|
[1] Andrew S. Tanenbaum, “Computer Networks”, Upper Saddle River, N.J. Prentice Hall PTR, 1996 [2] V. Swaminathan, “Material Aspects of GaAs and InP Based Structures”, Prentice-Hall, Inc., 1991 [3] E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics”, Phys. Rev. Lett. 58, 2059, 1987. [4] S. John, “Strong localization of photons in certain disordered dielectric superlattices”, Phys. Rev. Lett. 58, 2486, 1987. [5] O. Painter et al., “Two-dimensional photonic band-gap defect mode Laser,” Science 284, 1819, 1999 [6] Yoshihiro Akahane et al., “High-Q photonic nanocavity in a two-dimensional photonic crystal” Nature 425, 944, 2003 [7] K. Noazki et al. “Laser characteristics with ultimate-small modal volume in photonic crystal salb point-shift nanolasers”, Appl. Phys. Lett, 88, 211101, 2006 [8] T. Anan et al, “GaAsSb: A novel material for 1.3μm VCSELs,” Electronics Lett. 34, 2127, 1998 [9] O. Blum and J. F. Klem, “Characteristics of GaAsSb single-quantum-well-lasers emitting near 1.3μm,” IEEE Photonics Tech. Lett.12, 771,2000 [10] S. W. Ryu and P. D. Dapkus, “Low threshold current density GaAsSbquantum well lasers grown by metal organic chemical vapor deposition on GaAs substrates,” Electronics Lett. 36, 1387,2000 [11] P.-W. Liu, G.-H. Liao and H.-H. Lin, “1.3 lm GaAs=GaAsSb quantum well laser grown by solid source molecular beam epitaxy”, Electronics Lett. 40, 177, 2004 [12] T.Anan et al, “Room-temperature pulsed operation of GaAsSb/GaAsvertical-cavity surface emitting lasers”, Electronics Lett. 35, 903, 2001 [13] F. Quochi et al, “Continuous-Wave Operation of a 1.3-μm GaAsSb–GaAs Quantum-well vertical-cavity surface-emitting Laser at room temperature”, IEEE Photonic Tech Lett. 13, 921, 2001 [14] T.Baier et al, “Type-II band alignment in Si/Si1-xGex quantum wells from photoluminescence line shifts due to optically induced band-bending effects: Experiment and theory”, Physics Review B 50, 15190, 1994 [15] W.W. Chow, H.C. Schneider, “Charge-separation effects in 1.3 mm GaAsSb type-II quantum-well laser gain”, Appl. Phys. Lett. 78, 4100, 2001 [16] D.S. Jiang et al., “Structural and optical properties of GaAsSb/GaAs heterostructure quantum wells”, Journal of Crystal Growth 268, 336, 2004 [17] Y. S. Chiu et al “Properties of photoluminescence in type-II GaAsSb/GaAs multiple quantum wells”, Journal of Applied Physics 92, 5810, 2002 [18] John. D. Joannopoulos, Robert D. Meade, and Joshua N. Winn, Photonic crystals: molding the flow of light, 2nd, New Jersey, 2008 [19] Fujita, M. et al., “Simultaneous inhibition and redistribution of spontaneous light emission in photonic crystals”, Science 308, 1296, 2005 [20]K. Kounoike et al., “Investigation of spontaneous emission from quantum dots embedded in two-dimensional photonic-crystal slab”, Electronics Letters 41, 1402, 2005 [21] Hong-Gyu Park et al., “Characteristics of Modified Single-Defect Two-Dimensional Photonic Crystal Lasers”, IEEE Journal of Quantum Eelctronics 38, 1353, 2002 [22] N. Carlesson et al., “Design, nano-fabrication and analysis of near-infrared 2D photonic crystal air-bridge structures”, Optical and Quantum Electronics 34, 123, 2002 [23] Jong-Hee Kim, Dae Ho Lim, and Gye Mo Yang, “Selective etching of AlGaAs/GaAs structures using the solutions of citric acid/H2O2 and de-ionized H2O/buffered oxide etch”, J. Vac. Sci. Technol. B 16, 558, ,1998” [24] K. Sakoda, Optic Properties of Photonic Crystals, Springer, 2001 [25] D. G. Gevaux et al., “Enhancement and suppression of spontaneous emission by temperature tuning InAs quantum dots to photonic crystal cavities”, Appl. Phys, Lett. 88, 131101, 2006 [26] K.S. Yee, ‘Numerical solution of initial boundary value problems involving maxwell’s equations in isotropic media,’ IEEE Trans. Antennas Propag. , 14, 302, 1966
|