(3.231.166.56) 您好!臺灣時間:2021/03/08 11:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林文新
研究生(外文):Lin, Wen-Shin
論文名稱:氟應用於二氧化鉿儲存層非揮發性記憶體之研究
論文名稱(外文):Study on Fluorine Applied to Nonvolatile Memory Using HfO2 as Charge Trapping Layer
指導教授:羅正忠羅正忠引用關係
指導教授(外文):Lou, Jen-Chung
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:英文
論文頁數:74
中文關鍵詞:四氟化碳電將處理二氧化鉿非揮發性記憶體
外文關鍵詞:CF4 plasma treatmentfluorineHfO2Nonvolatile Memory
相關次數:
  • 被引用被引用:0
  • 點閱點閱:161
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
為了節省晶圓成本,增加產率,降低操作電壓,所製作的元件尺寸不斷微縮,其中非揮發性記憶體(NVM)也是如此,高密度記憶單元、低功率消耗、快速讀寫操作、以及良好的可靠(Reliability),又是在微縮之下的目標與方向。其中可靠度的改善一直是許多論文所研究的議題,以資料保存時間(Retention)和耐操度(Endurance)的改良為主要方向。
本篇論文中,閘極採用乾氧成長二氧化矽(dry SiO2)作為穿隧氧化層(tunnel oxide),其中以二氧化鉿取代傳統的SONOS結構的氮化矽(Si3N4)作為儲存層,並在沉積完二氧化鉿後,進行四氟化碳電漿處理(CF4 plasma treatment)技術將氟擴散進入二氧化鉿,接著沉積
由四乙氧基矽烷(TEOS)組成的二氧化矽作為阻擋氧化層(blocking oxide)。雖然二氧化鉿寫入時比氮化矽擁有較大的記憶窗口(window)
,但二氧化鉿在資料保存時間上的表現是遜色於氮化矽的。為了改善資料保存時間,我們進行四氟化碳電漿處理,將氟的擴散進入二氧化鉿,氟與鉿鍵結形成Hf-F,因此二氧化鉿儲存層中低能階的陷阱被修補,而高能階陷阱仍留下,減少記憶體在寫入後儲存電荷逃逸漏電之現象,進而得到較佳的資料保存時間。
我們將會電容和SOHOS記憶體元件作基本電性量測,藉此獲取資料保存時間趨勢。在材料分析方面,也使用X光光電子能譜術(XPS),分析將氟擴散的電漿處理前後,是否形成鉿與氟鍵結情形;使用二次離子質譜儀(SIMS)分析顯示氟所分佈的位置。
根據實驗結果,確實驗證四氟化碳電漿處理,確實地改善了以二氧化鉿作為儲存層的非揮發性記憶體,在資料保存時間上的不足,此外,在製程中加上四氟化碳電漿處理,合用於傳統SONOS記憶體製程,並且屬於較低溫的製程,不會增加過多二氧化鉿形成結晶的負擔,因此我們認為這樣的製程技術對未來的記憶體元件是可以期待與考慮使用的。
In order to save the cost, increase the throughput and decrease operation voltage, many kinds of the devices are continually scaling. Undoubtedly, the nonvolatile memory (NVM) device is one of the scaling devices. Moreover, Current requirements of nonvolatile memory are the high density cells, low-power consumption, high-speed operation and good reliability for the scaling down devices. There are many studies that discuss how to improve the reliability including retention and endurance.
In this study, silicon oxide (SiO2) is grown for tunnel oxide layer. The trapping layer of traditional SONOS structure is silicon nitride (Si3N4) which is replaced with hafnium oxide (HfO2). After HfO2 is deposited, we proceed to CF4 plasma treatment. Then, SiO2, composed of tetraethoxy silane (TEOS), is deposited as blocking oxide. While the memory window of HfO2 is larger than Si3N4, the retention performance
-ivof
HfO2 is worse than Si3N4. In order to improve the retention performance, we use CF4 plasma treatment to diffuse fluorine into HfO2 after HfO2 is deposited. The fluorine is incorporated into the HfO2 trapping layer and then formed of Hf-F bonding with hafnium. Because of CF4 plasma treatment, the shallow traps would be recovered but the deep traps would still be left. The carriers’ de-trapping effect is decreased after program operation. Hence, the retention performance would be better.
We probe into the electrical characteristics of the capacitors and the SOHOS memory devices. From fundamental electric characteristic data, we could know retention information. In materials analysis, X-ray photoelectron spectroscopy (XPS) is used to analyze the devices which were carried out CF4 plasma treatment and confirm if there is the Hf-F bonding. Besides, the secondary ion mass spectroscopy (SIMS) analyses show depth profiles of fluorine in the devices.
According to the experiment results, the retention performance of NVM, carried out CF4 plasma treatment, is actually improved. Moreover, CF4 plasma treatment is compatible with the conventional SONOS memory process. It is also the low thermal budget process which would not make the HfO2 film more crystallized. Therefore, we all consider the process technology is potential and expectable gradually for the memory device in the future.
Contents
Chinese Abstract----------------------------------i
English Abstract----------------------------------iii
Acknowledgment (Chinese)--------------------------v
Content-------------------------------------------vi
Table Captions------------------------------------viii
Figure Captions-----------------------------------ix
Chapter.1 Introduction
1.1 General Background----------------------------1
1.2 Motivation------------------------------------10
1.3 Organization of This Thesis-------------------12
Chapter.2 Basic Principles of Nonvolatile Memory
2.1 Program/Erase Operation Mechanisms------------19
2.2 Reliability of Nonvolatile Memory-------------25
2.3 High-k Material as Trapping Layer-------------28
Chapter.3 Device Fabrication and Characterization
3.1 Introduction----------------------------------36
3.2 Experimental Procedures-----------------------37
3.3 Results and Discussions-----------------------40
3.4 Summary---------------------------------------45
Chapter.4 Conclusion and Suggestion for Future Work
4.1 Conclusion------------------------------------63
4.2 Suggestions of the Future Work----------------64
*Reference----------------------------------------65
Reference
[1] D. Kahng and S. M. Sze, “A floating gate and its application to memory devices”, Bell Syst. Tech, J., 46, 1288 (1967).
[2] Seiichi Aritome, “Advanced Flash Memory Technology and Trends for Files Storage Application”, pp.763, IEDM 2002.
[3] D.J. Jung, “Highly Manufacturable 1T1C 4Mb FRAM with Novel Sensing Scheme”, pp.279-282, IEDM 1999.
[4] “Advanced Memory Technology and Architecture”, short course, IEDM 2001.
[5] S. Lai and T. Lowrey, “OUM- A 180nm Nonvolatile Memory Cell Element Technology for Stand Alone and Embedded Applications”, pp.803, IEDM 2001.
[6] Paolo Cappelletti, “Flash Memories”, Kluwer Academic Publishers, 1999.
[7] Pier Luigi Rolandi et al, “A 4-bit/cell Flash Memory Suitable for Stand-Alone and Embedded Mass Storage Applications”, pp.75, Non-Volatile Semiconductor Memory Workshop, Monterey, CA 2000.
[8] A.J. Walker et al, “ 3D TFT-SONOS Memory Cell for Ultra-High Density File Storage Applications”, 2003 Symposium on VLSI Technology.
[9] Takuya Kitamura et al, “ A Low Voltage Operating Flash Memory Cell with High Coupling Ratio Using Horned Floating Gate with Fine HSG”, pp.104-105, 1998 Symposium on VLSI Technology.
[10] A.Fazio, “0.13um Logic+Flash: Technology and Applications”, Non-Volatile Semiconductor Memory Workshop, Monterey, CA 2000.
[11] Stephen Keeney, “A 130nm Generation High Density ETOXTM Flash Memory Technology,” IEDM Tech. Dig., p.41-44,2001.
[12] J. D. Blauwe, “Nanocrystal Nonvolatile Memory Devices,” IEEE Transactions on Nanotechnology., vol. 1, pp. 72-77, 2002.
[13] M. H. White, D. A. Adams, J. Bu, “On the Go with SONOS,” IEEE Circuits and Devices Magazine., vol. 16, pp. 22-31, 2000.
[14] H.E. Maes, J.S. Witters, G. Groeseneken, "Trends in non-volatile memory devices and technologies", Proceedings of the 17th ESSDERC-conference,Invited paper, pp. 743-754, 1987, and in Solid State Devices, North Holland Publishing Company, Eds. G. Soncini, P.U. Calzolari, pp. 157-168, 1987.
[15] S. Tiwari, F. Rana, K. Chan, H. Hanafi, C. Wei, D. Buchanan, “Volatile and non-volatile memories in silicon with nano-crystal storage,” IEEE Int. Electron Devices Meeting Tech. Dig., pp. 521-524, 1995.
[16] J. J. Welser, S. Tiwari, S. Rishton, K. Y. Lee, Y. Lee, “Room temperature operation of a quantum-dot flash memory,” IEEE Electron Device Letters., vol.18, pp. 278-280, 1997.
[17]Y. C. King, T. J. King, C. Hu, “MOS memory using germanium nanocrystals formed by thermal oxidation of Si1-xGex,” IEEE Int. Electron Devices Meeting Tech. Dig., pp.115-118, 1998.
[18] S. Lai, “Tunnel Oxide and ETOX Flash Scaling Limitation,” IEEE International Non –Volatile Memory Conference, pp. 6 -7, 1998.
[19] H. A. R. Wegener, A. J. Lincoln, H. C. Pao, M. R. O'Connell, R. E. Oleksiak, “The variable threshold transistor, a new electrically alterable nondestructive read-only storage device,” presented at the Internat'l Electron Devices Meeting, 1967.
[20] “Test and Test equipment” in The International Technology Roadmap for Semiconductors (ITRS), 2001, pp.27-28.
[21] Y.N. Tan, W.K. Chim, W.K. Choi, M.S. Joo, T.H. Ng, and B.J. Cho, “High-k HfAlO charge trapping layer in SONOS-type nonvolatile memory device for high speed operation,” in IEDM Tech. Dig., 2004, pp.889-892.
[22] W.J. Zhu, Tso-Ping Ma, Takashi Tamagawa, J. Kim, and Y. Di. “Current Transport in Metal/Hafmium Oxide/Silicon Structure,” IEEE electron Device Letters., vol.23, no.2, pp.97-99, Feb. 2002.
[23] G. D. Wilk, R.M. Wallace, J.M. Anthony, “High-k gate dielectrics: Current status and materials properties considerations”, Applied Physics Review, vol.89, no. 10, pp.5243-5275, Nay 2001.
[24] T.Sugizaki, M.Kobayashi, M.Ishidao, H.Minakata, “Novel Multi-bit SONOS Type Flash Memory Using a High-k Charge Trapping Layer”, Symposium on VLSI Technology Digest of Technical Papers, 2003.
[25] M. White et al., IEEE Transactions on Components, Packaging and Manufacturing Technology, Vol. 20, p.190, 1997.
[26]H.-H. Tseng, P. G.Y. Tsui, P. J. Tobin, J. Mogab, M. Khare, X.W. Wang, T. P. Ma, R. Hegde, C. Hobbs, J. Veteran, M. Hartig, G. Kenig, V. Wang, R. Blumenthal, R.Cotton, V. Kaushik, T. Tamagawa, B. L. Halpern, G. J. Cui, J. J. Schmitt, “Application of JVD nitride gate dielectric to a 0.35 micron CMOS process for reduction of gate leakage current and boron penetration,” in IEDM Tech. Dig., pp. 647-650, 1997.
[27]A. Melik-Martirosian, T. P. Ma, X. W. Wang, X. Guo, F. P. Widdershoven, D. R. Wolters, V. J.D. van der Wal, M. J. van Duuren, ”Demonstration of a flash
memory cell with 55 A EOT silicon nitride tunnel dielectric,” in Symp. VLSI Tech. Dig., pp. 138 -141, 2001.
[28]Y. Shi, X. Wang, T. P. Ma, “Electrical properties of highquality ultrathin
nitride/oxide stack dielectrics, IEEE Transactions on Electron Devices, vol.
46, pp. 362-368, 1999.
[29]J. Kim, J. D. Choi, W. C. Shin, D. J. Kim, H. S. Kim, K. M. Mang, S. T. Ahn, O. H. Kwon, “Scaling down of tunnel oxynitride in NAND flash memory:
oxynitride selection and reliabilities, in Proc. IRPS, pp. 12-16, 1997.
[30]U. Sharma, R. Moazzami, P. Tobin, Y. Okada, S. K. Cheng, J. Yeargain,
“Vertically scaled, high reliability EEPROM devices with ultra-thin oxynitride
films prepared by RTP in N2O/O2 ambient, in IEDM Tech. Dig., pp. 461-464, 1992.
[31] P. Pavan, R. Bez, P. Olivo, E. Zanoni, “Flash memory cells—An overview,” Proc. IEEE, vol. 85, pp. 1248-1271, 1997.
[32] M. Woods, “Nonvolatile Semiconductor Memories: Technologies, Design, and Application,” C. Hu, Ed. New York: IEEE Press, (1991) ch. 3, pp. 59.
[33] P. E. Cottrell, R. R. Troutman, T. H. Ning, “Hot-electron emission in n-channel IGFET's,” IEEE Journal of Solid-State Circuits, vol. 14, pp. 442-455, 1979.
[34] B. Eitan, D. Froham-Bentchkowsky, “Hot-Electron. Injection into the Oxyde in N-Channel MOS devices,” IEEE Transaction on Electron Devices., vol. 28, pp. 328-340, 1981.
[35] J. Bu, M. H. White, “Design considerations in scaled. SONOS nonvolatile memory devices,” Solid State Electronics., vol. 45, pp. 113-120, 2001.
[36] M. L. French, M. H. White, “Scaling of multidielectric nonvolatile SONOS memory structures,” Solid-State Electron., vol. 37, pp. 1913-1923, 1994.
[37] M. L. French, C. Y. Chen, H. Sathianathan, M. H. White, “Design and scaling of a SONOS Multidielectric device for nonvolatile memory applications,” IEEE Trans. Comp. Pack. And Manu. Tech., part A, vol. 17, no. 3, pp. 390-397, 1994.
[38] Y. Wang, M. H. White, “An analytical retention model for SONOS nonvolatile memory devices in the excess electron state,” Solid-State Electron., vol.49, pp.97-107, 2005.
[39] Y. S. Hisamune, K. Kanamori, T. Kubota, Y. Suzuki, M. Tsukiji, E. Hasegawa, A. Ishitani, T. Okazawa, “A high capacitive-coupling ratio (HiCR) cell for 3 V-only 64 Mb and future flash memories,” in IEDM Tech. Dig., 1993, pp. 19-22.
[40] Z. Liu, C. Lee, V. Narayanan, G. Pei, E. C. Kan, “Metal nanocrystal memories—part I: device design and fabrication,” IEEE Transaction on Electron Devices, vol. 49, no. 9, pp. 1606-1613, 2002.
[41] J. L. Moll, Physics of Semiconductors, McGraw-Hill, New York, 1964.
[42] S. M. Sze, Physics of Semiconductor Devices, p. 497-498, Wiley, New York , 1981. 81[43] C. Svensson, I. Lundstrom, “Trap-assisted charge injection in MNOS structures,”Journal of Applied Physics., vol. 44, pp. 4657-4663, 1973.
[44] Chan C. and Lien J. (1897) “Corner-field induced drain leakage in thin oxide MOSFETs”. IEDM Technical Digest, p.714.
[45] Chan T.Y., Chen J., Ko P.K. and Hu C. (1987) “The impact of gate-induced leakage current on MOSFET scaling”, IEDM Technical Digest, p.718.
[46] I. C. Chen, C. Kaya, J. Paterson, “Band-to-Band Tunneling Induced Substrate Hot Electron (BBISHE) Injection: A New Programming Mechanism for Non-Volatile Memory. Devices,” in IEDM Technical Digest, pp. 263-270, 1989.
[47] Yakov Roizin, Micha Gutman, Efraim Aloni, Victor Kairys, Pavel Zisman,“Retention Characteristic of micro FLASH Memory (Activation Energy of Traps in the ONO stack)”
[48] K. Kim, J. Choi, NVSMW, pp.9, 2006
[49] Y. Wang, M. H. White, “An analytical retention model for SONOS nonvolatile memory devices in the excess electron state,” Solid-State Electron., vol.49, pp.97-107, 2005.
[50] R. Bez, E. Camerlenghi, A. Modelli, A. Visconti, “Introduction to Flash Memory,” In Proc. Of the IEEE, vol. 91, no. 4, pp. 489-502, 2003.
[51] P. Cappelletti, R. Bez, D. Cantarelli, L. Fratin, “Failure mechanisms of Flash cell in program/erase cycling,” in IEDM Tech. Dig., 1994, pp. 291-294.
[52] T. Yamaguchi et al., IEDM Technical Digest, p.19, 2000.
[53] W. Zhu et al., IEDM Technical Digest, p.463, 2001.
[54] M. H. White, L. Yang, A. Purwar, and M. L. French, “A low voltage SONOS nonvolatile semiconductor memory technology,” IEEE Trans. Comp. Packag. Manufact. Technol. A, vol. 20, pp. 190–195, Mar. 1997.
[55] G. D.Wilk, R. M.Wallace, and J. M. Anthony, “High-k gate dielectrics: Current status and materials properties considerations,” J. Appl. Phys., vol. 89, pp.5243–5275, 2001.
[56] H. Wann, C. Hu, IEEE Electron Device Lett. 16 (1995 May) 491.
[57] M.H. White, D.A. Adams, B. Jiankang, IEEE Circuits DeviceS Mag.16(2000 Jan) 22.
[58] U. Sharma, R. Moazzami, P. Tobin, Y. Okada, S. K. Cheng and J. Yeargain, “Vertically Scaled, High Reliability EEPROM Devices with Ultra-thin Oxynitride Films Prepared by RTP in N20/02 Ambient,” IEEE IEDM, Tech. Dig., 1992, pp. 461-464.
[59] H. Fukuda, M. Yasuda, T. Iwabuchi and S. Ohno, “Novel N2O-Oxynitridation Technology for Forming Highly Reliable EEPROM Tunnel Oxide Films,” IEEE Electron Device Lett., Vol. 12, 1991, pp. 587-589.
[60] B. C. Lin, K. M. Chang, C. H. Lai, K.Y. Hsieh and J. M. Yao, “Reoxidation Behavior of High-Nitrogen Oxynitride Films after O2 and N2O Treatment,” Jpn. J. Appl. Phys., vol. 44, pp.2993-2994, 2005.
[61]J. Kim, S. T. Ahn, “Improvement of the tunnel oxide quality by a low thermal budget dual oxidation for flash memories,” IEEE Electron Device Letters, vol.18, no. 8, pp. 385-387, Aug. 1997.
[62] J.L. Wu, H.C. Chien, C.W. Liao, C.H. Kao, “Comparison of Electrical and Reliability Characteristics of Different Tunnel Oxides in SONOS Flash Memory,” IEEE International Workshop on Memory Technology, Design, and Testing (MTDT’06),2006.
[63] Y.N. Tan, W.K. Chim, B.J. Cho, W.K. Choi, “Over-Erase phenomenon in SONOS-Type flash memory and its minimization using a Hafnium oxide charge storage layer,” IEEE Transactions on Electron Devices, vol.51, No.7, July 2004.
[64] Y.H. Lin, C.H. Chien, C.Y. Chang, T.F. Lei, “Annealing temperature effect on the performance of nonvolatile HfO2 Si-oxide-nitride-oxide-silicon-type flash memory,” J. Vac. Sci. Technol. A, Vol.24, No. 3, May/Jun 2006.
[65] H.A.R. Wegener, A.J. Lincoln, H.C. Pao, M.R. O’Connell, and R.E. Oleksiak, The variable threshold transistor, a new electrically alterable, non-destructive read-only storage device,” IEEE IEDM Tech. Dig., Washington, D.C., 1967.
[66] T.Y.Chan, K.K.Young and C.Hu, “A true single-transistor oxide- nitride-oxide EEPROM device”. IEEE Electron Device Letters, vol.8, no.3, pp.93-95, 1987.
[67] M.K. Cho and D.M.Kim, “High performance SONOS memory cells free of drain turn-on and over-erase: compatibility issue with current flash technology”, IEEE Electron Device Letters, pp.399-401, Vol.21, No.8, 2000.
[68] I. Fijiwara, H.Aozasa, K.Nomoto, S.Tanaka and T.Kobayashi, “ High speed program/erase sub 100nm MONOS memory cell”, Proc. 18th Non-Volatile Semiconductor Memory Workshop, p. 75, 2001.
[69] H. Reisinger, M. Franosch, B. Hasler, and T. Bohm, Symp. on VLSI Tech. Dig. , 9A-2, 113 (1997).
[70] C. Tung-Sheng, W. Kuo-Hong, C. Hsien, and K. Chi-Hsing, “Performance improvement of SONOS memory by bandgap engineering of charge-trappinglayer”, IEEE Electron Device Lett., vol. 25, no. 3, pp.205–207, Mar. 2004.
[71] Y. N. Tan, W. K. Chim, and B. J. Cho, W. K. Choi, “Over-Erase Phenomenon in SONOS-Type Flash Memory and its Minimization Using a Hafnium Oxide Charge Storage Layer”, IEEE Transations on Eelectron Devices, vol.51, no.7, July 2004.
[72] Min She, Hideki Takeuchi, and Tsu-Jae King, “Silicon-Nitride as a Tunnel Dielectric for Improved SONOS-Type Flash Memory”, IEEE Electron Device Letters, vol. 24, no. 5, MAY 2003.
[73] Chang-Hyun Lee, Kyu-Charn Park, and Kinam Kim, “Charge-trapping memory cell of SiO2/SiN/high-k dielectric Al2O3 with TaN metal gate for suppressing backward tunneling effect”, Applied Physics Letters 87, 073510 (2005)
[74] Shih-Ching Chen, Ting-Chang Chang, Po-Tsun Liu, Yung-Chun Wu, and Ping-Hung Yeh, “Nonvolatile polycrystalline silicon thin-film-transistor memory with oxide/nitride/oxide stack gate dielectrics and nanowire channels”, Applied Physics Letters 90, 122111 (2007)
[75] Peiqi Xuan, Min She, Bruce Harteneck, Alex Liddle, Jefkey Bokor, and Tsu-Jae King, “FinFET SONOS Flash Memory for Embedded Applications”, IEEE IEDM 609-612 (2003).
[76] Tzu-Hsuan Hsu, Hang Ting Lue, Ya-Chin King, Jung-Yu Hsieh, Erh-Kun Lai, Kuang-Yeu Hsieh, and Chih-Yuan Lu, “A High-Performance Body-Tied FinFET Bandgap Engineered SONOS (BE-SONOS) for NAND-Type Flash Memory”, IEEE Electron Device Letters, vol. 28, no. 5, MAY 2007.
[77] S. Tiwari, F. Rana, K. Chan, H. Hanafi, W. Chan, and Doug Buchanan, IEDM Tech. Dig., p.521 (1995)
[78] Yan Ny Tan, IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 53, NO. 4, APRIL 2006
[79] Chao Sung Lai, APPLIED PHYSICS LETTERS 86, 222905 2005
[80] Chih-Ren Hsieh, APPLIED PHYSICS LETTERS 96, 022905 2010
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔