跳到主要內容

臺灣博碩士論文加值系統

(44.211.84.185) 您好!臺灣時間:2023/05/30 06:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林俊豪
研究生(外文):Lin,Chun-Hao
論文名稱:利用光激發於結合光子晶體的類型二量子井之研究
論文名稱(外文):Study of Type II QW with photonic crystall structure by optical pumping
指導教授:李建平李建平引用關係
指導教授(外文):Lee,Chien-Ping
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子工程系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:98
語文別:英文
論文頁數:50
中文關鍵詞:光子晶體類型二
外文關鍵詞:photonic crystaltype II
相關次數:
  • 被引用被引用:0
  • 點閱點閱:191
  • 評分評分:
  • 下載下載:41
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文為結合光子晶體與第二型量子井之研究。第二型量子井因其介面放光機制,發光效率較小,但藉由光子晶體共振腔結構,可耦合出頻寬窄且強度高的共振模態。利用電子束微影術,乾式蝕刻及選擇性濕式蝕刻成功製作出光子晶體共振腔結構,且此透過適當設計的光子晶體共振腔具有高品質因子特性。實驗中,在溫度77K 下,我們利用顯微光激發螢光量測系統成功得到具有高達15170品質因子的單模共振模態。從以知文獻中,這是在結合光子晶體共振腔結構的第二型量子井材料中,第一次量測到具有高達104 級數的品質因子。
In this research, we studied the light emission characteristics of GaAs/GaAsSb type II
heterostructures in a photonic nanocavity. In a type II heterostructure, because of the
spatial separation of electrons and holes, light emission efficiency is typically very
small. However, by coupling the emission peak with the cavity mode, we are able to
obtain sharp and intense emission from the type II heterostructure. The nanocavity
was fabricated in a suspended thin film photonic crystal. The defect cavity was
specially designed to have the desired cavity mode with a high Q value. E-beam
lithography, dry etching and selective wet chemical etching were used to fabricate the
nanocavity. The emission spectrum was measured by a micro-photoluminescence
system using optical pumping. At 77K, an emission peak at 1004nm with a very high
Q factor of 15170 was obtained. To our knowledge, this is the first time that a type-II
heterostructure emission was coupled to a photonic nanocavity with a very sharp
emission and a high Q value.
Chapter 1 Introduction----------------------------------1
Chapter 2 Fundamental theorem of Type II quantum well
and photonic crystal cavity structure-------------------3
2.1Type II quantum well blue-shift characteristic-------3
2.2 Photonic crystal fundamental theorem----------------4
2.3 Two dimensional (2D) photonic crystal cavity slab
characteristics-----------------------------------------6
2.4 Calculation of effective refractive index----------13
Chapter 3 Fabrication process and measurement system---18
3.1 GaAs-GaAs0.7Sb0.3 Type II tri-layer quantum well(QW)
structure----------------------------------------------18
3.2 Photonic crystal fabrication-----------------------19
3.3 Micro photoluminescence (μ-PL) measurement system--25
Chapter 4 Design of photonic crystal and simulation
results------------------------------------------------27
4.1 Design of photonic crystal resonant cavity---------28
4.2 The value of Quality Factor of each resonant cavity36
4.3 Experiment measurements and discussion-------------39
Chapter 5 Conclusions and future works-----------------44
Reference----------------------------------------------47
Autobiography------------------------------------------50
[1] Andrew S. Tanenbaum, “Computer Networks”, Upper Saddle River, N.J.
Prentice Hall PTR, 1996
[2] V. Swaminathan, “Material Aspects of GaAs and InP Based Structures”,
Prentice-Hall, Inc., 1991
[3] E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and
Electronics”, Phys. Rev. Lett. 58, 2059, 1987.
[4] S. John, “Strong localization of photons in certain disordered dielectric
superlattices”, Phys. Rev. Lett. 58, 2486, 1987.
[5] O. Painter et al., “Two-dimensional photonic band-gap defect mode Laser,”
Science 284, 1819, 1999
[6] Yoshihiro Akahane et al., “High-Q photonic nanocavity in a two-dimensional
photonic crystal” Nature 425, 944, 2003
[7] K. Noazki et al. “Laser characteristics with ultimate-small modal volume in
photonic crystal salb point-shift nanolasers”, Appl. Phys. Lett, 88, 211101, 2006
[8] T. Anan et al, “GaAsSb: A novel material for 1.3μm VCSELs,” Electronics Lett.
34, 2127, 1998
[9] O. Blum and J. F. Klem, “Characteristics of GaAsSb single-quantum-well-lasers
emitting near 1.3μm,” IEEE Photonics Tech. Lett.12, 771,2000
[10] S. W. Ryu and P. D. Dapkus, “Low threshold current density GaAsSbquantum
well lasers grown by metal organic chemical vapor deposition on GaAs substrates,”
Electronics Lett. 36, 1387,2000
[11] P.-W. Liu, G.-H. Liao and H.-H. Lin, “1.3 lm GaAs=GaAsSb quantum well
laser grown by solid source molecular beam epitaxy”, Electronics Lett. 40, 177, 2004
[12] T.Anan et al, “Room-temperature pulsed operation of GaAsSb/GaAsvertical-cavity surface emitting lasers”, Electronics Lett. 35, 903, 2001
[13] F. Quochi et al, “Continuous-Wave Operation of a 1.3-μm GaAsSb–GaAs
Quantum-well vertical-cavity surface-emitting Laser at room temperature”, IEEE
Photonic Tech Lett. 13, 921, 2001
[14] T.Baier et al, “Type-II band alignment in Si/Si1-xGex quantum wells from
photoluminescence line shifts due to optically induced band-bending effects:
Experiment and theory”, Physics Review B 50, 15190, 1994
[15] W.W. Chow, H.C. Schneider, “Charge-separation effects in 1.3 mm GaAsSb
type-II quantum-well laser gain”, Appl. Phys. Lett. 78, 4100, 2001
[16] D.S. Jiang et al., “Structural and optical properties of GaAsSb/GaAs
heterostructure quantum wells”, Journal of Crystal Growth 268, 336, 2004
[17] Y. S. Chiu et al “Properties of photoluminescence in type-II GaAsSb/GaAs
multiple quantum wells”, Journal of Applied Physics 92, 5810, 2002
[18] John. D. Joannopoulos, Robert D. Meade, and Joshua N. Winn, Photonic crystals:
molding the flow of light, 2nd, New Jersey, 2008
[19] Fujita, M. et al., “Simultaneous inhibition and redistribution of spontaneous light
emission in photonic crystals”, Science 308, 1296, 2005
[20]K. Kounoike et al., “Investigation of spontaneous emission from quantum dots
embedded in two-dimensional photonic-crystal slab”, Electronics Letters 41, 1402,
2005
[21] Hong-Gyu Park et al., “Characteristics of Modified Single-Defect
Two-Dimensional Photonic Crystal Lasers”, IEEE Journal of Quantum Eelctronics 38,
1353, 2002
[22] N. Carlesson et al., “Design, nano-fabrication and analysis of near-infrared 2D
photonic crystal air-bridge structures”, Optical and Quantum Electronics 34, 123,
2002
[23] Jong-Hee Kim, Dae Ho Lim, and Gye Mo Yang, “Selective etching of
AlGaAs/GaAs structures using the solutions of citric acid/H2O2 and de-ionized
H2O/buffered oxide etch”, J. Vac. Sci. Technol. B 16, 558, ,1998”
[24] K. Sakoda, Optic Properties of Photonic Crystals, Springer, 2001
[25] D. G. Gevaux et al., “Enhancement and suppression of spontaneous emission by
temperature tuning InAs quantum dots to photonic crystal cavities”, Appl. Phys, Lett.
88, 131101, 2006
[26] K.S. Yee, ‘Numerical solution of initial boundary value problems involving
maxwell’s equations in isotropic media,’ IEEE Trans. Antennas Propag. , 14, 302,
1966
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top