|
References of chapter 1 [1.1] S. K. Gupta, A. Raychowdhury and K. Roy, “Digital computation in subthreshold region for ultralow-power operation: a device-circuit-architecture codesign perspective,” Proceeding of the IEEE, Feb. 2010, pp. 160-190. [1.2] L. Chang, D. J. Frank, R. K. Montoye, S. J. Koester, B. L. Ji, P. W. Coteus, R. H. Dennard and W. Haensch, “Practical strategies for power-efficient computing technologies,” Proceeding of the IEEE, Feb. 2010, pp. 215-236. [1.3] B. H. Calhoun, J. F. Ryan, S. khanna, M. Putic, J. Lach, “Flexible circuits and architectures for ultralow power,” Proceeding of the IEEE, Feb. 2010, pp. 267-282. [1.4] A. P. Chandrakasa, D. C. Daly, D. F. Finchelstein, J. Kwong, Y. K. Ramadass, M. E. Sinangil, V. Sze and N. Verma, “Technologies for Ultradynamic voltage scaling,” Proceeding of the IEEE, Feb. 2010, pp. 191-214. [1.5] D. Markovic, C. C. Wang, L. P. Alarcon, T.-T. Liu, J. M. Rabaey, “Ultralow-power design in near-threshold region,” Proceeding of the IEEE, Feb. 2010, pp. 237-252. References of chapter 2 [2.1] E.G. Friedman, “Clock distribution networks in synchronous digital integrated circuits,” Proceedings of the IEEE, vol. 89, issue 5, May 2001, pp. 665-692. [2.2] D. Wann and M. Franklin, “Asynchronous and clocked control structures for VLSI based interconnection networks,” IEEE Trans. Comput., vol. C-32, Mar. 1983, pp. 778-783. [2.3] E. G. Friedman and S. Powell, “Design and analysis of a hierarchical clock distribution system for synchronous standard cell/macrocell VLSI,” IEEE J. Solid-State Circuits, vol. SC-21, Apr. 1986, pp. 240-246. [2.4] D. Mijuskovic, “Clock distribution in application specific integrated circuits,”Microelectron. J., vol. 8, July/Aug. 1987, pp. 15-27. [2.5] H. B. Bakoglu, J. T. Walker, and J. D. Meindl, “A symmetric clock-distribution tree and optimized high-speed interconnections for reduced clock skew in ULSI and WSI circuits,” Proc. IEEE Int. Conf. Computer Design, Oct. 1986, pp. 118-122. [2.6] M. Nekili, Y. Savaria, G. Bois, and M. Bennani, “Logic-based H-trees for large VLSI processor arrays: A novel skew modeling and high-speed clocking method,” in Proc. 5th Int. Conf. Microelectronics, Dec. 1993, pp.1-4. [2.7] H. B. Bakoglu, Circuits, Interconnections, and Packaging for VLSI. Reading, MA: Addison Wesley, 1990. [2.8] A. Chakraborty, K. Duraisami, A. Sathanur, P. Sithambaram, L. benini, A. Macii, E. Macii and M. Poncino, “Dynamic Thermal Clock Skew Compensation Using Tunable Delay Buffers,” IEEE Trans. on VLSI Systems, vol. 16, no. 6, June 2008, pp. 639-649. [2.9] T. Ragheb, A. Ricketts, M. Mondal, S. Kirolos, G. M. Links, V. Narayanan, and Y. Massoud, “Design of Thermally Robust Clock Trees Using Dynamically Adaptive Clock Buffers,” IEEE Transactions on Circuits and System I, vol. 56, Feb. 2009, pp. 374–383. [2.10] J. Koo, S. Ok, and C. Kim, “A low-power programmable DLL-based clock generator with wide-range antiharmonic lock,” IEEE Trans. on Circuits and Systems II, vol. 56, no. 1, Jan. 2009, pp. 21-25. [2.11] C.-Y. Yang, C.-H. Chang and W.-G. Wong, “A △ - Σ PLL-based spread-spectrum clock generator with a ditherless fractional topology,” IEEE Trans. on Circuits and Systems I, vol. 56, no. 1, Jan. 2009, pp. 51-59. [2.12] D. Shin, J. Koo, W.-J. Yun, Y. J. Choi and C. Kim, “A fast-lock synchronous multi-phase clock generator based on a time-to-digital converter,” IEEE International Symposium on Circuits and Systems, May 2009, pp 1-4. [2.13] W.-M. Lin, C.-C. Chen and S.-I. Liu, “An All-Digital Clock Generator for Dynamic Frequency Scaling,” in Int. Symp. VLSI Design, Automation and Test, July 2009, pp. 251-254. References of chapter 3 [3.1] B. H. Calhoun, S. Khanna, R. Mann, and J. Wang, “Sub-threshold circuit design with shrinking CMOS devices,” IEEE Int’l Symp. Circuits and Systems, May 2009, pp. 2541-2544. [3.2] B. H. Calhoun, A. Wang, and A. Chandrakasan, “Modeling and sizing for minimum energy operation in subthreshold circuits,” IEEE J. of Solid-State circuits, vol. 40, Sep. 2005, pp. 1778-1786. [3.3] Sutherland, B. Sproull, and D. Harris, Logical Effort: Designing Fast CMOS Circuits. San Francisco, CA: Morgan Kaufmann, 1999. [3.4] X. Y. Yu, V. G. Oklobdzija, and W. W. Walker, “Application of logical effort on design of arithmetic blocks,” Conference Record of the Thirty-Fifth Asilomar Conference on Signals, Systems and Computers, vol.1, Nov. 2001, pp. 872–874. [3.5] A. Kabbani, D. Al-Khalili, and A.J. Al-Khalili, “Delay macro modeling of CMOS gates using modified logical effort technique,”IEEE International Conference on Semiconductor Electronics, Dec. 2004, pp. 56-60. [3.6] B. Lasbouygues, S. Engels, R. Wilson, P. Maurine, N. Azemard, and D. Auvergne, “Logical effort model extension to propagation delay representation,”IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, vol. 25, no. 9, Sep. 2006, pp. 1677-1684. [3.7] C.-H. Wu, S.-H. Lin, H. Chiueh, “Logical Effort Model Extension with Temperature and Voltage Variations,” 14th Int’l Workshop on THERMINIC, Sep. 2008, pp. 85-88. [3.8] K. A. Bowman, B. L. Austin, J. C. Eble, X. Tang, and J. D. Meindl, “A Physical Alpha-Power Law MOSFET Model,” IEEE J. Solid-State Circuits, vol. 34, no.10, Oct. 1999, pp. 1410-1414. References of chapter 4 [4.1] S. Borkar, T. Karnik, S. Narendra, J. Tschanz, A. Keshavarzi, and V. De, “Parameter variation and impact on circuits and microarchitecture,” in Proc. Design Autom. Conf., 2003, pp. 338–342. [4.2] T. Ragheb, A. Ricketts, M. Mondal, S. Kirolos, G. M. Links, V. Narayanan, and Y. Massoud, “Design of Thermally Robust Clock Trees Using Dynamically Adaptive Clock Buffers,” IEEE Transactions on Circuits and System I, vol. 56, Feb. 2009, pp. 374–383. [4.3] W. Zhao and Y. Cao, “New generation of predictive technology model for sub-45 nm design exploration,” in Proc. Int. Symp. Qual. Electron.Des., 2006, pp. 585–590. [Online]. Available: http://www.eas.asu.edu/ptm [4.4] K. Shakeri and J. Meindl, “Temperature variable supply voltage for power reduction,” in Proc. ISVLSI, 2002, pp. 71–74. [4.5] H. Ajami, K. Banerjee, and M. Pedram, “Modeling and analysis of nonuniform substrate temperature effects on global ULSI interconnects,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 24, no. 6, Jun. 2001, pp. 849–861. [4.6] M. Cho, S. Ahmed, and D. Z. Pan, “TACO: Temperature aware clocktree optimization,” in Proc. ICCAD, 2005, pp. 582–587. [4.7] Macii, Thermal-Aware Clock Tree Design 2005. [4.8] V. Nawale and T. W. Chen, “Optimal useful clock skew scheduling in the presence of variations using robust ILP formulations,” presented at the IEEE/ACM Int. Conf. Computer-Aided Design, San Jose, CA, 2006. [4.9] S. Lee, S. Das, T. Pham, T. Austin, D. Blaauw and T. Mudge, “Reducing pipeline energy demands with local DVS and dynamic retiming,” presented at the Int. Symp. Low Power Electronics and Design, 2004. [4.10] Shi-Wen Chen, Ming-Hung Chang, Wei-Chih Hsieh, and Wei Hwang, “Fully on-chip temperature, process, and voltage sensors,” IEEE International Symposium on Circuits and Systems, May 2010. References of chapter 5 [5.1] J Y. Yu, C. C. Chung, W. C. Liao, and C. Y. Lee, “A sub-mW ulti-Tone CDMA Baseband Transceiver Chipset for Wireless Body Area Network Applications,” ISSCC Dig. Tech. papers, Feb. 2007, pp. 364-365. [5.2] A. C. W. Wong, D. M. Donagh, G. Kathiresan, O. C. Omeni, O. El-Jamaly, T. C-K. Chan, P. Paddan, and A. J. Burdett, “A 1V, Micropower System-on-Chip for Vital-Sign Monitoring in Wireless Body Sensor Network,” ISSCC Dig. Tech. Papers, Feb. 2008, pp. 138-139. [5.3] A. Shibayama, K. Nose, Sunao Torii, M. mizuno, and M. Edahiro, “Skew-Tolerant global synchronization based on periodically al-in-phase clocking for Multi-Core SOC platforms,” Symp. VLSI Circuits Digest of Technique Papers, June 2007, pp. 158-159. [5.4] J. H. Kim, Y. H. Kwak, M. Y. Kim, S. W. Kim and C. Kim, “A 120MHz-1.8GHz CMOS DLL-Based clock generator for dynamic frequency scaling,” IEEE J. Solid-State Circuis, vol. 41, Sep. 2006, pp. 2077-2082. [5.5] W.-M. Lin, C.-C. Chen and S.-I. Liu, “An All-Digital Clock Generator for Dynamic Frequency Scaling,” in Int. Symp. VLSI Design, Automation and Test, July 2009, pp. 251-254. [5.6] J. Koo, S. Ok, and C. Kim, “A low-power programmable DLL-based clock generator with wide-range antiharmonic lock,” IEEE Trans. on Circuits and Systems II, vol. 56, no. 1, Jan. 2009. pp. 21-25. [5.7] B. Mesgarzadeh and A. Alvandpour, “A low-power digital DLL-based clock generator in open-loop mode,” IEEE J. Solid-State Circuits, vol. 44, no. 6, July 2009, pp. 1907-1913. [5.8] J. Kwong, Y. K. Ramadass, N. Verma and A. P. Chandrakasan, “A 65 nm sub-Vt microcontroller with integrated SRAM and switched capacitor DC-DC converter,” IEEE J. Solid-State Circuis, vol. 44, no. 1, Jan. 2009, pp. 115-126. [5.9] B. Zhai, S. Hanson, D. Blaauw, and D. Sylvester, “Analysis and mitigation of variability in subthreshold design,” in Proc. Int. Symp. Low-Power Electronics and Design (ISLPED), Aug. 2005, pp. 20-25. [5.10] M. J. M. Pelgrom, A. C. J. Duinmaijer, and A. P. G. Welbers, “Matching properties of MOS transistors,” IEEE J. Solid-State Circuits, vol. 24, no. 5, Oct. 1989, pp. 1433-1439. [5.11] A. Rossi and G. Fucilli, “Nonredundant successive approximation register for A/D converters,” Electron. Lett., vol. 32, no. 12, Jun. 1996, pp. 1055-1057. [5.12] T. Matano, Y. Takai, T. Takahashi, Y. Sakito, I. Fujii, Y. Takaishi, H. Fujisawa, S. Kubouchi, S. Narui, K. Arai, M. morino, M. Nakamura, S. Miyatake, T. Sekiguchi, and K. Koyama, “A 1-Gb/s/pin 512-Mb DDRII SDRAM using a digital DLL and a slew-rate-controlled output buffer,” IEEE J. Solid-State Circuits, vol. 38, no. 5, May 2003, pp. 762-768. [5.13] R.-J. Yang and S.-I. Liu, “A 40-550 MHz Harmonic-Free All-Digital Delay-Locked Loop Using a Variable SAR Algorithm,” IEEE J. Solid-State Circuits, vol. 42, no. 2, Feb. 2007, pp. 361-373. [5.14] R. Farjad-Rad, W. Dally, H. T. Ng, R. Senthinathan, M.-J. E. Lee, R. Rathi, and J. Poulton, “A low-power multiplying DLL for low-jitter multigigahertz clock generator in highly integrated digital chips,” IEEE J. Solid-State Circuits, vol. 37, Dec. 2002, pp. 1804-1812.
|