(3.235.11.178) 您好!臺灣時間:2021/03/05 15:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳雅婷
研究生(外文):Chen, Ya-Ting
論文名稱:二氧化矽薄膜所誘發之選擇性混合效應對砷化銦鎵量子井之影響
論文名稱(外文):Studies of SiO2-Induced Selective Disordering of InGaAs/GaAs Quantum Wells
指導教授:李建平李建平引用關係
指導教授(外文):Lee, Chien-Ping
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:英文
論文頁數:57
中文關鍵詞:量子井混合效應
外文關鍵詞:InGaAs/GaAs quantum wellintermixinginterdiffusionSiO2-induced intermixing
相關次數:
  • 被引用被引用:0
  • 點閱點閱:137
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文致力於研究介電薄膜所誘發之選擇性量子井混合效應。我們將砷化銦鎵量子井異質結構之樣品,鍍上二氧化矽或二氧化鈦薄膜,利用高溫快速熱退火引發量子井混合效應,並量測低溫之激發光譜,以探討其光學性質。經由900 ℃ 高溫快速熱退火之處理,二氧化矽薄膜能增強砷化銦鎵量子井之混合效應,其能量藍移現象可高達100 meV;相對之下,二氧化鈦薄膜對於砷化銦鎵量子井之混合效應展現抑制的效果,產生9.5 meV之能量紅移現象。此外,我們更在二氧化矽薄膜上設計次微米大小之圓形圖樣,藉以誘發部分選擇性量子井混合。圖樣之大小與激發光源之強度,皆會影響部分選擇性量子井混合效應,並可由其對應之低溫激發光譜觀察出趨勢。我們推論,在每個退火溫度條件下,皆有其相對應之特定最小有效直徑;並從能量空間及實際空間的觀點分析電子分佈,進一步解讀不同激發光源強度下之低溫激發光譜。
In this thesis, we aimed at investigating the selective area quantum well intermixing induced by dielectric capping layers. The InGaAs/GaAs quantum well heterostructures were capped with SiO2 and TiO2 films, and high-temperature rapid thermal annealing was applied subsequently. The optical properties were examined by measuring photoluminescence and micro-photoluminescence spectra at 77 K. When the rapid thermal annealing was processed at 900 ℃, an energy blue-shift as large as 100 meV was observed from the SiO2-enhanced quantum well intermixing, and a meaningful energy red-shift of 9.25 meV was offered with the help of TiO2 as an inhibitor of the thermal-induced atomic interdiffusion. Furthermore, the patterns with circular apertures which are sub-micrometer in diameter were fabricated on the SiO2 capping layers as masks. From the aperture-dependent micro-PL spectra, we suggest that the minimum effective diameter of apertures is limited to a specific value for each RTA temperature. We also demonstrated the distribution of electrons from the points of view both in the real space and in the energy space so as to explain the excitation power-dependent transformation of emission peaks. The controllable selective area InGaAs/GaAs quantum well intermixing was successfully accomplished on the sub-micrometer scale with the assistance of patterned SiO2 capping layer, and this would pave a way to realize the monolithic integration of optoelectronic devices.
ABSTRACT (Chinese) ……………………………………………………… i
ABSTRACT (English) ……………………………………………………… ii
ACKNOWLEDGEMENTS ………………………………………………… iii
CONTENTS ………………………………………………………………… iv
NOTATIONS ………………………………………………………………… vi


CHAPTER 1 INTRODUCTION
1.1 Selective Area Quantum Well Intermixing ……………………………………… 1
1.2 Previous Studies ………………………………………………………………… 2
1.3 Our Approaches and What We Have Done
1.3.1 Dielectric Capping Film Induced Selective Interdiffusion ……………… 3
1.3.2 Selective Quantum Well Intermixing on the Submicron Scale …………… 4

CHAPTER 2 MECHANISM FOR SiO2 ENHANCED INTERMIXING AND ITS INFLUENCE ON ENERGY BAND PROFILE
2.1 Vacancy-Assisted InGaAs/GaAs Quantum Well Intermixing
2.1.1 Diffusion Mechanism ……………………………………………………… 5
2.1.2 Vacancy-Enhanced Quantum Well Interdiffusion …………………………… 7
2.1.3 SiO2-Induced InGaAs/GaAs Quantum Well Interdiffusion
2.1.3.1 Vacancy Generation via Thermal Treatment ………………………… 8
2.1.3.2 Strain-Dependent Vacancy Distribution …………………………… 10
2.1.3.3 Vacancy-Assisted In-Ga Interdiffusion …………………………… 12
2.2 Band Profile Modification via In Atom Diffusion ……………………………… 14

CHAPTER 3 RESULTS AND DISSCUSSION
3.1 Capping Layer-Induced Energy Shift via Thermal Treatment
3.1.1 Influence of SiO2 Capping Layer ………………………………………… 17
3.1.2 Influence of TiO2 Capping Layer ………………………………………… 21
3.2 Selective Quantum Well Intermixing via Patterned SiO2 Layer
3.2.1 Spatial Resolution of Micro-Photoluminescence ………………………… 26
3.2.2 Aperture Size-Dependent Energy Shift …………………………………… 30
3.2.3 Excitation Power-Dependent Emission Wavelength ……………………… 37

CHAPTER 4 CONCLUSIONS ………………………………………………… 46


REFERENCE …………………………………………………………………………… 47

APPENDIX ……………………………………………………………………………… 49

VITA ……………………………………………………………………………………… 56
[1] N. N. Ledentsov, et al., "Quantum-dot heterostructure lasers," Ieee Journal of Selected Topics in Quantum Electronics, vol. 6, pp. 439-451, May-Jun 2000.
[2] V. M. Ustinov and A. E. Zhukov, "GaAs-based long-wavelength lasers," Semiconductor Science and Technology, vol. 15, pp. R41-R54, Aug 2000.
[3] A. D. Yoffe, "Semiconductor quantum dots and related systems: electronic, optical, luminescence and related properties of low dimensional systems," Advances in Physics, vol. 50, pp. 1-208, Jan 2001.
[4] J. H. Marsh, "Quantum-well intermixing," Semiconductor Science and Technology, vol. 8, pp. 1136-1155, Jun 1993.
[5] S. Mokkapati, et al., "Controlling the properties of InGaAs quantum dots by selective-area epitaxy," Applied Physics Letters, vol. 86, p. 3, Mar 2005.
[6] J. Tatebayashi, et al., "Area-controlled growth of InAs quantum dots and improvement of density and size distribution," Applied Physics Letters, vol. 77, pp. 3382-3384, Nov 2000.
[7] P. Lever, et al., "Impurity free vacancy disordering of InGaAs quantum dots," Journal of Applied Physics, vol. 96, pp. 7544-7548, Dec 2004.
[8] Y. M. Park, et al., "Interdiffusion and structural change in an InGaAs dots-in-a-well structure by rapid thermal annealing," Journal of Applied Physics, vol. 96, pp. 5496-5499, Nov 2004.
[9] D. G. Deppe and N. Holonyak, "Atom diffusion and impurity-induced layer disordering in quantum well III-V semiconductor heterostructues," Journal of Applied Physics, vol. 64, pp. R93-R113, Dec 1988.
[10] H. Leier, et al., "Mass and dose dependence of ion-implantation-induced intermixing of GaAs/GaAlAs quantum-well structures," Journal of Applied Physics, vol. 67, pp. 1805-1813, Feb 1990.
[11] C. J. McLean, et al., "Layer selective disordering by photoabsorption-induced thermal-diffusion in InGaAs/InP based multiquantum well structures," Electronics Letters, vol. 28, pp. 1117-1119, Jun 1992.
[12] J. J. Dubowski, et al., "Laser-induced InAs/GaAs quantum dot intermixing," Applied Physics Letters, vol. 77, pp. 3583-3585, Nov 2000.
[13] P. Bhattacharya, et al., "Quantum dot opto-electronic devices," Annual Review of Materials Research, vol. 34, pp. 1-40, 2004.
[14] S. Burkner, et al., "Process parameter dependence of impurity-free interdiffusion GaAs/AlxGa1-xAs and InyGa1-yAs/GaAs multiple-quantum wells," Journal of Electronic Materials, vol. 24, pp. 805-812, Jul 1995.
[15] A. S. W. Lee, et al., "Comparison of quantum well intermixing in GaAs structures using a low temperature grown epitaxial layer or a SiO2 cap," Journal of Applied Physics, vol. 100, Jul 2006.
[16] H. S. Lee, et al., "Selective area wavelength tuning of InAs/GaAs quantum dots obtained by TiO2 and SiO2 layer patterning," Applied Physics Letters, vol. 94, p. 3, Apr 2009.
[17] L. Fu, et al., "Suppression of interdiffusion in InGaAs/GaAs quantum dots using dielectric layer of titanium dioxide," Applied Physics Letters, vol. 82, pp. 2613-2615, Apr 2003.
[18] K. Kaviani, et al., "Growth of high-quality strained AlxGa1-xAs/In0.26Ga0.74As/AlzGa1-zAs quantum-wells and the effect of Silicon-Nitride encapsulation and rapid thermal annealing," Journal of Vacuum Science & Technology B, vol. 10, pp. 793-796, Mar-Apr 1992.
[19] J. F. Hazell, et al., "Intermixing of InGaAsP/InGaAsP quantum-well structures using dielectric films," Semiconductor Science and Technology, vol. 16, pp. 986-991, Dec 2001.
[20] J. Beauvais, et al., "Suppression of bandgap shifts in GaAs/AlGaAs quantu-wells using Strontium Fluoride caps," Electronics Letters, vol. 28, pp. 1670-1672, Aug 1992.
[21] P. N. K. Deenapanray and C. Jagadish, "Effect of stress on impurity-free quantum well intermixing," Electrochemical and Solid State Letters, vol. 4, pp. G11-G13, Feb 2001.
[22] J. S. Tsang, et al., "Compositional disordering of InGaAs/GaAs heterostructures by low-temperature-grown GaAs layers," Journal of Applied Physics, vol. 79, pp. 664-670, Jan 1996.
[23] S. V. Zaitsev, et al., "Production of quantum dots by selective interdiffusion in CdTe/CdMgTe quantum wells," Semiconductors, vol. 41, pp. 1339-1344, Nov 2007.



連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔