跳到主要內容

臺灣博碩士論文加值系統

(44.212.94.18) 您好!臺灣時間:2023/12/07 14:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉嘉修
研究生(外文):Liu, Jia-Xiu
論文名稱:計算解剖學之腦區域擷取與對位演算法
論文名稱(外文):Brain Extraction and Registration Algorithms for Computational Anatomy
指導教授:陳永昇陳永昇引用關係
指導教授(外文):Chen, Yong-Sheng
學位類別:博士
校院名稱:國立交通大學
系所名稱:資訊科學與工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:98
語文別:英文
論文頁數:123
中文關鍵詞:計算解剖學型態計量學腦區域擷取仿射/非線性影像對位躁鬱症
外文關鍵詞:computational anatomymorphometrybrain extractionaffine/non-rigid registrationbipolar disorders
相關次數:
  • 被引用被引用:1
  • 點閱點閱:515
  • 評分評分:
  • 下載下載:61
  • 收藏至我的研究室書目清單書目收藏:0
計算解剖學(computational anatomy)廣泛運用非侵入式造影與影像處理方法於腦部結構分析上。為讓結構分析聚焦於腦組織並使腦結構空間標準化,腦區域擷取(brain extraction)與腦部結構對位(brain registration)在計算解剖學上扮演重要之角色。此兩項技術之準確性可提升結構分析之可信度,且其高執行效率可增加結構分析之處理容量進而提升統計效度。本論文針對快速且準確之腦部結構分析提出腦區域擷取與腦部對位演算法,並將所開發之影像處理技術運用於躁鬱症病患之腦纖維病理分析上。

在腦區域擷取方法中,本論文提出新的隱式形變模型(implicit deformable model)以期能有效的切割出腦部區塊。我們採用一組具區域影響性之Wendland輻射基底函數(radial basis function)以描述平滑的腦部曲線,並降低隱式形變模型之計算複雜度。在內力(internal force)與外力(external force)的交互作用下,輻射基底函數中心點將依次由初始位置逐漸推進至腦部邊界。由於不同視角下的腦部邊界曲率往往差異頗大,因此我們分別對矢狀面(sagittal view)與冠狀面(coronal view)的影像切片進行腦部區域擷取,並將不同切面的擷取結果整合以達到互補之效果。利用Internet Brain Segmentation Repository兩組測試影像所進行的效能評估結果,顯示本論文所提出的腦部擷取技術較Brain Surface Extractor、Brain Extraction Tool、Hybrid Watershed Algorithm與Model-based Level Set等方法有更佳的準確性與強健性(robustness)。

在腦結構影像對位方面,我們藉由影像導數(image derivatives)所得到的腦結構資訊,以仿射轉換(affine transformation)與非線性形變模型建立測試影像與目標影像間的空間對應關係。利用腦結構方向性之不同與腦重心位置之差異可估計一組旋轉角度與位移量,以作為仿射對位的初始值。承續仿射對位之空間對應結果,所提出的非線性方法階層式的將Wendland輻射基底函數佈置於具顯著腦結構的區域上以描述影像的形變,仿射轉換與非線性形變均以階層式之影像解析度進行影像相似度之最佳化。一般而言,非線性最佳化(nonlinear optimization)結果之優劣深受初始值之影響。而本論文所提出之方法能有效的估計仿射對位與非線性對位的初始空間對應關係。運用多組高解析度與低解析度影像之效能評估結果,顯示所提出的影像對位方法較許多已廣泛運用的演算法精準且快速。另外,本論文亦以模擬影像實驗量化影像對位準確度對腦結構分析正確性之影響。

雖然罹患第一型與第二型躁鬱症(bipolar disorders)之病患呈現相異的表徵與認知能力(cognitive functions),然而此二亞型(subtypes)是否亦具有不同之神經基質(neural substrates)卻一直是未知的。為探究第一與第二型躁鬱症病患間之腦部纖維結構性差異,我們運用所開發之影像處理技術以及由擴散張量磁振造影(diffusion tensor imaging)所導出之非等向性指標(fractional anisotropy)於正常人、第一型躁鬱症病患、第二型躁鬱症病患與所有躁鬱症病患間之腦部纖維結構之分析上。此研究採用雙樣本t檢定(two-sample t-test)之體素分析(voxel-wised analysis)方式進行,所發現的顯著性差異區域之平均非等向性指標亦用於探究其與臨床表徵及認知測驗分數之相關性。研究結果顯示第一與第二型躁鬱症病患的腦部纖維均在視丘(thalamus)、前扣帶(anterior cingulate)與下額頁(inferior frontal)等位置有顯著性之結構異常。另外,第二型躁鬱症病患的腦部纖維損傷現象亦呈現於顳頁(temporal)及下前額頁(inferior prefrontal)等區域。第一型躁鬱症的右下額頁與第二型躁鬱症的左中顳頁等區域之平均非等向性指標與認知執行功能具顯著性相關,第二型之躁鬱症病患的左中顳頁與下前額頁等區域之平均非等向性指標與楊氏躁症量表(YMRS)分數及輕躁症發作期(hypomanic episodes)呈顯著性相關。此研究結果指出第一型躁鬱症病患的腦纖維異常處多與認知功能有關,而第二型躁鬱症病患具顯著性差異之位置則涵括了認知與情緒處理等功能。

本論文提出兼具高執行效率與高準確度之腦部擷取與腦結構對位等演算法,所提出之影像處理方法的高準確性可使結構分析結果更值得信賴;而其低計算複雜度可使需要大量運用腦部擷取與腦結構對位的結構分析更有效率。本論文亦將所開發的影像處理方法運用於分析躁鬱症病患的腦部纖維結構之損傷,此結構分析結果顯示第一型與第二型躁鬱症病患具有不同之神經基質。

Computational anatomy, or morphometry, concentrates upon the quantitative analysis of brain structure, such as gyrification study and the examination of anatomical size and shape. Neuroimaging as well as image processing techniques are extensively utilized in this emerging field. Two key computerized methods of morphometry are brain extraction and registration, which can be applied to remove the non-brain tissues followed by normalizing brain structures into a standard stereotaxtic space. Accurate extraction and registration algorithms facilitate the validity of morphometric analysis. Computational anatomy generally requires large participants to provide the statistical power, and thus efficient image processing approaches support the feasibility of a large-scale study. Toward an accurate and efficient morphometric analysis, this thesis proposes a brain extraction method and brain registration algorithms. The developed image processing techniques were implemented in a voxel-based analysis protocol which was conducted to explore the fiber pathology of bipolar disorders.

The proposed brain extraction method utilizes a new implicit deformable model to well represent brain contours and to segment brain region from magnetic resonance (MR) images. This model is described by a set of Wendland's radial basis functions (RBFs) and has the advantages of compact support property and low computational complexity. Driven by the internal force for imposing the smoothness constraint and the external force for considering the intensity contrast across boundaries, the deformable model of a brain contour can efficiently evolve from its initial state toward its target by iteratively updating the RBF locations. In the proposed method, brain contours are separately determined on 2-D coronal and sagittal slices. The results from these two views are generally complementary and are thus integrated to obtain a complete 3-D brain volume. The proposed method was compared to four existing methods, Brain Surface Extractor, Brain Extraction Tool, Hybrid Watershed Algorithm, and Model-based Level Set, by using two sets of MR images along with manual segmentation results obtained from the Internet Brain Segmentation Repository. Our experimental results demonstrated that the proposed approach outperformed others when jointly considering extraction accuracy and robustness.

The proposed brain registration algorithms (BIRT) can rapidly and accurately register brain images by utilizing the brain structure information estimated from image derivatives. Source and target image spaces are related by affine transformation and non-rigid deformation. The deformation field is modeled by a set of Wendland's RBFs hierarchically deployed near the salient brain structures. In general, nonlinear optimization is heavily engaged in the parameter estimation for affine/non-rigid transformation and good initial estimates are thus essential to registration performance. In this work, the affine registration is initialized by a rigid transformation, which can robustly estimate the orientation and position differences of brain images. The parameters of the affine/non-rigid transformation are then hierarchically estimated in a coarse-to-fine manner by maximizing an image similarity measure, the correlation ratio, between the involved images. T1-weighted brain magnetic resonance images were utilized for performance evaluation.
Our experimental results using four 3-D image sets demonstrated that BIRT can efficiently align images with high accuracy compared to several extensively adopted algorithms. Moreover, a voxel-based morphometric study quantitatively indicated that accurate registration can improve both the sensitivity and specificity of the statistical inference results.

Patients with bipolar I and II disorders exhibit heterogeneous clinical presentations and cognitive functions, however, it remains unclear whether these two subtypes have distinct neural substrates. Fractional anisotropy (FA) maps calculated from diffusion tensor images and processed by the developed techniques were compared among healthy, bipolar I, and bipolar II groups using two-sample t-test analysis in a voxel-wise manner. Correlations between the mean FA value of each survived area and the clinical characteristics as well as the scores of neuropsychological tests were further analyzed. Patients of both subtypes manifested fiber impairments in the thalamus, anterior cingulate, and inferior frontal areas, whereas the bipolar II patients showed more fiber alterations in the temporal and inferior prefrontal regions. The FA values of the subgenual anterior cingulate cortices for both subtypes correlated with the performance of working memory. The FA values of the right inferior frontal area of bipolar I and the left middle temporal area of bipolar II both correlated with execution function. For bipolar II patients, the left middle temporal and inferior prefrontal FA values correlated with the scores of YMRS and hypomanic episodes, respectively. Our findings suggest distinct neuropathological substrates between bipolar I and II subtypes. The fiber alterations observed in the bipolar I patients were majorly associated with cognitive dysfunction, whereas those in the bipolar II patients were related to both cognitive and emotional processing.

This dissertation proposes brain extraction and registration algorithms which can rapidly extract brain volumes and align brain images with high accuracy. The high accuracy of our methods can facilitate computational anatomy to report accurate results. Due to the high execution efficiency, the developed image processing techniques are feasible to morphometric analysis which applies brain extraction and registration processes intensively. The proposed algorithms are also utilized to investigate the fiber impairments of bipolar disorders. Our analysis results demonstrated the distinct neuropathological substrates between bipolar I and II disorders.
List of Figures vii
List of Tables ix
1 Introduction 1
1.1 Morphometric analysis of brain images 2
1.2 Research scope 4
1.3 Thesis organization 8
2 Brain extraction 9
2.1 Background and related works 10
2.2 Methods 12
2.2.1 Structure information of the brain 13
2.2.2 Estimation of image intensity parameters and brain centroid 16
2.2.3 Brain extraction on the slices in two views 16
2.2.4 Initial contour 19
2.2.5 Deformable model for brain extraction 20
2.2.6 Integration of segmentation results 23
2.2.7 Performance evaluation 24
2.3 Experimental results 29
2.4 Discussion 36
3 Brain registration 41
3.1 Background and related works 42
3.2 Methods 45
3.2.1 Affine registration 46
3.2.2 Non-rigid registration 51
3.2.3 Correlation ratio 58
3.2.4 Evaluation of registration performance 60
3.2.5 Effects of registration accuracy on VBM analysis 62
3.3 Experimental results 65
3.3.1 Comparison of affine registration algorithms 66
3.3.2 Determination of TDOG threshold 66
3.3.3 Comparison of non-rigid registration algorithms 69
3.3.4 Effects of registration accuracy on VBM analysis 71
3.4 Discussion 71
4 White matter abnormalities between bipolar I and II disorders 85
4.1 Background and related works 86
4.2 Materials and methods 87
4.2.1 Participants 87
4.2.2 Neuropsychological assessments 87
4.2.3 Image acquisition and processing 90
4.2.4 Statistical analyses 92
4.3 Results 92
4.4 Discussion 96
5 Conclusions and future works 99
Bibliography 103
[1] C. D. Good, I. Johnsrude, J. Ashburner, R. N. A. Henson, K. J. Friston, and R. S. J. Frackowiak. Cerebral asymmetry and the effects of sex and handedness on brain structure: a voxel-based morphometric analysis of 465 normal adult human brains. NeuroImage, 14(3):685–700, 2001.
[2] C. D. Good, I. S. Johnsrude, J. Ashburner, R. N. A. Henson, K. J. Friston, and R. S. J. Frackowiak. A voxel-based morphometric study of ageing in 465 normal adult human brains. NeuroImage, 14(1):21–36, 2001.
[3] C. Brenneis, S. M. B‥osch, M. Schocke, G. K.Wenning, andW. Poewe. Atrophy pattern in SCA2 determined by voxel-based morphometry. NeuroReport, 14(14):1799–1802, 2003.
[4] I. K. Lyoo, M. J. Kim, A. L. Stoll, C. M. Demopulos, A. M. Parow, S. R. Dager, S. D. Friedman, D. L. Dunner, and P. F. Renshaw. Frontal lobe gray matter density decreases in bipolar I disorder. Biological Psychiatry, 55(6):648–651, 2004.
[5] J. Z. Konarski, R. S. Mcintyre, S. H. Kennedy, S. Rafi-Tari, J. K. Soczynska, and T. A. Ketter. Volumetric neuroimaging investigations in mood disorders: bipolar disorder versus major depressive disorder. Bipolar Disorders, 10(1):1–37, 2008.
[6] K. Bendfeldt, P. Kuster, S. Traud, H. Egger, S. Winklhofer, N. Mueller-Lenke, Y. Naegelin, G. E. Achim, L. Kappos, P. M. Matthews, T. E. Nichols, E. W. Radue, and S. J. Borgwardt. Association of regional gray matter volume loss and progression of white matter lesions in multiple sclerosis - a longitudinal voxel-based morphometry study. NeuroImage, 45(1):60–67, 2009.
[7] S. Bruno, M. Cercignani, and M. A. Ron. White matter abnormalities in bipolar disorder: a voxel-based diffusion tensor imaging study. Bipolar Disorders, 10(4):460–468, 2008.
[8] K. Mahon, J. H. Wu, A. K. Malhotra, K. E. Burdick, P. DeRosse, B. A. Ardekani, and P. R. Szeszko. A voxel-based diffusion tensor imaging study of white matter in bipolar disorder. Neuropsychopharmacology, 34(6):1590–1600, 2009.
[9] D. Le Bihan, J. F. Mangin, C. Poupon, C. A. Clark, S. Pappata, N. Molko, and H. Chabriat. Diffusion tensor imaging: concepts and applications. Journal of Magnetic Resonance Imaging, 13(4):534–546, 2001.
[10] D Mietchen and C Gaser. Computational morphometry for detecting changes in brain structure due to development, aging, learning, disease and evolution. Frontiers in Neuroinformatics, 3:25–25, 2009.
[11] J. Ashburner and K. J. Friston. Voxel-based morphometry - the methods. NeuroImage, 11(6):805–821, 2000.
[12] M. K. Chung, K. J. Worsley, T. Paus, C. Cherif, D. L. Collins, J. N. Giedd, J. L. Rapoport, and A. C. Evanst. A unified statistical approach to deformation-based morphometry. NeuroImage, 14(3):595–606, 2001.
[13] M. K. Chung, K. J. Worsley, S. Robbins, T. Paus, J. Taylor, J. N. Giedd, J. L. Rapoport, and A. C. Evans. Deformation-based surface morphometry applied to gray matter deformation. NeuroImage, 18(2):198–213, 2003.
[14] David H. Salat, Randy L. Buckner, Abraham Z. Snyder, Douglas N. Greve, Rahul S.R. Desikan, Evelina Busa, John C. Morris, Anders M. Dale, and Bruce Fischl. Thinning of the cerebral cortex in aging. Cerebral Cortex, 14(7):721–730, 2004.
[15] M. S. Panizzon, C. Fennema-Notestine, L. T. Eyler, T. L. Jernigan, E. Prom-Wormley, M. Neale, K. Jacobson, M. J. Lyons, M. D. Grant, C. E. Franz, H. Xian, M. Tsuang, B. Fischl, L. Seidman, A. Dale, andW. S. Kremen. Distinct genetic influences on cortical surface area and cortical thickness. Cerebral Cortex, 19(11):2728–2735, 2009.
[16] David C. Van Essen, Donna Dierker, A. Z. Snyder, Marcus E. Raichle, Allan L. Reiss, and Julie Korenberg. Symmetry of cortical folding abnormalities in Williams syndrome revealed by surface-based analyses. Journal of Neuroscience, 26(20):5470–5483, 2006.
[17] J. G. Sled, A. P. Zijdenbos, and A. C. Evans. A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Transactions on Medical Imaging, 17(1):87–97, 1998.
[18] J. Jovicich, S. Czanner, D. Greve, E. Haley, A. van der Kouwe, R. Gollub, D. Kennedy, F. Schmitt, G. Brown, J. MacFall, B. Fischl, and A. Dale. Reliability in multi-site structural MRI studies: effects of gradient non-linearity correction on phantom and human data. NeuroImage, 30(2):436–443, 2006.
[19] C. Fennema-Notestine, I. B. Ozyurt, C. P. Clark, S. Morris, A. Bischoff-Grethe, M. W. Bondi, T. L. Jernigan, B. Fischl, F. Segonne, D. W. Shattuck, R. M. Leahy, D. E. Rex, A.W. Toga, K. H. Zou, M. Birn, and G. G. Brown. Quantitative evaluation of automated skull-stripping methods applied to contemporary and legacy images: effects of diagnosis, bias correction, and slice location. Human Brain Mapping, 27(2):99–113, 2006.
[20] J. Acosta-Cabronero, G. B. Williams, J. M. S. Pereira, G. Pengas, and P. J. Nestor. The impact of skull-stripping and radio-frequency bins correction on grey-matter segmentation for voxel-based morphometry. NeuroImage, 39(4):1654–1665, 2008.
[21] J. C. Mazziotta, A. W. Toga, A. Evans, P. Fox, and J. Lancaster. A probabilistic atlas of the human brain - theory and rationale for its development. NeuroImage, 2(2):89–101, 1995.
[22] A. C. Evans, D. L. Collins, S. R. Mills, E. D. Brown, R. L. Kelly, and T. M. Peters. 3D statistical neuroanatomical models from 305 MRI volumes. In Nuclear Science Symposium and Medical Imaging Conference, volume 3, pages 1813–1817, San Francisco, USA, 1993.
[23] J. Mazziotta, A. Toga, A. Evans, P. Fox, J. Lancaster, K. Zilles, R. Woods, T. Paus, G. Simpson, B. Pike, C. Holmes, L. Collins, P. Thompson, D. MacDonald, M. Iacoboni, T. Schormann, K. Amunts, N. Palomero-Gallagher, S. Geyer, L. Parsons, K. Narr, N. Kabani, G. Le Goualher, D. Boomsma, T. Cannon, R. Kawashima, and B. Mazoyer. A probabilistic atlas and reference system for the human brain: International Consortium for Brain Mapping (ICBM). Philosophical Transactions of the Royal Society of London - Series B: Biological Sciences, 356(1412):1293–1322, 2001.
[24] S. M. Smith. Fast robust automated brain extraction. Human Brain Mapping, 17(3):143–155, 2002.
[25] F. S’egonne, A. M. Dale, E. Busa, M. Glessner, D. Salat, H. K. Hahn, and B. Fischl. A hybrid approach to the skull stripping problem in MRI. NeuroImage, 22(3):1060–1075, 2004.
[26] A. H. Zhuang, D. J. Valentino, and A. W. Toga. Skull-stripping magnetic resonance brain images using a model-based level set. NeuroImage, 32(1):79–92, 2006.
[27] J. X. Liu, Y. S. Chen, and L. F. Chen. Accurate and robust extraction of brain regions using a deformable model based on radial basis functions. Journal of Neuroscience Methods, 183(2):255–266, 2009.
[28] M. M. Haznedar, F. Roversi, S. Pallanti, N. Baldini-Rossi, D. B. Schnur, E. M. LiCalzi, C. Tang, P. R. Hof, E. Hollander, and M. S. Buchsbaum. Fronto-thalamostriatal gray and white matter volumes and anisotropy of their connections in bipolar spectrum illnesses. Biological Psychiatry, 57(7):733–742, 2005.
[29] M. Summers, K. Papadopoulou, S. Bruno, L. Cipolotti, and M. A. Ron. Bipolar I and bipolar II disorder: cognition and emotion processing. Psychological Medicine, 36(12):1799–1809, 2006.
[30] S. Dittmann, K. Hennig-Fast, S. Gerber, F. Seemuller, M. Riedel,W. Severus, J. Langosch, R. R. Engel, H. J. Moller, and H. C. Grunze. Cognitive functioning in euthymic bipolar I and bipolar II patients. Bipolar Disorders, 10(8):877–887, 2008.
[31] C. Simonsen, K. Sundet, A. Vaskinn, A. B. Birkenaes, J. A. Engh, C. F. Hansen, H. Jonsdottir, P. A. Ringen, S. Opjordsmoen, S. Friis, and O. A. Andreassen. Neurocognitive profiles in bipolar I and bipolar II disorder: differences in pattern and magnitude of dysfunction. Bipolar Disorders, 10(2):245–255, 2008.
[32] M. Rovaris and M. Filippi. MR-based technology for in vivo detection, characterization, and quantification of pathology of relapsing-remitting multiple sclerosis. Journal of Rehabilitation Research and Development, 39(2):243–259, 2002.
[33] A. M. Dale, B. Fischl, and M. I. Sereno. Cortical surface-based analysis - I. segmentation and surface reconstruction. NeuroImage, 9(2):179–194, 1999.
[34] Y. Y. Zhang, M. Brady, and S. Smith. Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Transactions on Medical Imaging, 20(1):45–57, 2001.
[35] D. W. Shattuck, S. R. Sandor-Leahy, K. A. Schaper, D. A. Rottenberg, and R. M. Leahy. Magnetic resonance image tissue classification using a partial volume model. NeuroImage, 13(5):856–876, 2001.
[36] R. P. Woods, S. T. Grafton, J. D. G. Watson, N. L. Sicotte, and J. C. Mazziotta. Automated image registration II: intersubject validation of linear and nonlinear models. Journal of Computer Assisted Tomography, 22(1):153–165, 1998.
[37] M. Jenkinson and S. Smith. A global optimisation method for robust affine registration of brain images. Medical Image Analysis, 5(2):143–156, 2001.
[38] A. Gholipour, N. Kehtarnavaz, R. Briggs, M. Devous, and K. Gopinath. Brain functional localization: a survey of image registration techniques. IEEE Transactions on Medical Imaging, 26(4):427–451, 2007.
[39] J. X. Liu, Y. S. Chen, and L. F. Chen. Nonlinear registration based on the approximation of radial basis function coefficients. Journal of Medical and Biological Engineering, 28(3):119–126, 2008.
[40] J. L. Beyer and K. R. R. Krishnan. Volumetric brain imaging findings in mood disorders. Bipolar Disorders, 4(2):89–104, 2002.
[41] G. B. Karas, E. J. Burton, S. A. R. B. Rombouts, R. A. van Schijndel, J. T. O’Brien, P. Scheltens, I. G. McKeith, D. Williams, C. Ballard, and F. Barkhof. A comprehensive study of gray matter loss in patients with Alzheimer’s disease using optimized voxel-based morphometry. NeuroImage, 18(4):895–907, 2003.
[42] Y. S. Chen, L. F. Chen, Y. T. Chang, Y. T. Huang, T. P. Su, and J. C. Hsieh. Quantitative evaluation of brain magnetic resonance images using voxel-based morphometry and Bayesian theorem for patients with bipolar disorder. Journal of Medical and Biological Engineering, 28(3):127–133, 2008.
[43] G. Fein, B. Landman, H. Tran, J. Barakos, K. Moon, V. Di Sclafani, and R. Shumway. Statistical parametric mapping of brain morphology: sensitivity is dramatically increased by using brain-extracted images as inputs. NeuroImage, 30(4):1187–1195, 2006.
[44] L. Lemieux, G. Hagemann, K. Krakow, and F. G. Woermann. Fast, accurate, and reproducible automatic segmentation of the brain in T1-weighted volume MRI data. Magnetic Resonance in Medicine, 42(1):127–135, 1999.
[45] R.W. Cox. AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Computers and Biomedical Research, 29(3):162–173, 1996.
[46] B. D.Ward. Intracranial segmentation. Technical report, Biophysics Research Institute, Medical College of Wisconsin, 1999.
[47] H. K. Hahn and H. O. Peitgen. The skull stripping problem in MRI solved by a single 3D watershed transform. Lecture Notes in Computer Science, 1935:134–143, 2000.
[48] M. E. Brummer, R. M. Mersereau, R. L. Eisner, and R. R. J. Lewine. Automatic detection of brain contours in MRI data sets. IEEE Transactions on Medical Imaging, 12(2):153–166, 1993.
[49] C. Lee, S. Huh, T. A. Ketter, and M. Unser. Unsupervised connectivity-based thresholding segmentation of midsagittal brain MR images. Computers in Biology and Medicine, 28(3):309–338, 1998.
[50] A. J. Worth, N. Makris, J. W. Meyer, V. S. Caviness, and D. N. Kennedy. Semiautomatic segmentation of brain exterior in magnetic resonance images driven by empirical procedures and anatomical knowledge. Medical Image Analysis, 2(4):315–324, 1998.
[51] Y. Hata, S. Kobashi, S. Hirano, H. Kitagaki, and E. Mori. Automated segmentation of human brain MR images aided by fuzzy information granulation and fuzzy inference. IEEE Transactions on Systems Man and Cybernetics Part C-Applications and Reviews, 30(3):381–395, 2000.
[52] R. Stokking, K. L. Vincken, and M. A. Viergever. Automatic morphology-based brain segmentation (MBRASE) from MRI-T1 data. NeuroImage, 12(6):726–738, 2000.
[53] S. Huh, T. A. Ketter, K. H. Sohn, and C. H. Lee. Automated cerebrum segmentation from three-dimensional sagittal brain MR images. Computers in Biology and Medicine, 32(5):311–328, 2002.
[54] M. Bomans, K. H. H‥ohne, U. Tiede, and M. Riemer. 3-D segmentation of MR images of the head for 3-D display. IEEE Transactions on Medical Imaging, 9(2):177–183, 1990.
[55] S. Sandor and R. Leahy. Surface-based labeling of cortical anatomy using a deformable atlas. IEEE Transactions on Medical Imaging, 16(1):41–54, 1997.
[56] C. Xu, D. L. Pham, and J. L. Prince. Image segmentation using deformable models. Handbook of Medical Imaging. SPIE Press, Bellingham, 2000.
[57] J. Montagnat, H. Delingette, and N. Ayache. A review of deformable surfaces: topology, geometry and deformation. Image and Vision Computing, 19(14):1023–1040, 2001.
[58] C. Davatzikos and R. N. Bryan. Using a deformable surface model to obtain a shape representation of the cortex. IEEE Transactions on Medical Imaging, 15(6):785–795, 1996.
[59] A. Kelemen, G. Sz’ekely, and G. Gerig. Elastic model-based segmentation of 3-D neuroradiological data sets. IEEE Transactions on Medical Imaging, 18(10):828–839, 1999.
[60] M. S. Atkins and B. T. Mackiewich. Fully automatic segmentation of the brain in MRI. IEEE Transactions on Medical Imaging, 17(1):98–107, 1998.
[61] G. B. Aboutanos, J. Nikanne, N. Watkins, and B. M. Dawant. Model creation and deformation for the automatic segmentation of the brain in MR images. IEEE Transactions on Biomedical Engineering, 46(11):1346–1356, 1999.
[62] L. Germond, M. Dojat, C. Taylor, and C. Garbay. A cooperative framework for segmentation of MRI brain scans. Artificial Intelligence in Medicine, 20(1):77–93, 2000.
[63] C. Baillard, P. Hellier, and C. Barillot. Segmentation of brain 3D MR images using level sets and dense registration. Medical Image Analysis, 5(3):185–194, 2001.
[64] D. E. Rex, D. W. Shattuck, R. P. Woods, K. L. Narr, E. Luders, K. Rehm, S. E. Stolzner, D. A. Rottenberg, and A. W. Toga. A meta-algorithm for brain extraction in MRI. NeuroImage, 23(2):625–637, 2004.
[65] A. Mikheev, G. Nevsky, S. Govindan, R. Grossman, and H. Rusinek. Fully automatic segmentation of the brain from T1-weighted MRI using Bridge Burner algorithm. Journal of Magnetic Resonance Imaging, 27(6):1235–1241, 2008.
[66] K. Rehm, K. Schaper, J. Anderson, R. Woods, S. Stoltzner, and D. Rottenberg. Putting our heads together: a consensus approach to brain/non-brain segmentation in T1-weighted MR volumes. NeuroImage, 22(3):1262–1270, 2004.
[67] N. Otsu. Threshold selection method from gray-level histograms. IEEE Transactions on Systems Man and Cybernetics, 9(1):62–66, 1979.
[68] H. Wendland. Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Advances in Computational Mathematics, 4(1):389–396, 1995.
[69] M. Fornefett, K. Rohr, and H. S. Stiehl. Radial basis functions with compact support for elastic registration of medical images. Image and Vision Computing, 19(1-2):87–96, 2001.
[70] J. M. Lee, U. Yoon, S. H. Nam, J. H. Kim, I. Y. Kim, and S. I. Kim. Evaluation of automated and semi-automated skull-stripping algorithms using similarity index and segmentation error. Computers in Biology and Medicine, 33(6):495–507, 2003.
[71] K. Boesen, K. Rehm, K. Schaper, S. Stoltzner, R. Woods, E. Luders, and D. Rottenberg. Quantitative comparison of four brain extraction algorithms. NeuroImage, 22(3):1255–1261, 2004.
[72] D. W. Shattuck and R. M. Leahy. BrainSuite: an automated cortical surface identifi-cation tool. Medical Image Analysis, 6(2):129–142, 2002.
[73] S. Smith, P. R. Bannister, C. Beckmann, M. Brady, S. Clare, D. Flitney, P. Hansen, M. Jenkinson, D. Leibovici, B. Ripley, M. Woolrich, and Y. Y. Zhang. FSL: new tools for functional and structural brain image analysis. NeuroImage, 13(6):S249–S249, 2001.
[74] H. G. Schnack, N. E. M. van Haren, H. E. H. Pol, M. Picchioni, M. Weisbrod, H. Sauer, T. Cannon, M. Huttunen, R. Murray, and R. S. Kahn. Reliability of brain volumes from multicenter MRI acquisition: a calibration study. Human Brain Mapping, 22(4):312–320, 2004.
[75] P. A. Freeborough and N. C. Fox. Modeling brain deformations in Alzheimer disease by fluid registration of serial 3D MR images. Journal of Computer Assisted Tomography, 22(5):838–843, 1998.
[76] A. Oatridge, J.V. Hajnal, and G.M. Bydder. Registration and subtraction of serial magnetic resonance images of the brain: image interpretation and clinical applications. Medical Image Registration. CRC, Boca Raton, 2001.
[77] P. M. Thompson, J. N. Gledd, R. P. Woods, D. MacDonald, A. C. Evans, and A. W. Toga. Growth patterns in the developing brain detected by using continuum mechanical tensor maps. Nature, 404(6774):190–193, 2000.
[78] D. Rey, G. Subsol, H. Delingette, and N. Ayache. Automatic detection and segmentation of evolving processes in 3D medical images: application to multiple sclerosis. Medical Image Analysis, 6(2):163–179, 2002.
[79] A. C. Evans, D. L. Collins, and B. Milner. An MRI-based stereotactic atlas from 250 young normal subjects. In Society for Neuroscience (Abstract), volume 18, pages 408–408, 1992.
[80] J. Talairach and P. Tournoux. Co-planar stereotaxic atlas of the human brain. Thieme Medical Publishers, New York, 1988.
[81] D. L. Collins, C. J. Holmes, T. M. Peters, and A. C. Evans. Automatic 3-D modelbased neuroanatomical segmentation. Human Brain Mapping, 3(3):190–208, 1995.
[82] T. F. Cootes, C. Beeston, G. J. Edwards, and C. J. Taylor. A unified framework for atlas matching using active appearance models. Lecture Notes in Computer Science, 1613:322–333, 1999.
[83] J. Ashburner, P. Neelin, D. L. Collins, A. Evans, and K. Friston. Incorporating prior knowledge into image registration. NeuroImage, 6(4):344–352, 1997.
[84] R. P. Woods, S. T. Grafton, C. J. Holmes, S. R. Cherry, and J. C. Mazziotta. Automated image registration I: general methods and intrasubject, intramodality validation. Journal of Computer Assisted Tomography, 22(1):139–152, 1998.
[85] M. Jenkinson, P. Bannister, M. Brady, and S. Smith. Improved optimization for the robust and accurate linear registration and motion correction of brain images. NeuroImage, 17(2):825–841, 2002.
[86] D. L. G. Hill, P. G. Batchelor, M. Holden, and D. J. Hawkes. Medical image registration. Physics in Medicine and Biology, 46(3):R1–R45, 2001.
[87] J. P. W. Pluim, J. B. A. Maintz, and M. A. Viergever. Mutual-information-based registration of medical images: a survey. IEEE Transactions on Medical Imaging, 22(8):986–1004, 2003.
[88] B. Zitov’a and J. Flusser. Image registration methods: a survey. Image and Vision Computing, 21(11):977–1000, 2003.
[89] R. Bajcsy and S. Kovaˇciˇc. Multiresolution elastic matching. Computer Vision, Graphics, and Image Processing, 46:1–21, 1989.
[90] H. Lester and S. R. Arridge. A survey of hierarchical non-linear medical image registration. Pattern Recognition, 32(1):129–149, 1999.
[91] D. Rueckert. Nonrigid registration: concepts, algorithms, and applications. Medical Image Registration. CRC, Boca Raton, 2001.
[92] G. E. Christensen, R. D. Rabbitt, and M. I. Miller. Deformable templates using large deformation kinematics. IEEE Transactions on Image Processing, 5(10):1435–1447, 1996.
[93] M. Bro-Nielsen and C. Gramkow. Fast fluid registration of medical images. Lecture Notes in Computer Science, 1131:267–276, 1996.
[94] J. P. Thirion. Image matching as a diffusion process: an analogy with Maxwell’s demons. Medical Image Analysis, 2(3):243–260, 1998.
[95] T. Vercauteren, X. Pennec, A. Perchant, and N. Ayache. Non-parametric diffeomorphic image registration with the demons algorithm. Lecture Notes in Computer Science, 4792:319–326, 2007.
[96] P. J. Edwards, D. L. G. Hill, J. A. Little, and D. J. Hawkes. Deformation for image guided interventions using a three component tissue model. Lecture Notes in Computer Science, 1230:218–231, 1997.
[97] J. Ashburner, J. L. R. Andersson, and K. J. Friston. High-dimensional image registration using symmetric priors. NeuroImage, 9(6):619–628, 1999.
[98] M. Ferrant, A. Nabavi, B. Macq, F. A. Jolesz, R. Kikinis, and S. K. Warfield. Registration of 3-D intraoperative MR images of the brain using a finite-element biomechanical model. IEEE Transactions on Medical Imaging, 20(12):1384–1397, 2001.
[99] D. G. Shen and C. Davatzikos. HAMMER: hierarchical attribute matching mechanism for elastic registration. IEEE Transactions on Medical Imaging, 21(11):1421–1439, 2002.
[100] O. ˇ Skrinjar, A. Nabavi, and J. Duncan. Model-driven brain shift compensation. Medical Image Analysis, 6(4):361–373, 2002.
[101] M. Sermesant, C. Forest, X. Pennec, H. Delingette, and N. Ayache. Deformable biomechanical models: application to 4D cardiac image analysis. Medical Image Analysis, 7(4):475–488, 2003.
[102] G. R. Wu, F. H. Qi, and D. G. Shen. Learning-based deformable registration of MR brain images. IEEE Transactions on Medical Imaging, 25(9):1145–1157, 2006.
[103] F. L. Bookstein. Principal warps: thin-plate splines and the decomposition of deformations. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(6):567–585, 1989.
[104] J. A. Little, D. L. G. Hill, and D. J. Hawkes. Deformations incorporating rigid structures. Computer Vision and Image Understanding, 66(2):223–232, 1997.
[105] N. Arad, N. Dyn, D. Reisfeld, and Y. Yeshurun. Image warping by radial basis functions: application to facial expressions. CVGIP-Graphical Models and Image Processing, 56(2):161–172, 1994.
[106] D. Ruprecht, R. Nagel, and H. M‥uller. Spatial free-form deformation with scattered data interpolation methods. Computers and Graphics, 19(1):63–71, 1995.
[107] B. Likar and F. Pernuˇs. A hierarchical approach to elastic registration based on mutual information. Image and Vision Computing, 19(1-2):33–44, 2001.
[108] Y. Amit. A nonlinear variational problem for image matching. SIAM Journal on Scientific Computing, 15(1):207–224, 1994.
[109] J. Ashburner and K. J. Friston. Nonlinear spatial normalization using basis functions. Human Brain Mapping, 7(4):254–266, 1999.
[110] D. Rueckert, L. I. Sonoda, C. Hayes, D. L. G. Hill, M. O. Leach, and D. J. Hawkes. Nonrigid registration using free-form deformations: application to breast MR images. IEEE Transactions on Medical Imaging, 18(8):712–721, 1999.
[111] J. Kybic, P. Th’evenaz, A. Nirkko, and M. Unser. Unwarping of unidirectionally distorted EPI images. IEEE Transactions on Medical Imaging, 19(2):80–93, 2000.
[112] G. K. Rohde, A. Aldroubi, and B. M. Dawant. The adaptive bases algorithm for intensity-based nonrigid image registration. IEEE Transactions on Medical Imaging, 22(11):1470–1479, 2003.
[113] J. P. W. Pluim, J. B. A. Maintz, and M. A. Viergever. Image registration by maximization of combined mutual information and gradient information. IEEE Transactions on Medical Imaging, 19(8):809–814, 2000.
[114] S. Marsland, C. J. Twining, and C. J. Taylor. Groupwise non-rigid registration using polyharmonic clamped-plate splines. Lecture Notes in Computer Science, 2879:771–779, 2003.
[115] O. Camara, G. Delso, O. Colliot, A. Moreno-Ingelmo, and I. Bloch. Explicit incorporation of prior anatomical information into a nonrigid registration of thoracic and abdominal CT and 18-FDG whole-body emission PET images. IEEE Transactions on Medical Imaging, 26(2):164–178, 2007.
[116] J. S. Kim, J. M. Lee, Y. H. Lee, J. S. Kim, I. Y. Kim, and S. I. Kim. Intensity based affine registration including feature similarity for spatial normalization. Computers in Biology and Medicine, 32(5):389–402, 2002.
[117] P. Cachier, E. Bardinet, D. Dormont, X. Pennec, and N. Ayache. Iconic feature based nonrigid registration: the PASHA algorithm. Computer Vision and Image Understanding, 89(2-3):272–298, 2003.
[118] P. Hellier and C. Barillot. Coupling dense and landmark-based approaches for nonrigid registration. IEEE Transactions on Medical Imaging, 22(2):217–227, 2003.
[119] T. M. Liu, D. G. Shen, and C. Davatzikos. Deformable registration of cortical structures via hybrid volumetric and surface warping. NeuroImage, 22(4):1790–1801, 2004.
[120] C. J. Twining, T. Cootes, S. Marsland, V. Petrovic, R. Schestowitz, and C. J. Taylor. A unified information-theoretic approach to groupwise non-rigid registration and model building. Lecture Notes in Computer Science, 3565:1–14, 2005.
[121] F. L. Bookstein. “Voxel-based morphometry” should not be used with imperfectly registered images. NeuroImage, 14(6):1454–1462, 2001.
[122] J. Ashburner and K. J. Friston. Why voxel-based morphometry should be used. NeuroImage, 14(6):1238–1243, 2001.
[123] B. A. Ardekani, S. Guckemus, A. Bachman, M. J. Hoptman, M. Wojtaszek, and J. Nierenberg. Quantitative comparison of algorithms for inter-subject registration of 3D volumetric brain MRI scans. Journal of Neuroscience Methods, 142(1):67–76, 2005.
[124] C. Chu, G. Tan, and J. Ashburner. Improving voxel-based morphometry with diffeomorphic non-linear registration by DARTEL toolbox: conventional SPM normalization vs. DARTEL normalization. In The 14th Annual Meeting of the Organization for Human Brain Mapping, Melbourne, Australia, 2008.
[125] W. H. Press, S. A. Teukolsky,W. T. Vetterling, and B. P. Flannery. Numerical recipes in C : the art of scientific computing. Cambridge University Press, New York, 1992.
[126] A. V. Tuzikov, O. Colliot, and I. Bloch. Evaluation of the symmetry plane in 3D MR brain images. Pattern Recognition Letters, 24(14):2219–2233, 2003.
[127] B. A. Ardekani, J. Kershaw, M. Braun, and I. Kanno. Automatic detection of the mid-sagittal plane in 3-D brain images. IEEE Transactions on Medical Imaging, 16(6):947–952, 1997.
[128] Y. X. Liu, R. T. Collins, and W. E. Rothfus. Robust midsagittal plane extraction from normal and pathological 3-D neuroradiology images. IEEE Transactions on Medical Imaging, 20(3):175–192, 2001.
[129] P. Kowalczyk and M. Mrozowski. Mesh-free approach to Hemholtz equation based on radial basis functions. In The 15th International Conference on Microwave, Radar and Wireless Communication, pages 702–705, Warsaw, Poland, 2004.
[130] A. Collignon, F. Maes, D. Delaere, D. Vandermeulen, P. Suetens, and G. Marchal. Automated multimodality medical image registration using information theory. In Proceedings of the Information Processing in Medical Imaging, pages 263–274, 1995.
[131] P. Viola and W. M. Wells. Alignment by maximization of mutual information. International Journal of Computer Vision, 24(2):137–154, 1997.
[132] C. Studholme, D. L. G. Hill, and D. J. Hawkes. An overlap invariant entropy measure of 3D medical image alignment. Pattern Recognition, 32(1):71–86, 1999.
[133] A. Roche, G. Malandain, X. Pennec, and N. Ayache. The correlation ratio as a new similarity measure for multimodal image registration. Lecture Notes in Computer Science, 1496:1115–1124, 1998.
[134] J. P.W. Pluim, J. B. A. Maintz, and M. A. Viergever. Interpolation artefacts in mutual information-based image registration. Computer Vision and Image Understanding, 77(2):211–232, 2000.
[135] J. Ashburner. A fast diffeomorphic image registration algorithm. NeuroImage, 38(1):95–113, 2007.
[136] D. L. Collins, A. P. Zijdenbos, V. Kollokian, J. G. Sled, N. J. Kabani, C. J. Holmes, and A. C. Evans. Design and construction of a realistic digital brain phantom. IEEE Transactions on Medical Imaging, 17(3):463–468, 1998.
[137] B. Karacali and C. Davatzikos. Simulation of tissue atrophy using a topology preserving transformation model. IEEE Transactions on Medical Imaging, 25(5):649–652, 2006.
[138] O. Camara, M. Schweiger, R. I. Scahill, W. R. Crum, B. I. Sneller, J. A. Schnabel, G. R. Ridgway, D. M. Cash, D. L. G. Hill, and N. C. Fox. Phenomenological model of diffuse global and regional atrophy using finite-element methods. IEEE Transactions on Medical Imaging, 25(11):1417–1430, 2006.
[139] O. Camara, J. A. Schnabel, G. R. Ridgway, W. R. Crum, A. Douiri, R. I. Scahill, D. L. G. Hill, and N. C. Fox. Accuracy assessment of global and local atrophy measurement techniques with realistic simulated longitudinal Alzheimer’s disease images. NeuroImage, 42(2):696–709, 2008.
[140] A. U. Turken, S. Whitfield-Gabrieli, R. Bammer, J. V. Baldo, N. F. Dronkers, and J. D. E. Gabrieli. Cognitive processing speed and the structure of white matter pathways: convergent evidence from normal variation and lesion studies. NeuroImage, 42(2):1032–1044, 2008.
[141] C. Steinbrink, K. Vogt, A. Kastrup, H. P. M‥uller, F. D. Juengling, J. Kassubeek, and A. Riecker. The contribution of white and gray matter differences to developmental dyslexia: insights from DTI and VBM at 3.0 T. Neuropsychologia, 46(13):3170–3178, 2008.
[142] C. M. Adler, S. K. Holland, V. Schmithorst, M.Wilke, K. L.Weiss, H. Pan, and S. M. Strakowski. Abnormal frontal white matter tracts in bipolar disorder: a diffusion tensor imaging study. Bipolar Disorders, 6(3):197–203, 2004.
[143] J. L. Beyer,W. D. Taylor, J. R. MacFall, M. Kuchibhatla, M. E. Payne, J. M. Provenzale, F. Cassidy, and K. R. R. Krishnan. Cortical white matter microstructural abnormalities in bipolar disorder. Neuropsychopharmacology, 30(12):2225–2229, 2005.
[144] W. T. Regenold, C. A. D’Agostino, N. Ramesh, M. Hasnain, S. Roys, and R. P. Gullapalli. Diffusion-weighted magnetic resonance imaging of white matter in bipolar disorder: a pilot study. Bipolar Disorders, 8(2):188–195, 2006.
[145] N. Makris, A. J. Worth, A. G. Sorensen, G. M. Papadimitriou, O. Wu, T. G. Reese, V. J. Wedeen, T. L. Davis, J. W. Stakes, V. S. Caviness, E. Kaplan, B. R. Rosen, D. N. Pandya, and D. N. Kennedy. Morphometry of in vivo human white matter association pathways with diffusion-weighted magnetic resonance imaging. Annals of Neurology, 42(6):951–962, 1997.
[146] J. X. Liu, Y. S. Chen, and L. F. Chen. Fast and accurate registration techniques for affine and nonrigid alignment of mr brain images. Annals of Biomedical Engineering, DOI: 10.1007/s10439-009-9840-9, 2009.
[147] G. Bush, P. Luu, and M. I. Posner. Cognitive and emotional influences in anterior cingulate cortex. Trends in Cognitive Sciences, 4(6):215–222, 2000.
[148] A. M. C. Kelly, A. Di Martino, L. Q. Uddin, Z. Shehzad, D. G. Gee, P. T. Reiss, D. S. Margulies, F. X. Castellanos, and M. P. Milham. Development of anterior cingulate functional connectivity from late childhood to early adulthood. Cerebral Cortex, 19(3):640–657, 2009.
[149] J. K. Zubieta, P. Huguelet, L. E. Ohl, R. A. Koeppe, M. R. Kilbourn, J. M. Carr, B. J. Giordani, and K. A. Frey. High vesicular monoamine transporter binding in asymptomatic bipolar I disorder: sex differences and cognitive correlates. American Journal of Psychiatry, 157(10):1619–1628, 2000.
[150] T. E. J. Behrens, H. Johansen-Berg, M.W.Woolrich, S. M. Smith, C. A. M. Wheeler-Kingshott, P. A. Boulby, G. J. Barker, E. L. Sillery, K. Sheehan, O. Ciccarelli, A. J. Thompson, J. M. Brady, and P. M. Matthews. Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging. Nature Neuroscience, 6(7):750–757, 2003.
[151] J. P. Aggleton and M. W. Brown. Episodic memory, amnesia and the hippocampalanterior thalamic axis. Behavioral and Brain Sciences, 22(3):425–489, 1999.
[152] N. Makris, D. N. Kennedy, S. McInerney, A. G. Sorensen, R. Wang, V. S. Caviness, and D. N. Pandya. Segmentation of subcomponents within the superior longitudinal fascicle in humans: a quantitative, in vivo, DT-MRI study. Cerebral Cortex, 15(6):854–869, 2005.
[153] H. S. Mayberg. Limbic-cortical dysregulation: a proposed model of depression. Journal of Neuropsychiatry and Clinical Neurosciences, 9(3):471–481, 1997.
[154] T. Onitsuka, M. E. Shenton, D. F. Salisbury, C. C. Dickey, K. Kasai, S. K. Toner, M. Frumin, R. Kikinis, F. A. Jolesz, and R. W. McCarley. Middle and inferior temporal gyrus gray matter volume abnormalities in chronic schizophrenia: an MRI study. American Journal of Psychiatry, 161(9):1603–1611, 2004.
[155] K. Nakamura, R. Kawashima, K. Ito, M. Sugiura, T. Kato, A. Nakamura, K. Hatano, S. Nagumo, K. Kubota, H. Fukuda, and S. Kojima. Activation of the right inferior frontal cortex during assessment of facial emotion. Journal of Neurophysiology, 82(3):1610–1614, 1999.
[156] G. S. Malhi, J. Lagopoulos, P. Sachdev, P. B. Mitchell, B. Ivanovski, and G. B. Parker. Cognitive generation of affect in hypomania: an fMRI study. Bipolar Disorders, 6(4):271–285, 2004.
[157] M. Phillips, C. Ladouceur, and W. Drevets. A neural model of voluntary and automatic emotion regulation: implications for understanding the pathophysiology and neurodevelopment of bipolar disorder. Molecular Psychiatry, 13(9):833–857, 2008.
[158] G. S. Alexopoulos, D. N. Kiosses, S. J. Choi, C. F. Murphy, and K. O. Lim. Frontal white matter microstructure and treatment response of late-life depression: a preliminary study. American Journal of Psychiatry, 159(11):1929–1932, 2002.
[159] R. B. Sassi, P. Brambilla, J. P. Hatch, M. A. Nicoletti, A. G. Mallinger, E. Frank, D. J. Kupfer, M. S. Keshavan, and J. C. Soares. Reduced left anterior cingulate volumes in untreated bipolar patients. Biological Psychiatry, 56(7):467–475, 2004.
[160] S. M. Smith, M. Jenkinson, H. Johansen-Berg, D. Rueckert, T. E. Nichols, C. E. Mackay, K. E. Watkins, O. Ciccarelli, M. Z. Cader, P. M. Matthews, and T. E. J. Behrens. Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. NeuroImage, 31(4):1487–1505, 2006.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top