跳到主要內容

臺灣博碩士論文加值系統

(44.200.27.215) 您好!臺灣時間:2024/04/15 05:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳又正
研究生(外文):Chen, Yu-Cheng
論文名稱:對製程中引發應力之P-型通道金氧半電晶體的1/f雜訊研究
論文名稱(外文):A Study of Low Frequency Noise in process Induced Stress PMOSFETs
指導教授:陳明哲陳明哲引用關係
指導教授(外文):Chen, Ming-Jer
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子工程系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
畢業學年度:98
語文別:中文
論文頁數:56
中文關鍵詞:淺溝槽絕緣應力雜訊頻譜
外文關鍵詞:STI Stress1/f noise
相關次數:
  • 被引用被引用:0
  • 點閱點閱:319
  • 評分評分:
  • 下載下載:44
  • 收藏至我的研究室書目清單書目收藏:0
對於1.27奈米厚閘極之p型通導金氧半電晶體,可應用製程引發應力提升電洞的遷移率。由雜訊量測,我們可以得到淺溝槽絕緣引發應力下p型通導金氧半電晶體之缺陷密度及散射系數。我們可以由汲極電流得到通道寬和通道長方向的1/f 雜訊頻譜。在通道長方向,實驗結果顯示淺溝槽絕緣引發應力會導致更多的缺陷。然而,在通導寬方向,缺陷密度的降低主要來自邊緣結構的不同。同時,電性量測也可以告訴我們,應力並不是在通道寬方向唯一造成電洞的遷移率變化的原因。對雜訊和電性的量測實驗而言,反向窄通道效應(INCE)應是適合的解釋。
For 1.27nm thick gate oxide p-channel MOSFETs , the hole mobility booster by the means of process strained silicon (PPS) technique is applied. With the noise measurement, we can extract the trap density Nt and scattering factor α in STI compressive stress PMOSFETs. Specially, We characterize the 1/f noise power spectra density (PSD) of the drain current both in the channel width (W) and the channel length direction. In the channel length direction, the experiment results show that the STI induced stress can provide more interface trap density. However, in the channel width direction, the main decrease of the average trap density comes from the edge structure. The I-V measurement can also give us that the information the stress on narrow device is not the only reason for mobility change. With the combination of the Noise and I-V measurements, the inverse narrow channel effect may provide a appropriate interpretations to both experimental result.
Contents
Abstract (English)………………………………………………….(i)
Abstract (Chinese)…………………………………………………(ii)
Acknowledgement……………………………………………………(iii)
Contents……………………………………………………………..(iv)
List of Caption………………………………………………………(v)

Chapter 1 Introduction………………………….1

Chapter 2 Low Frequency Noise……………….3

2.1MOSFET Fundamentals -Current-Voltage Relations….3
2.2Noise and fluctuatio.............................6

2.2.1 The McWorther model (Number fluctuation)…...........6
2.2.2 The Hooge model (Mobility Fluctuation)………………..10
2.2.3The Unified model (Number Fluctuation with Mobility Correlation)…………………………………………………….12

Chapter 3 Experimental Setup………………..14

3.1 Introduction…………………………………………..14
3.2 Device Structure Description………………………..14
3.3 I-V Noise Experimental Setting……………………..15

Chapter4 Experimental Results and Detail Analysis………16
4.1 Noise Fitting Between (Vg-Vth) and Id/gm…….….16
4.2 Stress Simulation by Sentaurus TCAD Simulation and Mobility-Shift Extract Stress……………………….18
4.3 TEM Picture……………………………………….…20
4.4 Channel Length Direction related IV and Noise Experiment……………………………………………….21
4.4.1 Vth and Mobility Shift…………………………..21
4.4.2 Noise Data Analysis……………………………..21
4.5 Channel Width Direction related IV and Noise Experiment ………………………………………………22
4.5.1 Vth and Mobility shift…………………………...22
4.5.2 Noise Data Analysis……………………………..23

Chapter 5 Conclusion………………………….24

References……………………………….….…25
[1]S.E. Thompson, M. Armstrong, C. Athu, M. Alavi, M, Buehler, R. Chau, S. Cea, T.Ghani, G. Glass, T. Hoffman, C. H. Jan, C. Kenyon, J. Klaus, K. Kuhn , Z, Ma, B. Mctintyre , K. Mistry , A, Murthy, B. Obradovic, R. Nagisetty, P. Nguyen, S. Sivakumar, and R. Shaheed, IEEE Trans. Electron Devices 51 , 1790 (2004)

[2]K. K. Hung, P. K. Ko, C. Hu, and Y. C. Chen, IEEE Trans. Electron Devices 37, 654 (1990)

[3] M. J. Chen, T. K. Kang. Y. H. Lee, C. H. Liu , Y. J. Chang, and K. Y. Fu, J. Appl . Phys. 89, 648 (2001)

[4]Y. Taur and T. H. Ning, Fundamentals of modern VLSI Devices Cambridge University Press, Cambridge, (1998)

[5]A. L. McWorther, Semiconductor surface physics (University of Pennsylvania Press, Philadelphia, 1957).

[6]K. K. Hung, P. K. Ko, C. Hu, and Y. C. Cheng, “A unified model for the flicker noise in metal-oxide-semiconductor field-effect transistors”, IEEE Trans. Electron Devices 37, 654-665 (1990).

[7]S. Christensson, I. Lundstrom, and C. Svensson, “Low-frequency noise in MOS transistors-I theory”, Solid-State Electron. 11, 797-812 (1968).

[8]. E. Simoen, and C. Claeys, “On the flicker noise in submicron silicon MOSFETs”, Solid-State Electron. 43, 865-882 (1999).

[9]C. Surya and T. Y. Hsiang, “A thermal activation model for 1/f noise in Si-MOSFETs”, Solid-State Electron. 31, 959-964 (1988).


[10]G. Ghibaudo, and T. Boutchacha, “Electrical noise and RTS fluctuations in advanced CMOS devices”, Microelectron. Reliab. 42, 573-582 (2002).

[11] L. K. J. Vandamme, X. Li, and D. Rigaud, “1/f noise in MOS devices, mobility or number fluctuations? “, IEEE Trans. Electron Devices 41, 1936-1945 (1994).

[12] J. Chang, A. A. Abidi, and C. R. Viswanathan, “Flicker noise in CMOS transistors from subthreshold to strong inversion at various temperatures”, IEEE Trans. Electron Devices 41, 1965-1971 (1994)

[13] K. K. Hung, P. K. Ko, C. Hu, and Y. C. Cheng” A physics-based MOSFET noise model for circuit simulators” IEEE trans Electron device ,37 no.5, p1323 (1990)

[14]G. Ghibaudo, O. Roux, Ch. Nguyen-Duc, F. Balestra, and J. Brini, “Improved analysis of low-frequency noise in field-effect MOS transistors” , Phys. Stat. Sol. A 124, 571-581 (1991)

[15] Scott E. Thompson, Guangyu Sun, Youn Sung Choi, and Toshikazu Nishida, ”Uniaxial-process-induced strained-Si extending the CMOS roadmap” IEEE Trans. Electron Device VOL. 53, NO. 5 2006

[16] Ananda S. Roy and Christian C. Enz, “Critical Discussion on the Flatband Perturbation Technique for Calculating Low-Frequency Noise” IEEE Trans. Electron Device DEVICES, VOL. 53, NO. 10 2006

[17] Chih-Yuan Chan a, Yen-Chun Huang a, Jun-Wei Chen a, Shawn S.H. Hsu a,, Ying-Zong Juang “STI-to-gate distance effects on flicker noise characteristics in 0.13 um CMOS” Solid-State Electronics 52 1182–1187(2008)

[18] J.R Shih, Robin-Wung, Y.M. Sheu, H.C Lin, J.J. Wung, and Kenneth Wu , “Pattern Density Effect of Trench Isolation-Induced Mechanical Stresson Device Reliability in sub-0.lp.m Technology”IEEE 42'Annual International ReliabilityPhysics Symposium. Phoenix, 2004

[19]S.Matsuda, T.Sato, H.Yoshimura, Y.Takegawa, A.Sudo, I.Mizushima, Y.Tsunashima and Y.Toyoshima, “Novel Corner Rounding Process for Shallow Trench Isolation utilizing MSTS (Micro-Structure Transformation of Silicon)” P140 -IEDM 1998
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top