|
[1] C. D. Good, I. Johnsrude, J. Ashburner, R. N. A. Henson, K. J. Friston, and R. S. J. Frackowiak. Cerebral asymmetry and the effects of sex and handedness on brain structure: a voxel-based morphometric analysis of 465 normal adult human brains. NeuroImage, 14(3):685–700, 2001. [2] C. D. Good, I. S. Johnsrude, J. Ashburner, R. N. A. Henson, K. J. Friston, and R. S. J. Frackowiak. A voxel-based morphometric study of ageing in 465 normal adult human brains. NeuroImage, 14(1):21–36, 2001. [3] C. Brenneis, S. M. B‥osch, M. Schocke, G. K.Wenning, andW. Poewe. Atrophy pattern in SCA2 determined by voxel-based morphometry. NeuroReport, 14(14):1799–1802, 2003. [4] I. K. Lyoo, M. J. Kim, A. L. Stoll, C. M. Demopulos, A. M. Parow, S. R. Dager, S. D. Friedman, D. L. Dunner, and P. F. Renshaw. Frontal lobe gray matter density decreases in bipolar I disorder. Biological Psychiatry, 55(6):648–651, 2004. [5] J. Z. Konarski, R. S. Mcintyre, S. H. Kennedy, S. Rafi-Tari, J. K. Soczynska, and T. A. Ketter. Volumetric neuroimaging investigations in mood disorders: bipolar disorder versus major depressive disorder. Bipolar Disorders, 10(1):1–37, 2008. [6] K. Bendfeldt, P. Kuster, S. Traud, H. Egger, S. Winklhofer, N. Mueller-Lenke, Y. Naegelin, G. E. Achim, L. Kappos, P. M. Matthews, T. E. Nichols, E. W. Radue, and S. J. Borgwardt. Association of regional gray matter volume loss and progression of white matter lesions in multiple sclerosis - a longitudinal voxel-based morphometry study. NeuroImage, 45(1):60–67, 2009. [7] S. Bruno, M. Cercignani, and M. A. Ron. White matter abnormalities in bipolar disorder: a voxel-based diffusion tensor imaging study. Bipolar Disorders, 10(4):460–468, 2008. [8] K. Mahon, J. H. Wu, A. K. Malhotra, K. E. Burdick, P. DeRosse, B. A. Ardekani, and P. R. Szeszko. A voxel-based diffusion tensor imaging study of white matter in bipolar disorder. Neuropsychopharmacology, 34(6):1590–1600, 2009. [9] D. Le Bihan, J. F. Mangin, C. Poupon, C. A. Clark, S. Pappata, N. Molko, and H. Chabriat. Diffusion tensor imaging: concepts and applications. Journal of Magnetic Resonance Imaging, 13(4):534–546, 2001. [10] D Mietchen and C Gaser. Computational morphometry for detecting changes in brain structure due to development, aging, learning, disease and evolution. Frontiers in Neuroinformatics, 3:25–25, 2009. [11] J. Ashburner and K. J. Friston. Voxel-based morphometry - the methods. NeuroImage, 11(6):805–821, 2000. [12] M. K. Chung, K. J. Worsley, T. Paus, C. Cherif, D. L. Collins, J. N. Giedd, J. L. Rapoport, and A. C. Evanst. A unified statistical approach to deformation-based morphometry. NeuroImage, 14(3):595–606, 2001. [13] M. K. Chung, K. J. Worsley, S. Robbins, T. Paus, J. Taylor, J. N. Giedd, J. L. Rapoport, and A. C. Evans. Deformation-based surface morphometry applied to gray matter deformation. NeuroImage, 18(2):198–213, 2003. [14] David H. Salat, Randy L. Buckner, Abraham Z. Snyder, Douglas N. Greve, Rahul S.R. Desikan, Evelina Busa, John C. Morris, Anders M. Dale, and Bruce Fischl. Thinning of the cerebral cortex in aging. Cerebral Cortex, 14(7):721–730, 2004. [15] M. S. Panizzon, C. Fennema-Notestine, L. T. Eyler, T. L. Jernigan, E. Prom-Wormley, M. Neale, K. Jacobson, M. J. Lyons, M. D. Grant, C. E. Franz, H. Xian, M. Tsuang, B. Fischl, L. Seidman, A. Dale, andW. S. Kremen. Distinct genetic influences on cortical surface area and cortical thickness. Cerebral Cortex, 19(11):2728–2735, 2009. [16] David C. Van Essen, Donna Dierker, A. Z. Snyder, Marcus E. Raichle, Allan L. Reiss, and Julie Korenberg. Symmetry of cortical folding abnormalities in Williams syndrome revealed by surface-based analyses. Journal of Neuroscience, 26(20):5470–5483, 2006. [17] J. G. Sled, A. P. Zijdenbos, and A. C. Evans. A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Transactions on Medical Imaging, 17(1):87–97, 1998. [18] J. Jovicich, S. Czanner, D. Greve, E. Haley, A. van der Kouwe, R. Gollub, D. Kennedy, F. Schmitt, G. Brown, J. MacFall, B. Fischl, and A. Dale. Reliability in multi-site structural MRI studies: effects of gradient non-linearity correction on phantom and human data. NeuroImage, 30(2):436–443, 2006. [19] C. Fennema-Notestine, I. B. Ozyurt, C. P. Clark, S. Morris, A. Bischoff-Grethe, M. W. Bondi, T. L. Jernigan, B. Fischl, F. Segonne, D. W. Shattuck, R. M. Leahy, D. E. Rex, A.W. Toga, K. H. Zou, M. Birn, and G. G. Brown. Quantitative evaluation of automated skull-stripping methods applied to contemporary and legacy images: effects of diagnosis, bias correction, and slice location. Human Brain Mapping, 27(2):99–113, 2006. [20] J. Acosta-Cabronero, G. B. Williams, J. M. S. Pereira, G. Pengas, and P. J. Nestor. The impact of skull-stripping and radio-frequency bins correction on grey-matter segmentation for voxel-based morphometry. NeuroImage, 39(4):1654–1665, 2008. [21] J. C. Mazziotta, A. W. Toga, A. Evans, P. Fox, and J. Lancaster. A probabilistic atlas of the human brain - theory and rationale for its development. NeuroImage, 2(2):89–101, 1995. [22] A. C. Evans, D. L. Collins, S. R. Mills, E. D. Brown, R. L. Kelly, and T. M. Peters. 3D statistical neuroanatomical models from 305 MRI volumes. In Nuclear Science Symposium and Medical Imaging Conference, volume 3, pages 1813–1817, San Francisco, USA, 1993. [23] J. Mazziotta, A. Toga, A. Evans, P. Fox, J. Lancaster, K. Zilles, R. Woods, T. Paus, G. Simpson, B. Pike, C. Holmes, L. Collins, P. Thompson, D. MacDonald, M. Iacoboni, T. Schormann, K. Amunts, N. Palomero-Gallagher, S. Geyer, L. Parsons, K. Narr, N. Kabani, G. Le Goualher, D. Boomsma, T. Cannon, R. Kawashima, and B. Mazoyer. A probabilistic atlas and reference system for the human brain: International Consortium for Brain Mapping (ICBM). Philosophical Transactions of the Royal Society of London - Series B: Biological Sciences, 356(1412):1293–1322, 2001. [24] S. M. Smith. Fast robust automated brain extraction. Human Brain Mapping, 17(3):143–155, 2002. [25] F. S’egonne, A. M. Dale, E. Busa, M. Glessner, D. Salat, H. K. Hahn, and B. Fischl. A hybrid approach to the skull stripping problem in MRI. NeuroImage, 22(3):1060–1075, 2004. [26] A. H. Zhuang, D. J. Valentino, and A. W. Toga. Skull-stripping magnetic resonance brain images using a model-based level set. NeuroImage, 32(1):79–92, 2006. [27] J. X. Liu, Y. S. Chen, and L. F. Chen. Accurate and robust extraction of brain regions using a deformable model based on radial basis functions. Journal of Neuroscience Methods, 183(2):255–266, 2009. [28] M. M. Haznedar, F. Roversi, S. Pallanti, N. Baldini-Rossi, D. B. Schnur, E. M. LiCalzi, C. Tang, P. R. Hof, E. Hollander, and M. S. Buchsbaum. Fronto-thalamostriatal gray and white matter volumes and anisotropy of their connections in bipolar spectrum illnesses. Biological Psychiatry, 57(7):733–742, 2005. [29] M. Summers, K. Papadopoulou, S. Bruno, L. Cipolotti, and M. A. Ron. Bipolar I and bipolar II disorder: cognition and emotion processing. Psychological Medicine, 36(12):1799–1809, 2006. [30] S. Dittmann, K. Hennig-Fast, S. Gerber, F. Seemuller, M. Riedel,W. Severus, J. Langosch, R. R. Engel, H. J. Moller, and H. C. Grunze. Cognitive functioning in euthymic bipolar I and bipolar II patients. Bipolar Disorders, 10(8):877–887, 2008. [31] C. Simonsen, K. Sundet, A. Vaskinn, A. B. Birkenaes, J. A. Engh, C. F. Hansen, H. Jonsdottir, P. A. Ringen, S. Opjordsmoen, S. Friis, and O. A. Andreassen. Neurocognitive profiles in bipolar I and bipolar II disorder: differences in pattern and magnitude of dysfunction. Bipolar Disorders, 10(2):245–255, 2008. [32] M. Rovaris and M. Filippi. MR-based technology for in vivo detection, characterization, and quantification of pathology of relapsing-remitting multiple sclerosis. Journal of Rehabilitation Research and Development, 39(2):243–259, 2002. [33] A. M. Dale, B. Fischl, and M. I. Sereno. Cortical surface-based analysis - I. segmentation and surface reconstruction. NeuroImage, 9(2):179–194, 1999. [34] Y. Y. Zhang, M. Brady, and S. Smith. Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Transactions on Medical Imaging, 20(1):45–57, 2001. [35] D. W. Shattuck, S. R. Sandor-Leahy, K. A. Schaper, D. A. Rottenberg, and R. M. Leahy. Magnetic resonance image tissue classification using a partial volume model. NeuroImage, 13(5):856–876, 2001. [36] R. P. Woods, S. T. Grafton, J. D. G. Watson, N. L. Sicotte, and J. C. Mazziotta. Automated image registration II: intersubject validation of linear and nonlinear models. Journal of Computer Assisted Tomography, 22(1):153–165, 1998. [37] M. Jenkinson and S. Smith. A global optimisation method for robust affine registration of brain images. Medical Image Analysis, 5(2):143–156, 2001. [38] A. Gholipour, N. Kehtarnavaz, R. Briggs, M. Devous, and K. Gopinath. Brain functional localization: a survey of image registration techniques. IEEE Transactions on Medical Imaging, 26(4):427–451, 2007. [39] J. X. Liu, Y. S. Chen, and L. F. Chen. Nonlinear registration based on the approximation of radial basis function coefficients. Journal of Medical and Biological Engineering, 28(3):119–126, 2008. [40] J. L. Beyer and K. R. R. Krishnan. Volumetric brain imaging findings in mood disorders. Bipolar Disorders, 4(2):89–104, 2002. [41] G. B. Karas, E. J. Burton, S. A. R. B. Rombouts, R. A. van Schijndel, J. T. O’Brien, P. Scheltens, I. G. McKeith, D. Williams, C. Ballard, and F. Barkhof. A comprehensive study of gray matter loss in patients with Alzheimer’s disease using optimized voxel-based morphometry. NeuroImage, 18(4):895–907, 2003. [42] Y. S. Chen, L. F. Chen, Y. T. Chang, Y. T. Huang, T. P. Su, and J. C. Hsieh. Quantitative evaluation of brain magnetic resonance images using voxel-based morphometry and Bayesian theorem for patients with bipolar disorder. Journal of Medical and Biological Engineering, 28(3):127–133, 2008. [43] G. Fein, B. Landman, H. Tran, J. Barakos, K. Moon, V. Di Sclafani, and R. Shumway. Statistical parametric mapping of brain morphology: sensitivity is dramatically increased by using brain-extracted images as inputs. NeuroImage, 30(4):1187–1195, 2006. [44] L. Lemieux, G. Hagemann, K. Krakow, and F. G. Woermann. Fast, accurate, and reproducible automatic segmentation of the brain in T1-weighted volume MRI data. Magnetic Resonance in Medicine, 42(1):127–135, 1999. [45] R.W. Cox. AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Computers and Biomedical Research, 29(3):162–173, 1996. [46] B. D.Ward. Intracranial segmentation. Technical report, Biophysics Research Institute, Medical College of Wisconsin, 1999. [47] H. K. Hahn and H. O. Peitgen. The skull stripping problem in MRI solved by a single 3D watershed transform. Lecture Notes in Computer Science, 1935:134–143, 2000. [48] M. E. Brummer, R. M. Mersereau, R. L. Eisner, and R. R. J. Lewine. Automatic detection of brain contours in MRI data sets. IEEE Transactions on Medical Imaging, 12(2):153–166, 1993. [49] C. Lee, S. Huh, T. A. Ketter, and M. Unser. Unsupervised connectivity-based thresholding segmentation of midsagittal brain MR images. Computers in Biology and Medicine, 28(3):309–338, 1998. [50] A. J. Worth, N. Makris, J. W. Meyer, V. S. Caviness, and D. N. Kennedy. Semiautomatic segmentation of brain exterior in magnetic resonance images driven by empirical procedures and anatomical knowledge. Medical Image Analysis, 2(4):315–324, 1998. [51] Y. Hata, S. Kobashi, S. Hirano, H. Kitagaki, and E. Mori. Automated segmentation of human brain MR images aided by fuzzy information granulation and fuzzy inference. IEEE Transactions on Systems Man and Cybernetics Part C-Applications and Reviews, 30(3):381–395, 2000. [52] R. Stokking, K. L. Vincken, and M. A. Viergever. Automatic morphology-based brain segmentation (MBRASE) from MRI-T1 data. NeuroImage, 12(6):726–738, 2000. [53] S. Huh, T. A. Ketter, K. H. Sohn, and C. H. Lee. Automated cerebrum segmentation from three-dimensional sagittal brain MR images. Computers in Biology and Medicine, 32(5):311–328, 2002. [54] M. Bomans, K. H. H‥ohne, U. Tiede, and M. Riemer. 3-D segmentation of MR images of the head for 3-D display. IEEE Transactions on Medical Imaging, 9(2):177–183, 1990. [55] S. Sandor and R. Leahy. Surface-based labeling of cortical anatomy using a deformable atlas. IEEE Transactions on Medical Imaging, 16(1):41–54, 1997. [56] C. Xu, D. L. Pham, and J. L. Prince. Image segmentation using deformable models. Handbook of Medical Imaging. SPIE Press, Bellingham, 2000. [57] J. Montagnat, H. Delingette, and N. Ayache. A review of deformable surfaces: topology, geometry and deformation. Image and Vision Computing, 19(14):1023–1040, 2001. [58] C. Davatzikos and R. N. Bryan. Using a deformable surface model to obtain a shape representation of the cortex. IEEE Transactions on Medical Imaging, 15(6):785–795, 1996. [59] A. Kelemen, G. Sz’ekely, and G. Gerig. Elastic model-based segmentation of 3-D neuroradiological data sets. IEEE Transactions on Medical Imaging, 18(10):828–839, 1999. [60] M. S. Atkins and B. T. Mackiewich. Fully automatic segmentation of the brain in MRI. IEEE Transactions on Medical Imaging, 17(1):98–107, 1998. [61] G. B. Aboutanos, J. Nikanne, N. Watkins, and B. M. Dawant. Model creation and deformation for the automatic segmentation of the brain in MR images. IEEE Transactions on Biomedical Engineering, 46(11):1346–1356, 1999. [62] L. Germond, M. Dojat, C. Taylor, and C. Garbay. A cooperative framework for segmentation of MRI brain scans. Artificial Intelligence in Medicine, 20(1):77–93, 2000. [63] C. Baillard, P. Hellier, and C. Barillot. Segmentation of brain 3D MR images using level sets and dense registration. Medical Image Analysis, 5(3):185–194, 2001. [64] D. E. Rex, D. W. Shattuck, R. P. Woods, K. L. Narr, E. Luders, K. Rehm, S. E. Stolzner, D. A. Rottenberg, and A. W. Toga. A meta-algorithm for brain extraction in MRI. NeuroImage, 23(2):625–637, 2004. [65] A. Mikheev, G. Nevsky, S. Govindan, R. Grossman, and H. Rusinek. Fully automatic segmentation of the brain from T1-weighted MRI using Bridge Burner algorithm. Journal of Magnetic Resonance Imaging, 27(6):1235–1241, 2008. [66] K. Rehm, K. Schaper, J. Anderson, R. Woods, S. Stoltzner, and D. Rottenberg. Putting our heads together: a consensus approach to brain/non-brain segmentation in T1-weighted MR volumes. NeuroImage, 22(3):1262–1270, 2004. [67] N. Otsu. Threshold selection method from gray-level histograms. IEEE Transactions on Systems Man and Cybernetics, 9(1):62–66, 1979. [68] H. Wendland. Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Advances in Computational Mathematics, 4(1):389–396, 1995. [69] M. Fornefett, K. Rohr, and H. S. Stiehl. Radial basis functions with compact support for elastic registration of medical images. Image and Vision Computing, 19(1-2):87–96, 2001. [70] J. M. Lee, U. Yoon, S. H. Nam, J. H. Kim, I. Y. Kim, and S. I. Kim. Evaluation of automated and semi-automated skull-stripping algorithms using similarity index and segmentation error. Computers in Biology and Medicine, 33(6):495–507, 2003. [71] K. Boesen, K. Rehm, K. Schaper, S. Stoltzner, R. Woods, E. Luders, and D. Rottenberg. Quantitative comparison of four brain extraction algorithms. NeuroImage, 22(3):1255–1261, 2004. [72] D. W. Shattuck and R. M. Leahy. BrainSuite: an automated cortical surface identifi-cation tool. Medical Image Analysis, 6(2):129–142, 2002. [73] S. Smith, P. R. Bannister, C. Beckmann, M. Brady, S. Clare, D. Flitney, P. Hansen, M. Jenkinson, D. Leibovici, B. Ripley, M. Woolrich, and Y. Y. Zhang. FSL: new tools for functional and structural brain image analysis. NeuroImage, 13(6):S249–S249, 2001. [74] H. G. Schnack, N. E. M. van Haren, H. E. H. Pol, M. Picchioni, M. Weisbrod, H. Sauer, T. Cannon, M. Huttunen, R. Murray, and R. S. Kahn. Reliability of brain volumes from multicenter MRI acquisition: a calibration study. Human Brain Mapping, 22(4):312–320, 2004. [75] P. A. Freeborough and N. C. Fox. Modeling brain deformations in Alzheimer disease by fluid registration of serial 3D MR images. Journal of Computer Assisted Tomography, 22(5):838–843, 1998. [76] A. Oatridge, J.V. Hajnal, and G.M. Bydder. Registration and subtraction of serial magnetic resonance images of the brain: image interpretation and clinical applications. Medical Image Registration. CRC, Boca Raton, 2001. [77] P. M. Thompson, J. N. Gledd, R. P. Woods, D. MacDonald, A. C. Evans, and A. W. Toga. Growth patterns in the developing brain detected by using continuum mechanical tensor maps. Nature, 404(6774):190–193, 2000. [78] D. Rey, G. Subsol, H. Delingette, and N. Ayache. Automatic detection and segmentation of evolving processes in 3D medical images: application to multiple sclerosis. Medical Image Analysis, 6(2):163–179, 2002. [79] A. C. Evans, D. L. Collins, and B. Milner. An MRI-based stereotactic atlas from 250 young normal subjects. In Society for Neuroscience (Abstract), volume 18, pages 408–408, 1992. [80] J. Talairach and P. Tournoux. Co-planar stereotaxic atlas of the human brain. Thieme Medical Publishers, New York, 1988. [81] D. L. Collins, C. J. Holmes, T. M. Peters, and A. C. Evans. Automatic 3-D modelbased neuroanatomical segmentation. Human Brain Mapping, 3(3):190–208, 1995. [82] T. F. Cootes, C. Beeston, G. J. Edwards, and C. J. Taylor. A unified framework for atlas matching using active appearance models. Lecture Notes in Computer Science, 1613:322–333, 1999. [83] J. Ashburner, P. Neelin, D. L. Collins, A. Evans, and K. Friston. Incorporating prior knowledge into image registration. NeuroImage, 6(4):344–352, 1997. [84] R. P. Woods, S. T. Grafton, C. J. Holmes, S. R. Cherry, and J. C. Mazziotta. Automated image registration I: general methods and intrasubject, intramodality validation. Journal of Computer Assisted Tomography, 22(1):139–152, 1998. [85] M. Jenkinson, P. Bannister, M. Brady, and S. Smith. Improved optimization for the robust and accurate linear registration and motion correction of brain images. NeuroImage, 17(2):825–841, 2002. [86] D. L. G. Hill, P. G. Batchelor, M. Holden, and D. J. Hawkes. Medical image registration. Physics in Medicine and Biology, 46(3):R1–R45, 2001. [87] J. P. W. Pluim, J. B. A. Maintz, and M. A. Viergever. Mutual-information-based registration of medical images: a survey. IEEE Transactions on Medical Imaging, 22(8):986–1004, 2003. [88] B. Zitov’a and J. Flusser. Image registration methods: a survey. Image and Vision Computing, 21(11):977–1000, 2003. [89] R. Bajcsy and S. Kovaˇciˇc. Multiresolution elastic matching. Computer Vision, Graphics, and Image Processing, 46:1–21, 1989. [90] H. Lester and S. R. Arridge. A survey of hierarchical non-linear medical image registration. Pattern Recognition, 32(1):129–149, 1999. [91] D. Rueckert. Nonrigid registration: concepts, algorithms, and applications. Medical Image Registration. CRC, Boca Raton, 2001. [92] G. E. Christensen, R. D. Rabbitt, and M. I. Miller. Deformable templates using large deformation kinematics. IEEE Transactions on Image Processing, 5(10):1435–1447, 1996. [93] M. Bro-Nielsen and C. Gramkow. Fast fluid registration of medical images. Lecture Notes in Computer Science, 1131:267–276, 1996. [94] J. P. Thirion. Image matching as a diffusion process: an analogy with Maxwell’s demons. Medical Image Analysis, 2(3):243–260, 1998. [95] T. Vercauteren, X. Pennec, A. Perchant, and N. Ayache. Non-parametric diffeomorphic image registration with the demons algorithm. Lecture Notes in Computer Science, 4792:319–326, 2007. [96] P. J. Edwards, D. L. G. Hill, J. A. Little, and D. J. Hawkes. Deformation for image guided interventions using a three component tissue model. Lecture Notes in Computer Science, 1230:218–231, 1997. [97] J. Ashburner, J. L. R. Andersson, and K. J. Friston. High-dimensional image registration using symmetric priors. NeuroImage, 9(6):619–628, 1999. [98] M. Ferrant, A. Nabavi, B. Macq, F. A. Jolesz, R. Kikinis, and S. K. Warfield. Registration of 3-D intraoperative MR images of the brain using a finite-element biomechanical model. IEEE Transactions on Medical Imaging, 20(12):1384–1397, 2001. [99] D. G. Shen and C. Davatzikos. HAMMER: hierarchical attribute matching mechanism for elastic registration. IEEE Transactions on Medical Imaging, 21(11):1421–1439, 2002. [100] O. ˇ Skrinjar, A. Nabavi, and J. Duncan. Model-driven brain shift compensation. Medical Image Analysis, 6(4):361–373, 2002. [101] M. Sermesant, C. Forest, X. Pennec, H. Delingette, and N. Ayache. Deformable biomechanical models: application to 4D cardiac image analysis. Medical Image Analysis, 7(4):475–488, 2003. [102] G. R. Wu, F. H. Qi, and D. G. Shen. Learning-based deformable registration of MR brain images. IEEE Transactions on Medical Imaging, 25(9):1145–1157, 2006. [103] F. L. Bookstein. Principal warps: thin-plate splines and the decomposition of deformations. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(6):567–585, 1989. [104] J. A. Little, D. L. G. Hill, and D. J. Hawkes. Deformations incorporating rigid structures. Computer Vision and Image Understanding, 66(2):223–232, 1997. [105] N. Arad, N. Dyn, D. Reisfeld, and Y. Yeshurun. Image warping by radial basis functions: application to facial expressions. CVGIP-Graphical Models and Image Processing, 56(2):161–172, 1994. [106] D. Ruprecht, R. Nagel, and H. M‥uller. Spatial free-form deformation with scattered data interpolation methods. Computers and Graphics, 19(1):63–71, 1995. [107] B. Likar and F. Pernuˇs. A hierarchical approach to elastic registration based on mutual information. Image and Vision Computing, 19(1-2):33–44, 2001. [108] Y. Amit. A nonlinear variational problem for image matching. SIAM Journal on Scientific Computing, 15(1):207–224, 1994. [109] J. Ashburner and K. J. Friston. Nonlinear spatial normalization using basis functions. Human Brain Mapping, 7(4):254–266, 1999. [110] D. Rueckert, L. I. Sonoda, C. Hayes, D. L. G. Hill, M. O. Leach, and D. J. Hawkes. Nonrigid registration using free-form deformations: application to breast MR images. IEEE Transactions on Medical Imaging, 18(8):712–721, 1999. [111] J. Kybic, P. Th’evenaz, A. Nirkko, and M. Unser. Unwarping of unidirectionally distorted EPI images. IEEE Transactions on Medical Imaging, 19(2):80–93, 2000. [112] G. K. Rohde, A. Aldroubi, and B. M. Dawant. The adaptive bases algorithm for intensity-based nonrigid image registration. IEEE Transactions on Medical Imaging, 22(11):1470–1479, 2003. [113] J. P. W. Pluim, J. B. A. Maintz, and M. A. Viergever. Image registration by maximization of combined mutual information and gradient information. IEEE Transactions on Medical Imaging, 19(8):809–814, 2000. [114] S. Marsland, C. J. Twining, and C. J. Taylor. Groupwise non-rigid registration using polyharmonic clamped-plate splines. Lecture Notes in Computer Science, 2879:771–779, 2003. [115] O. Camara, G. Delso, O. Colliot, A. Moreno-Ingelmo, and I. Bloch. Explicit incorporation of prior anatomical information into a nonrigid registration of thoracic and abdominal CT and 18-FDG whole-body emission PET images. IEEE Transactions on Medical Imaging, 26(2):164–178, 2007. [116] J. S. Kim, J. M. Lee, Y. H. Lee, J. S. Kim, I. Y. Kim, and S. I. Kim. Intensity based affine registration including feature similarity for spatial normalization. Computers in Biology and Medicine, 32(5):389–402, 2002. [117] P. Cachier, E. Bardinet, D. Dormont, X. Pennec, and N. Ayache. Iconic feature based nonrigid registration: the PASHA algorithm. Computer Vision and Image Understanding, 89(2-3):272–298, 2003. [118] P. Hellier and C. Barillot. Coupling dense and landmark-based approaches for nonrigid registration. IEEE Transactions on Medical Imaging, 22(2):217–227, 2003. [119] T. M. Liu, D. G. Shen, and C. Davatzikos. Deformable registration of cortical structures via hybrid volumetric and surface warping. NeuroImage, 22(4):1790–1801, 2004. [120] C. J. Twining, T. Cootes, S. Marsland, V. Petrovic, R. Schestowitz, and C. J. Taylor. A unified information-theoretic approach to groupwise non-rigid registration and model building. Lecture Notes in Computer Science, 3565:1–14, 2005. [121] F. L. Bookstein. “Voxel-based morphometry” should not be used with imperfectly registered images. NeuroImage, 14(6):1454–1462, 2001. [122] J. Ashburner and K. J. Friston. Why voxel-based morphometry should be used. NeuroImage, 14(6):1238–1243, 2001. [123] B. A. Ardekani, S. Guckemus, A. Bachman, M. J. Hoptman, M. Wojtaszek, and J. Nierenberg. Quantitative comparison of algorithms for inter-subject registration of 3D volumetric brain MRI scans. Journal of Neuroscience Methods, 142(1):67–76, 2005. [124] C. Chu, G. Tan, and J. Ashburner. Improving voxel-based morphometry with diffeomorphic non-linear registration by DARTEL toolbox: conventional SPM normalization vs. DARTEL normalization. In The 14th Annual Meeting of the Organization for Human Brain Mapping, Melbourne, Australia, 2008. [125] W. H. Press, S. A. Teukolsky,W. T. Vetterling, and B. P. Flannery. Numerical recipes in C : the art of scientific computing. Cambridge University Press, New York, 1992. [126] A. V. Tuzikov, O. Colliot, and I. Bloch. Evaluation of the symmetry plane in 3D MR brain images. Pattern Recognition Letters, 24(14):2219–2233, 2003. [127] B. A. Ardekani, J. Kershaw, M. Braun, and I. Kanno. Automatic detection of the mid-sagittal plane in 3-D brain images. IEEE Transactions on Medical Imaging, 16(6):947–952, 1997. [128] Y. X. Liu, R. T. Collins, and W. E. Rothfus. Robust midsagittal plane extraction from normal and pathological 3-D neuroradiology images. IEEE Transactions on Medical Imaging, 20(3):175–192, 2001. [129] P. Kowalczyk and M. Mrozowski. Mesh-free approach to Hemholtz equation based on radial basis functions. In The 15th International Conference on Microwave, Radar and Wireless Communication, pages 702–705, Warsaw, Poland, 2004. [130] A. Collignon, F. Maes, D. Delaere, D. Vandermeulen, P. Suetens, and G. Marchal. Automated multimodality medical image registration using information theory. In Proceedings of the Information Processing in Medical Imaging, pages 263–274, 1995. [131] P. Viola and W. M. Wells. Alignment by maximization of mutual information. International Journal of Computer Vision, 24(2):137–154, 1997. [132] C. Studholme, D. L. G. Hill, and D. J. Hawkes. An overlap invariant entropy measure of 3D medical image alignment. Pattern Recognition, 32(1):71–86, 1999. [133] A. Roche, G. Malandain, X. Pennec, and N. Ayache. The correlation ratio as a new similarity measure for multimodal image registration. Lecture Notes in Computer Science, 1496:1115–1124, 1998. [134] J. P.W. Pluim, J. B. A. Maintz, and M. A. Viergever. Interpolation artefacts in mutual information-based image registration. Computer Vision and Image Understanding, 77(2):211–232, 2000. [135] J. Ashburner. A fast diffeomorphic image registration algorithm. NeuroImage, 38(1):95–113, 2007. [136] D. L. Collins, A. P. Zijdenbos, V. Kollokian, J. G. Sled, N. J. Kabani, C. J. Holmes, and A. C. Evans. Design and construction of a realistic digital brain phantom. IEEE Transactions on Medical Imaging, 17(3):463–468, 1998. [137] B. Karacali and C. Davatzikos. Simulation of tissue atrophy using a topology preserving transformation model. IEEE Transactions on Medical Imaging, 25(5):649–652, 2006. [138] O. Camara, M. Schweiger, R. I. Scahill, W. R. Crum, B. I. Sneller, J. A. Schnabel, G. R. Ridgway, D. M. Cash, D. L. G. Hill, and N. C. Fox. Phenomenological model of diffuse global and regional atrophy using finite-element methods. IEEE Transactions on Medical Imaging, 25(11):1417–1430, 2006. [139] O. Camara, J. A. Schnabel, G. R. Ridgway, W. R. Crum, A. Douiri, R. I. Scahill, D. L. G. Hill, and N. C. Fox. Accuracy assessment of global and local atrophy measurement techniques with realistic simulated longitudinal Alzheimer’s disease images. NeuroImage, 42(2):696–709, 2008. [140] A. U. Turken, S. Whitfield-Gabrieli, R. Bammer, J. V. Baldo, N. F. Dronkers, and J. D. E. Gabrieli. Cognitive processing speed and the structure of white matter pathways: convergent evidence from normal variation and lesion studies. NeuroImage, 42(2):1032–1044, 2008. [141] C. Steinbrink, K. Vogt, A. Kastrup, H. P. M‥uller, F. D. Juengling, J. Kassubeek, and A. Riecker. The contribution of white and gray matter differences to developmental dyslexia: insights from DTI and VBM at 3.0 T. Neuropsychologia, 46(13):3170–3178, 2008. [142] C. M. Adler, S. K. Holland, V. Schmithorst, M.Wilke, K. L.Weiss, H. Pan, and S. M. Strakowski. Abnormal frontal white matter tracts in bipolar disorder: a diffusion tensor imaging study. Bipolar Disorders, 6(3):197–203, 2004. [143] J. L. Beyer,W. D. Taylor, J. R. MacFall, M. Kuchibhatla, M. E. Payne, J. M. Provenzale, F. Cassidy, and K. R. R. Krishnan. Cortical white matter microstructural abnormalities in bipolar disorder. Neuropsychopharmacology, 30(12):2225–2229, 2005. [144] W. T. Regenold, C. A. D’Agostino, N. Ramesh, M. Hasnain, S. Roys, and R. P. Gullapalli. Diffusion-weighted magnetic resonance imaging of white matter in bipolar disorder: a pilot study. Bipolar Disorders, 8(2):188–195, 2006. [145] N. Makris, A. J. Worth, A. G. Sorensen, G. M. Papadimitriou, O. Wu, T. G. Reese, V. J. Wedeen, T. L. Davis, J. W. Stakes, V. S. Caviness, E. Kaplan, B. R. Rosen, D. N. Pandya, and D. N. Kennedy. Morphometry of in vivo human white matter association pathways with diffusion-weighted magnetic resonance imaging. Annals of Neurology, 42(6):951–962, 1997. [146] J. X. Liu, Y. S. Chen, and L. F. Chen. Fast and accurate registration techniques for affine and nonrigid alignment of mr brain images. Annals of Biomedical Engineering, DOI: 10.1007/s10439-009-9840-9, 2009. [147] G. Bush, P. Luu, and M. I. Posner. Cognitive and emotional influences in anterior cingulate cortex. Trends in Cognitive Sciences, 4(6):215–222, 2000. [148] A. M. C. Kelly, A. Di Martino, L. Q. Uddin, Z. Shehzad, D. G. Gee, P. T. Reiss, D. S. Margulies, F. X. Castellanos, and M. P. Milham. Development of anterior cingulate functional connectivity from late childhood to early adulthood. Cerebral Cortex, 19(3):640–657, 2009. [149] J. K. Zubieta, P. Huguelet, L. E. Ohl, R. A. Koeppe, M. R. Kilbourn, J. M. Carr, B. J. Giordani, and K. A. Frey. High vesicular monoamine transporter binding in asymptomatic bipolar I disorder: sex differences and cognitive correlates. American Journal of Psychiatry, 157(10):1619–1628, 2000. [150] T. E. J. Behrens, H. Johansen-Berg, M.W.Woolrich, S. M. Smith, C. A. M. Wheeler-Kingshott, P. A. Boulby, G. J. Barker, E. L. Sillery, K. Sheehan, O. Ciccarelli, A. J. Thompson, J. M. Brady, and P. M. Matthews. Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging. Nature Neuroscience, 6(7):750–757, 2003. [151] J. P. Aggleton and M. W. Brown. Episodic memory, amnesia and the hippocampalanterior thalamic axis. Behavioral and Brain Sciences, 22(3):425–489, 1999. [152] N. Makris, D. N. Kennedy, S. McInerney, A. G. Sorensen, R. Wang, V. S. Caviness, and D. N. Pandya. Segmentation of subcomponents within the superior longitudinal fascicle in humans: a quantitative, in vivo, DT-MRI study. Cerebral Cortex, 15(6):854–869, 2005. [153] H. S. Mayberg. Limbic-cortical dysregulation: a proposed model of depression. Journal of Neuropsychiatry and Clinical Neurosciences, 9(3):471–481, 1997. [154] T. Onitsuka, M. E. Shenton, D. F. Salisbury, C. C. Dickey, K. Kasai, S. K. Toner, M. Frumin, R. Kikinis, F. A. Jolesz, and R. W. McCarley. Middle and inferior temporal gyrus gray matter volume abnormalities in chronic schizophrenia: an MRI study. American Journal of Psychiatry, 161(9):1603–1611, 2004. [155] K. Nakamura, R. Kawashima, K. Ito, M. Sugiura, T. Kato, A. Nakamura, K. Hatano, S. Nagumo, K. Kubota, H. Fukuda, and S. Kojima. Activation of the right inferior frontal cortex during assessment of facial emotion. Journal of Neurophysiology, 82(3):1610–1614, 1999. [156] G. S. Malhi, J. Lagopoulos, P. Sachdev, P. B. Mitchell, B. Ivanovski, and G. B. Parker. Cognitive generation of affect in hypomania: an fMRI study. Bipolar Disorders, 6(4):271–285, 2004. [157] M. Phillips, C. Ladouceur, and W. Drevets. A neural model of voluntary and automatic emotion regulation: implications for understanding the pathophysiology and neurodevelopment of bipolar disorder. Molecular Psychiatry, 13(9):833–857, 2008. [158] G. S. Alexopoulos, D. N. Kiosses, S. J. Choi, C. F. Murphy, and K. O. Lim. Frontal white matter microstructure and treatment response of late-life depression: a preliminary study. American Journal of Psychiatry, 159(11):1929–1932, 2002. [159] R. B. Sassi, P. Brambilla, J. P. Hatch, M. A. Nicoletti, A. G. Mallinger, E. Frank, D. J. Kupfer, M. S. Keshavan, and J. C. Soares. Reduced left anterior cingulate volumes in untreated bipolar patients. Biological Psychiatry, 56(7):467–475, 2004. [160] S. M. Smith, M. Jenkinson, H. Johansen-Berg, D. Rueckert, T. E. Nichols, C. E. Mackay, K. E. Watkins, O. Ciccarelli, M. Z. Cader, P. M. Matthews, and T. E. J. Behrens. Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. NeuroImage, 31(4):1487–1505, 2006.
|