|
Chen, Y.-H. (2009). Weighted Breslow-type estimator and maximum likelihood estimation in semiparametric transformation models. Biometrika, 96, 591–600. Chen, Y.-H. (2010). Semiparametric marginal regression analysis for dependent competing risks under an assumed copula. J. R. Statist. Soc. B, 72, 235 – 251. Clayton, D. G. (1978). A model for association in bivariate life tables and its application in epidemiological studies of familial tendency in chronic disease incidence. Biometrika, 65, 141–151. Ghosh, D. and Lin, D. Y. (2003). Semiparametric Analysis of Recurrent Events Data in the Presence of Dependent Censoring. Biometrics, 59, 877-885. Farewell, V. T. (1982). The use of mixture models for the analysis of survival data with long-term survivors. Biometrics; 38, 1041–1046. Farewell, V. T. (1986). Mixture Models in Survival Analysis: Are They Worth the Risk? The Canadian Journal of Statistics, 14, 257-262 Frank. M. J. (1979). On the simulataneous associativity of and . Aequationes Mathematicae, 19, 194-226. Haugaard, P. (1986). A class of multivariate failure time distributions. Biometrika, 73, 671-678. Kalbfleisch, J. D. and Prentice, R. L. (1980). The Statistical Analysis of Failure Time Data. New York: Wiley. Kuk, A. Y. C. and Chen, C. H. (1992). A mixture model combining logistic regression with proportional hazards regression. Biometrika 79, 531-541. Li, C.-S. and Taylor, J. M. G. (2002). A semi-parametric accelerated failure time cure model. Statistic in Medicine, 21, 3235-3247. Lin, D. Y., Wei, L. J., and Ying, Z. (1998). Accelerated failure time models for counting processes. Biometrika 85, 605- 618. Lu, W. and Ying, Z. (2004). On semiparametric transformation cure models. Biometrika, 91, 331-343. Maller, R. A., Zhou, X. (1996). Survival Analysis with Long-term Survivors. Wiley. Parzen, M. I., Wei, L. J., and Ying, Z. (1994). A resampling method based on pivotal estimating functions. Biometrika 81, 341-350. Peng Y, Dear, K. B. G., Denham, J. W. (1998). A generalized F mixture model for cure rate estimation. Statistics in Medicine; 17:813–830. Peng Y. and Dear, K. B. G. (2000). A Nonparametric Mixture Model for Cure Rate Estimation. Biometrics, 56, 237-243. Ritov, Y. ( 1990). Estimation in a linear regression model with censored data. Annals of Statistics; 18, 303–328. Sy, J. P. and Taylor, J. M. G. (2000). Estimation in a Cox Proportional Hazards Cure Model. Biometrics, 56, 227-236. Wei, L. J. ( 1992). The accelerated failure time model: a useful alternative to the Cox regression model in survival analysis (Disc: P1881–1885). Statistics in Medicine, 11, 1871–1879. Yamaguchi, K. (1992). Accelerated failure-time regression models with a regression model of surviving fraction: an application to the analysis of ‘permanent employment’ in Japan. Journal of the American Statistical Association; 87, 284–292. Ying, Z. (1993). A large sample study of rank estimation for censored regression data. Annals of Statistics, 21, 76-99. Zhang, J. and Peng, Y. (2007). A new estimation method for the semiparametric accelerated failure time mixture cure model. Statistic in Medicine, 26, 3157-3171. Zeng, D. & Lin, D. Y. (2006). Efficient estimation of semiparametric transformation models for counting processes. Biometrika, 93, 627–40.
|