(3.235.108.188) 您好!臺灣時間:2021/02/28 00:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:許秋婷
研究生(外文):Kor, Chew-Teng
論文名稱:治癒模式之半母數迴歸分析
論文名稱(外文):Semi-parametric Regression Analysis in Presence of Non-susceptibility
指導教授:王維菁王維菁引用關係
指導教授(外文):Wang, Wei-Jing
學位類別:博士
校院名稱:國立交通大學
系所名稱:統計學研究所
學門:數學及統計學門
學類:統計學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:英文
論文頁數:84
中文關鍵詞:混合模式不受感染體質補插法半母數線性迴歸線性轉換模式鞅估計函數對數秩統計量競爭風險
外文關鍵詞:Transformation modelMartingaleMixture modelNon-susceptibiblityCompeting riskEMLogistic regressionLinear regression modelLatency distributionLog-rank statistic
相關次數:
  • 被引用被引用:0
  • 點閱點閱:304
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:22
  • 收藏至我的研究室書目清單書目收藏:0
本論文針對存活資料,考慮“不受感染體質”(nonsusceptibility)者之存在,在混合模式架構下提出半母數迴歸分析方法。我們採用邏輯斯模式分析解釋變數與“發病與否”的關係。針對受感染體質者之“潛在發病時間”,我們探討兩類迴歸模式之推論問題。第一類模式包含常見的加速失敗模式和位移模式,我們利用計數程序之機率性質以建構估計函數,並進一步提出模式選取方法。第二類為線性轉換模式,包含等比風險模式與等比勝負比模式。我們採用概似函數法做為參數估計的原則,除了分析獨立設限的情況外,並進一步提出當存在競爭風險時,如何修正模式假設與推論方法。兩個研究方向都利用 EM 的技巧,以補插法處理感染體質不確定之觀測值。我們透過模擬實驗評估所提出方法在有限樣本下之表現。
In this thesis, we consider semiparametric regression analysis for survival data in presence of non-susceptibility or cure. The mixture framework is adopted in analysis of such data. The incidence rate is assumed to follow the logistic regression model and the latency distribution is studied under two types of semiparametric regression models. One class refers to the semi-parametric linear regression model which includes the AFT and location-shift models as special cases. We propose estimating functions and also a model checking procedure based on properties of counting processes. The other class is known as transformation models which contain the proportional hazards model and proportional odds model. The likelihood principle is adopted for parameter estimation. We examine two situations of independent and dependent censoring respectively. In both research directions, the principle of EM is applied to handle uncertain susceptibility status. Simulation results are provided to examine the finite-sample properties of the proposed methods.
1 Introduction 1
1.1 Literature background 1
1.2 Outline of the thesis 2
2 Literature Review for Semi-parametric Linear Models with Cure 4
2.1 Overview 4
2.2 M-Estimation by Li & Taylor (2002) 7
2.3 Log-rank type Estimation by Zhang & Peng (2007)8
2.4 Sketch of Numerical Algorithm for EM-type Estimation 9
3 Proposed Approach for Semiparametric Linear Models 11
3.1 Martingale estimating function based on complete data 11
3.2 The proposed estimating functions 12
3.3 Large sample analysis 13
3.4 Numerical algorithm and variance estimation 17
3.4.1 Re-sampling based on bootstrap approach 17
3.4.2 Re-sampling based on pivotal estimating function 18
3.5 Model Checking 20
3.6 Simulation analysis 22
3.6.1 Data generation 22
3.6.2 Simulation results 22
4 Literature Review for Transformation Models with Cure 25
4.1 Background 26
4.2 Different model expressions 26
4.3 Likelihood approach under the PH model 26
4.4 Moment approach for the class of transformation models 29
5 Proposed Approach for Transformation Cure Model under Independent Censoring 32
5.1 Model assumptions 32
5.2 Likelihood analysis for complete data 33
5.3 Imputation for handling missing data 36
5.4 Numerical algorithms 37
5.5 Simulation analysis 37
5.5.1 Data generation 37
5.5.2 Simulation results 38
6 Proposed Approach for Transformation Cure Model Under Dependent Censoring 40
6.1 Model assumptions 40
6.2 Imputation under the new models 41
6.3 Likelihood analysis under dependent censorship 42
6.4 Score equations under dependent censorship 45
6.5 Numerical algorithm 49
6.6 Simulation analysis 50
6.6.1 Data generation 50
6.6.2 Simulation results 52
Conclusion 53
References 54
Appendix 56
Tables and figures 69
Chen, Y.-H. (2009). Weighted Breslow-type estimator and maximum likelihood estimation in semiparametric transformation models. Biometrika, 96, 591–600.
Chen, Y.-H. (2010). Semiparametric marginal regression analysis for dependent competing risks under an assumed copula. J. R. Statist. Soc. B, 72, 235 – 251.
Clayton, D. G. (1978). A model for association in bivariate life tables and its application in epidemiological studies of familial tendency in chronic disease incidence. Biometrika, 65, 141–151.
Ghosh, D. and Lin, D. Y. (2003). Semiparametric Analysis of Recurrent Events Data in the Presence of Dependent Censoring. Biometrics, 59, 877-885.
Farewell, V. T. (1982). The use of mixture models for the analysis of survival data with long-term survivors. Biometrics; 38, 1041–1046.
Farewell, V. T. (1986). Mixture Models in Survival Analysis: Are They Worth the Risk? The Canadian Journal of Statistics, 14, 257-262
Frank. M. J. (1979). On the simulataneous associativity of and . Aequationes Mathematicae, 19, 194-226.
Haugaard, P. (1986). A class of multivariate failure time distributions. Biometrika, 73, 671-678.
Kalbfleisch, J. D. and Prentice, R. L. (1980). The Statistical Analysis of Failure Time Data. New York: Wiley.
Kuk, A. Y. C. and Chen, C. H. (1992). A mixture model combining logistic regression with proportional hazards regression. Biometrika 79, 531-541.
Li, C.-S. and Taylor, J. M. G. (2002). A semi-parametric accelerated failure time cure model. Statistic in Medicine, 21, 3235-3247.
Lin, D. Y., Wei, L. J., and Ying, Z. (1998). Accelerated failure time models for counting processes. Biometrika 85, 605- 618.
Lu, W. and Ying, Z. (2004). On semiparametric transformation cure models. Biometrika, 91, 331-343.
Maller, R. A., Zhou, X. (1996). Survival Analysis with Long-term Survivors. Wiley.
Parzen, M. I., Wei, L. J., and Ying, Z. (1994). A resampling method based on pivotal estimating functions. Biometrika 81, 341-350.
Peng Y, Dear, K. B. G., Denham, J. W. (1998). A generalized F mixture model for cure rate estimation. Statistics in Medicine; 17:813–830.
Peng Y. and Dear, K. B. G. (2000). A Nonparametric Mixture Model for Cure Rate Estimation. Biometrics, 56, 237-243.
Ritov, Y. ( 1990). Estimation in a linear regression model with censored data. Annals of Statistics; 18, 303–328.
Sy, J. P. and Taylor, J. M. G. (2000). Estimation in a Cox Proportional Hazards Cure Model. Biometrics, 56, 227-236.
Wei, L. J. ( 1992). The accelerated failure time model: a useful alternative to the Cox regression model in survival analysis (Disc: P1881–1885). Statistics in Medicine, 11, 1871–1879.
Yamaguchi, K. (1992). Accelerated failure-time regression models with a regression model of surviving fraction: an application to the analysis of ‘permanent employment’ in Japan. Journal of the American Statistical Association; 87, 284–292.
Ying, Z. (1993). A large sample study of rank estimation for censored regression data. Annals of Statistics, 21, 76-99.
Zhang, J. and Peng, Y. (2007). A new estimation method for the semiparametric accelerated failure time mixture cure model. Statistic in Medicine, 26, 3157-3171.
Zeng, D. & Lin, D. Y. (2006). Efficient estimation of semiparametric transformation models for counting processes. Biometrika, 93, 627–40.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔