaptive scaffolding facilitate students’ ability to regulate their learning with hypermedia. Contemporary Educational Psychology 29, 344–370.
Crawford, B. A., Zembal-Saul, C., Munford, D., & Friedrichsen, P. (2005). Confronting prospective teachers’ ideas of evolution and scientific inquiry using technology and inquiry-based tasks. Journal of Research in Science Teaching, 42, 613–637.
Beed, P., Hawkins, M., & Roller, C. (1991). Moving learners toward independence: The power of scafforded instruction. The reading teacher, 44(9), 648-655.
Blank, L. M. (2000). A metacognitive learning cycle: A better warranty for student understanding? Science Education, 84, 486–506.
Brewer, W. F. (1991). Children’s theories v.s Scientific theories: Difference in Reasoning or Difference in Knowledge. In R. R. Hoffman, & D. S. Palermo, (Eds.), Cognition and the Symbolic Processes: Applied and Ecological Perspectives (pp. 209-231). Lawerence Erlbaum Associates Publishers.
Brown, A. L.,&Smiley, S. S. (1977). Rating the importance of structural units of prose passages: A problem of metacognitive development. Child Development, 48, 1-8.
Colburn, A. (2000). An inquiry primer. Science Scope, 23, 42-44.
Cornell, R. & Martin, B. L. (1997). The role of motivation in web-based instruction. In B. H. Khan (Ed.), Web-based Instruction (pp. 93-100). Englewood Cliffs, N. J: Educational Technology Publication.
Crawford, B. A. (2000). Embracing the essence of inquiry: New roles for science teachers. Journal of Research in Science Teaching, 37(9), 631-645.
Davis, E. A., & Miyake, N. (2004). Explorations of scaffolding in complex classroom systems. The Journal of the Learning Science, 13, 265-272.
DeBoer, G. E. (2000). Scientific literacy: Another look at its historical and contemporary meanings and its relationship to science education reform. Journal of Research in Science Teaching, 37(6), 582-601.
Derry, S. J., Hmelo-Silver, C. E., Nagarajan, A., Chernobilsky, E., & Beitzel, B. (2006). Cognitive transfer revisited: Can we exploit new media to solve old problems on a large scale? Journal of Educational Computing Research, 35, 145–162.
Driver, R., & Oldham, V. (1986). A constructivist approach to curriculum development in science. Studies in Science Education, 13, 105-122.
Driver, R., Asoko, H., Leach, J., Mortimer, E., & Scott, P. (1994). Constructing scientific knowledge in the classroom. Educational Researcher, 23(7), 5-12.
Driver, R., Leach, J., Millar, R., & Scott, P. (1995). Young peoples’ images of science. Milton Keynes: Open University Press.
Duschl, R. A., & Osborne, J. (2002). Support and promoting arguementation discourse in science education. Studies in Science Education, 38, 39-72.
Ertepinar, H., & Geban, Ö. (1996). Effect of instruction supplied with the investigative-oriented laboratory approach on achievement in a science course. Educational Research, 38, 333-341.
Flavell, J. H. (1979). Metacognition and cognitive monitoring: A new area of cognitive-developmental inquiry. American Psychologist, 34(10), 906-911.
Furtak, E. M. (2006). The problem with answers: An exploration og guided scientific inquiry teaching. Science Education, 90, 453-467.
Ge, X., & Er, N. (2005). An online support system to scaffold real-world problem
solving. Interactive Learning Environments, 13(3), 139-157.
Ge, X., Chen, C. H., & Davis, K. A. (2005). Scaffolding novice instructional designers’
problem-solving processes using question prompts in a web-based learning environment. Journal of Educational Computing Research, 33(2), 219-248.
Gibson, H. L., & Chase, C. (2002). Longitudinal impact of an inquiry-based science program on middle school students' attitudes toward science. Science Education, 86, 693 - 705
Herron, M. D. (1971). The nature of scientific enquiry. The School Review, 79, 171-212.
Hmelo-Silver, C. E., Duncan, R. G., & Clark, (2007). Scaffolding and achievement in problem-based and inquiry learning: A response to kirschner, sweller, and clark (2006) . educational psychologist, 42(2) , 99-107.
Hofstein, A ., Navon, o., Kipnis, M., & Rachel, M.N. (2005). Developing students’ ability to ask more and better questions resulting from inquiry-type Chemistry Laboratories. Journal of research science teaching. 42(7), 791-806.
Hogan, K., Nastasi, B. K., & Pressley, M. (2000). Discourse patterns and collaborative scientific reasoning in peer and teacher-guided discussions. Cognition and instruction, 17(4), 379-432.
Kanari, Z., & Millar, R. (2004). Reasoning from data: How students collect and interpret data in science investigations. Journal of Research in science teaching, 41,748-769.
Karplus, R., & Their, H. D. (1967). A new look at elementary school science: Science curriculum improvement study. Chicago, Rand Mcnally & Company.
Kauffman, D. F. (2004). Self-regulated learning in web-based environments: Instructional
tools designed to facilitate cognitive strategy use, metacognitive processing, and motivational beliefs. Journal of Educational Computing Research, 30(1), 139-161.
Keys, C. W. (1995). An interpretive study of students’ use of scientific resoning during a collaborative report writing intervention in ninth grade general science. Science education, 79, 415-435.
Keys, C.W., & Bryan, L.A. (2000) Co-constructing inquiry-base science with teachers: Essential research for lasting reform. Journal of Research in Science Teaching, 38, 6.
Kuhn, D. (1993). Science argument: implications for teaching and learning scientific thinking. Science Education, 77(3), 319-337.
Land, S. & Greene, B. (2000). Project-based learning with the World Wide Web: A qualitative study of resource integration. Educational Technology Research Development 48(3), 61–78.
Lawson, A. E. (1987). Hofstein and Mandler's use and interpretations of the Lawson test of formal reasoning. Journal of Research in Science Teaching, 24(7), 683-686.
Lawson, A. E., Abraham, M. R., & Renner, J. W. (1989). A theory of instruction: Using the learning cycle to teach science concepts and thinking skills. NARST Monograph, Number one.
Lee, H. S., & Songer, N. B. (2004). Longitudinal knowledge development: Scaffolds for Inquiry. Paper presented at the annual meeting of the American Educational Research Association, San Diego, CA.
Lee, C.Q., & She, H.C. (in press). Facilitating students' conceptual change and scientific reasoning involving the unit of combustion. Research in Science Education.
Liao, Y. W., & She, H. C. (2009). Enhancing eight grade students’ scientific conceptual change and scientific reasoning through a web-based learning program. Educational Technology & Society, 12(4), 228-240.
Lisa, M. H. (2002). Defining Inquiry: Exploring the many types of inquiry in the science classroom. The Science Teacher, 69(2), 34-37.
McNeill, K. L., Lizotte, D. J., Krajcik, J., & Marx, R. W. (2006). Supporting students' construction of scientific explanations by fading scaffolds in instructional materials. Learning Sciences, 15(2), 153-191.
National Research Council (1996). National science education standards. Washington DC: National Academy Press.
National Research Council (2000). Inquiry and national science education standards. Washington, DC: National Academy Press.
Nussbaum, M. E. (2002). Scaffolding argumentation in the social studies classroom. Social Studies, 93(3), 79-84.
OECD (2006). Assessing scientific, reading and mathematical literacy: A framework for PISA 2006. Paris: OECD.
OECD, 2007, PISA 2006: Science Competencies for Tomorrow’s World, Vol. 1 – Analysis. Paris: OECD.
OECD, 2007, PISA 2006: Science Competencies for Tomorrow’s World, Vol. 2 – Data. Paris: OECD.
Paris, S. G. & Winogard, P. (1990). How metacognition can promote academic learning and instruction, chapter 1, page 15-51. In B. F. Jones, & L. Idol, (Eds). Dimensions of thinking and cognitive instruction. Hillsdale, NJ: Erlbaum.
Petros, G. (2004). From the general to the situated: three decades of metacognition. International Journal of Science Education, 26, 365-383.
Piaget, J. (1962). Play, dreams, and imitation in childhood. New York: Norton.
Puntambekar, S., & Hu¨bscher, R. (2005). Tools for scaffolding students in a complex learning environment: What have we gained and what have we missed? Educational Psychologist, 40, 1–12.
Quintana, C. , Reiser, B. J. , Davis, E. A. , Krajcik, J. , Fretz, E. andDuncan, R. G. (2004) . A scaffolding design framework for software to support science inquiry. Journal of the Learning Sciences, 13 , 337-386.
Ritchie, S. M., & Rigano D. L. (1996). Laboratory apprenticeship through a student research project. Journal of research in science teaching, 33(6), 799-815.
Rogoff, B. (1990). Apprenticeship in thinking: Cognitive development in social context. New York: Oxford University Press.
Rosenshine, B., & Meister, C. (1992). The use of scaffolds for teaching higher-level cognitive strategies. Educational Leadership, 49(7), 26-33.
Ryder, J., Leach, J., & Driver, R. (1999). Undergraduate science students’ images of science. Journal of Research in Science Teaching, 36, 201-219.
Schwab, J. (1960). What do scientists do? Behavioral Science, 5, 1-27.
Schwab, J. (1962). The teaching of science as enquiry. In the teaching of science (pp.1-103). Cambridge, MA: Harvard University Press.
She, H. C., & Liao, Y. W. (2010). Bridging scientific reasoning and conceptual change through Adaptive Web-based Learning. Journal of Research in Science Teaching, 47(1), 99-119.
She, H. C., & Lee, C. Q. (2008). SCCR digital learning system for scientific conceptual change and scientific reasoning. Computers & Education, 51, 724-742.
So, W. W. M. (2003). Learning Science through investigations: An experience with Hong Kong Primary School Children. International Journal of Science and Mathematics Education, 1, 175-200.
Tamir, P. & Lunetta, V. N. (1981). Inquiry-related tasks in high school science laboratory handbooks. Science Education, 65, 477-484.
Tuan, H. L, Chin, C. C., Tasi, C. C & Cheng, S. F. (2005). Investigating the effectiveness of inquiry instruction on the motivation of different learning styles students. International Journal of Science and Mathematics Education, 3, 541-566.
Tytler, R., & Peterson, S. (2003). Tracing young children’s scientific reasoning. Research in science education, 33, 433-465.
Vosniadou, S. & Ortony, A. (1989). Similarity and analogical reasoning. New York: Cambridge University Press.
Vosniadou, S., & Brewer, W. F. (1987). Theories of knowledge restructuring in development. Review of educational research, 57, 51-67.
Vosniadou, S., & Brewer, W. F. (1992). Mental models of the earth: A study of conceptual change in childhood. Cognitive Psychology, 24, 535-585.
Wenning, C. (2005). Levels of inquiry: Hierarchies of pedagogical practices and inquiry processes. Journal of Physics Teacher Education Online, 2(3), 3–11.
Wenning, C. (2007). Assessing inquiry skills as a component of scientific literacy. Journal of Physics Education Online, 4(2), 21–24.
White, B. Y., & Frederiksen, J. R. (1998). Inquiry, modeling, and metacognition: making science accessible to all students'. Cognition and Instruction, 16, 3-118.
Wideen, M. F. (1975). Comparison of outcomes for science-A process approach and traditional science teaching for third, fourth, fifth, and sixth grade classes: A product evaluation. Journal of research in science teaching, 2(1), 31-39.
Wood, D., Bruner, J., & Ross, G. (1976). The role of tutoring in problem-solving. Journal of Child Psychology and Psychiatry, 17, 89-100.

Yeh, K. H., & She, H. C. (2010). On-line synchronous scientific argumentation learning: nurturing students’ argumentation ability and conceptual change in science context. Computers and Education. 55(2), 586-602.
Yerk, R. K. (2000). Lower track science students’ argumentation and open inquiry instruction. Journal of Research in Science Teaching, 37(8), 807-838.
Yu, W. F., She, H. C., & Lee, Y. M. (2010). The effects of a web-based/non web-based problem solving instruction and high/low achievement on students’ problem solving ability and biology achievement.Innovations in Education and Teaching International.
Zimmerman, C. (2000). The development of scientific resoning skills. Developmental Review, 20, 99-149.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top