(3.239.33.139) 您好!臺灣時間:2021/03/07 23:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃國欽
研究生(外文):Huang, Kuo-Chin
論文名稱:五十奈米線寬薄膜型SANOS快閃記憶體的製作與特性分析
論文名稱(外文):Fabrication and Characterization of sub-50nm Thin Film SANOS Flash Memory
指導教授:施敏施敏引用關係
指導教授(外文):Sze, Simon
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:英文
論文頁數:63
中文關鍵詞:薄膜魚鰭微波記憶體
外文關鍵詞:microwaveTFTSANOSmemoryFinfet
相關次數:
  • 被引用被引用:0
  • 點閱點閱:125
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在本論文中,主要探討薄膜型SANOS結構快閃記憶體在三維積體電路設計(3D-ICs)製程中的可行性。在三維積體電路製程,低溫製程是需要被討論並導入,所以我們將傳統SONOS結構快閃記憶體改成薄膜型,並期許將記憶體元件尺寸微縮至五十奈米,以增加在積體電路製程上單一面積的元件陣列密度,提升可記憶位元。
在第一部分,五十奈米線寬薄膜型SANOS快閃記憶體,我們導入氧化鋁(Al2O3)代替TEOS,這目的是為了改善元件閘極射入漏電流現象(Gate injection)與持久性(Retention)。同時在量測元件上發現,因為元件尺寸小,在元件通道內可能沒有晶界(grain boundary),加上魚鰭型元件(Finfet)可增強對通道之電場的特性,以上原因使得小線寬薄膜型SANOS結構快閃記憶體在電性上接近傳統矽基板(Bulk silicon)元件水準,在記憶能力方面,甚至比矽基板記憶體還好,大的記憶視窗、較好的耐用度(Endurance)與持久性。對小線寬薄膜型SANOS結構快閃記憶體在150度下量測,記憶視窗在十年線的標準也還有2.4伏特。
第二部分探討微波氧化作用(Microwave Oxidation),我們導入微波氧化作用為的是得到低溫氧化層,期許這低溫氧化層可導入薄膜型SONOS結構快閃記憶體中取代原本的熱製程穿隧氧化層(Thermal Tunneling layer)。在微波氧化製程中配合上susceptor與碳化矽板,得到在腔體內均勻微波與保持足夠的製程溫度,實驗的最後我們可以得到3.5奈米的氧化層。比較高溫爐管氧化層,對氧化層品質方面也不會差高溫爐管氧化層太多。然而在氧化層均勻度上確實有改善空間,製程的邊緣效應讓晶圓邊緣處氧化層稍薄,這是未來需要持續研究的部分。

In this thesis, we discuss the feasibility of TFT SANOS memory devices in three dimension-integrated circuits (3D-ICs). For 3D-ICs, low temperature fabrication process is necessary. Therefore, one stacked conventional SONOS devices on poly-Si films, them the designation of thin film transistor (TFT) SONOS devices. The dimensions of TFT SANOS devices were scaled down to sub-50 nm in order to increase the chip density and memory bits.
In first part, for the fabrication of sub-50nm TFT SANOS devices, we used Al2O3 to replace TEOS for the blocking layer of SONOS structure, as named SANOS structure. This layer could prevent gate injection (gate leakage current) and improve device retention ability. For electrical measurement, there are two advantages of TFT SANOS devices that could be addressed. One is that the tri-gate structure enhances the electrical field during programming and erasing periods. The other one is that there are no grain boundaries inside the channel of nanometer TFT SANOS devices. Due to the advantages, the quasi-FinFET SANOS devices get similar electrical characteristics as bulk-Si SONOS devices. These devices also have good reliability characteristics, with a memory window of 2.6V in ten years at 150OC.
The second part was about microwave oxidation, we used a microwave system to grow a pure SiO2 layer at low temperature. One would like to use microwave oxide as the thermal tunneling oxide of TFT SANOS devices. In this study, we used microwave susceptors and silicon carbide wafers to enhance microwave oxidation, which causes more suitable temperature process with better microwave distribution. During a series experiments, one get a about 3.6 nm thick oxide layer. As compared with that by furnace, the oxide quality by microwave anneal was about the same as that by thermal process. But, the uniformity of microwave oxidation still needs to be improved.

Chinese Abstract i
English Abstract iii
Acknowledgement v
Contents vi
Table Captions viii
Figure Captions ix
Chapter 1 Introduction 1
1.1 Evolution of Flash Memory 1
1.1-1 Floating Gate non-Volatile Memory 1
1.1-2 SONOS non-volatile memory 2
1.2 Three Dimension-Integrated Circuits (3D-ICs) 2
1.3 Motivations 4
1.4 Organization 5
Chapter 2 Device Fabrication and Operation of SONOS Memory Devices 8
2.1 Thin Film Transistor SONOS-type Flash Memory 8
2.1-1 NAND 8
2.1-2 Program/Erase Mechanisms – FN Tunneling 9
2.1-2 process flow 10
2.2 Microwave Anneal and Oxidation in SONOS-type Structure 11
2.2-1 Mechanisms of Microwave Oxidation 12
2.2-2 Experiment of Oxidation 12
2.2-3 Capacitor of Process Flow 13
Chapter 3 SONOS-type TFT Flash Memory 21
3.1 Device Measurement and Operation 21
3.1-1 Basic Program/Erase Operation 21
3.1-2 Retention 21
3.1-3 Endurance 22
3.2 SEM and TEM of TFT SANOS Memory 23
3.3 Basic Characteristics of SONOS-type TFT Memory 23
3.4 Program/Erase Characteristics of TFT SANOS Memory 25
3.5 Reliability Characteristics of TFT SANOS Memory 25
Chapter 4 Microwave Low Temperature 44
4.1 Experiment Detail 44
4.2 I-V curve Characteristics of Microwave Oxidation 45
Chapter 5 Conclusion 56
5.1 Conclusion 56
5.2 Future Work 57
Reference 59

[1] K. Kahng and S. Sze, "A floating gate and its application to memory devices," The Bell System Technical Journal, vol. 46, pp. 1288-1295, 1967.
[2] M. Wada, et al., "Limiting factors for programming EPROM of reduced dimensions," 1980, pp. 38-41.
[3] R. Scott and D. Dumin, "The charging and discharging of high-voltage stress-generated traps in thin silicon oxide," IEEE transactions on electron devices, vol. 43, pp. 130-136, 1996.
[4] R. Scott and N. Dumin, "Properties of high-voltage stress generated traps in thin silicon oxide," IEEE transactions on electron devices, vol. 43, pp. 1133-1143, 1996.
[5] M. White, et al., "On the go with SONOS," IEEE Circuits and Devices Magazine, vol. 16, pp. 22-31, 2000.
[6] H. Hsing-Hui, et al., "Tri-gated poly-Si nanowire SONOS devices," in VLSI Technology, Systems, and Applications, 2009. VLSI-TSA '09. International Symposium on, 2009, pp. 148-149.
[7] A. J. Walker, et al., "3D TFT-SONOS memory cell for ultra-high density file storage applications," in VLSI Technology, 2003. Digest of Technical Papers. 2003 Symposium on, 2003, pp. 29-30.
[8] G. Moore, "Cramming more components onto integrated circuits," PROCEEDINGS OF THE IEEE, vol. 86, pp. 82-85, 1998.
[9] V. Transcript, "Excerpts from a Conversation with Gordon Moore: Moore" s Law," Intel Corporation, 2005.
[10] T. Matsumoto, et al., "New three-dimensional wafer bonding technology using adhesive injection Mmthod," Jpn. J. Appi. Phys. Vol, vol. 37, pp. 1217-1221, 1998.
[11] M. Koyanagi, et al., "Future system-on-silicon LSI chips," IEEE Micro, vol. 18, pp. 17-22, 1998.
[12] H. Kurino, et al., "Intelligent image sensor chip with three dimensional structure," 1999, pp. 879-882.
[13] K. W. Lee, et al., "Three-dimensional shared memory fabricated using wafer stacking technology," in Electron Devices Meeting, 2000. IEDM Technical Digest. International, 2000, pp. 165-168.
[14] M. Koyanagi, et al., "Neuromorphic vision chip fabricated using three-dimensional integration technology," in Solid-State Circuits Conference, 2001. Digest of Technical Papers. ISSCC. 2001 IEEE International, 2001, pp. 270-271, 454.
[15] T. Fukushima, et al., "New three-dimensional integration technology using self-assembly technique," in Electron Devices Meeting, 2005. IEDM Technical Digest. IEEE International, 2005, pp. 348-351.
[16] M. Koyanagi, et al., "Three-Dimensional Integration Technology Based on Wafer Bonding With Vertical Buried Interconnections," Electron Devices, IEEE Transactions on, vol. 53, pp. 2799-2808, 2006.
[17] T. Fukushima, et al., "New Three-Dimensional Integration Technology Based on Reconfigured Wafer-on-Wafer Bonding Technique," in Electron Devices Meeting, 2007. IEDM 2007. IEEE International, 2007, pp. 985-988.
[18] T. Fukushima, et al., "New heterogeneous multi-chip module integration technology using self-assembly method," in Electron Devices Meeting, 2008. IEDM 2008. IEEE International, 2008, pp. 1-4.
[19] T. Fukushima, et al., "Three-dimensional integration technology based on reconfigured wafer-to-wafer and multichip-to-wafer stacking using self-assembly method," in Electron Devices Meeting (IEDM), 2009 IEEE International, 2009, pp. 1-4.
[20] D. Darcy and C. Kemerer, "The International Technology Roadmap for Semiconductors," Semiconductor Industry Association, p. 19, 1999.
[21] W. Yoo, et al., "Susceptor-Based Rapid Thermal Processing System and Its Silicide Application," Japanese Journal of Applied Physics, vol. 37, pp. L1135-L1137, 1998.
[22] S. Choi, et al., "Band Engineered Charge Trap NAND Flash with sub-40nm Process Technologies (Invited)," in Electron Devices Meeting (IEDM), 2008 IEEE International, 2008, pp. 1-4.
[23] P. PAVAN, et al., "Flash Memory Cells-An Overview," PROCEEDINGS OF THE IEEE, vol. 85, 1997.
[24] M. Lenzlinger and E. Snow, "Fowler Nordheim Tunneling into Thermally Grown SiO," Journal of Applied Physics, vol. 40, p. 278, 1969.
[25] C. Chang-Hoon, et al., "Direct tunneling current model for circuit simulation," in Electron Devices Meeting, 1999. IEDM Technical Digest. International, 1999, pp. 735-738.
[26] R. S. BUCHTA and J. S. SVENNEBRINK, "COLD WALL REACTOR FOR HEATING OF SILICON WAFERS BY MICROWAVE ENERGY " European Patent Office (EPO), vol. WO/1994/020980, 1994.
[27] K. Thompson, et al., "Direct silicon-silicon bonding by electromagnetic induction heating," Microelectromechanical Systems, Journal of, vol. 11, pp. 285-292, 2002.
[28] K. Thompson, et al., "Electromagnetic Annealing for the 100 nm Technology Node," IEEE ELECTRON DEVICE LETTERS, vol. 23, p. 127, 2002.
[29] K. Thompson, et al., "Electromagnetic Fast Firing for Ultrashallow Junction Formation," IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, vol. 16, 2003.
[30] Y. Bykov, et al., "Spike annealing of silicon wafers using millimeter-wave power," 2001, pp. 232-239.
[31] J. M. Kowalski, et al., "Microwave Annealing for Low Temperature Activation of As in Si," in Advanced Thermal Processing of Semiconductors, 2007. RTP 2007. 15th International Conference on, 2007, pp. 51-56.
[32] T. Alford, et al., "Dopant activation in ion implanted silicon by microwave annealing," Journal of Applied Physics, vol. 106, p. 114902, 2009.
[33] W. Tsai, et al., "Cause of data retention loss in a nitride-based localized trapping storage flash memory cell," 2002, pp. 34-38.
[34] K. Lehovec and A. Fedotowsky, "Charge retention of MNOS devices limited by Frenkel Poole detrapping," Applied Physics Letters, vol. 32, p. 335, 1978.
[35] Y. Yang and M. White, "Charge retention of scaled SONOS nonvolatile memory devices at elevated temperatures," Solid-State Electronics, vol. 44, pp. 949-958, 2000.
[36] J. Bu and M. White, "Design considerations in scaled SONOS nonvolatile memory devices," Solid-State Electronics, vol. 45, pp. 113-120, 2001.
[37] K. Kinam and C. Jungdal, "Future Outlook of NAND Flash Technology for 40nm Node and Beyond," in Non-Volatile Semiconductor Memory Workshop, 2006. IEEE NVSMW 2006. 21st, 2006, pp. 9-11.
[38] T. Hsu, et al., "Physical Model of Field Enhancement and Edge Effects of FinFET Charge-Trapping NAND Flash Devices," IEEE transactions on electron devices, vol. 56, pp. 1235-1242, 2009.
[39] D. C. Gilmer, et al., "Engineering the complete MANOS-type NVM stack for best in class retention performance," in Electron Devices Meeting (IEDM), 2009 IEEE International, 2009, pp. 1-4.
[40] L. Yao-Jen, et al., "3D 65nm CMOS with 320°C microwave dopant activation," in Electron Devices Meeting (IEDM), 2009 IEEE International, 2009, pp. 1-4.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔