(3.238.186.43) 您好!臺灣時間:2021/03/02 10:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:邱議德
研究生(外文):Chiu, Yi-Te
論文名稱:極低功率次/近臨界靜態隨機存取記憶體設計於動態電源調整先進先出記憶體
論文名稱(外文):Ultra-Low Power Sub/Near-threshold SRAM Design for Dynamic Voltage Scaling FIFO Memory
指導教授:黃威黃威引用關係
指導教授(外文):Hwang, Wei
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:英文
論文頁數:116
中文關鍵詞:隨機存取記憶體次臨界低功率先進先出記憶體
外文關鍵詞:SRAMsubthresholdlow powerFIFO memory
相關次數:
  • 被引用被引用:0
  • 點閱點閱:235
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
次/近臨界隨機存取記憶體是能源考量的單晶片系統設計中,降低功率消耗的重要方法。然而,在次/近臨界電壓區,最需要被關注的是隨機存取記憶體的穩定性和可靠性,而不是高速性。在本論文中,首先提出一個新型的8電晶體次/近臨界隨機存取記憶體,比起傳統雙埠隨機存取記憶體,它提升18%寫入跳脫點及減少68.8%寫入變異(標準差)。接著提出了一個9電晶體次臨界隨機存取記憶體能有效地被建構成位元交錯結構。為了驗證所提出架構,一個1kb位元交錯的靜態隨機存取記憶體採用聯電 65奈米技術,其一次讀/寫操作在最低能量消耗點0.3伏特時之功耗為5.824微微焦耳。第三提出了一個應用於醫療保健,極低功耗操作於0.5伏特的32kb 8電晶體隨機存取記憶體為基礎的先進先出記憶體,它採用自適應功率控制和電源閘系統,聯電90奈米技術,功耗4.81微瓦。最後,動態電源調整可根據性能要求來調節系統電壓源來降低能源消耗。一個1kb的動態電源調整8電晶體隨機存取記憶體為基礎的先進先出記憶體以聯電65奈米技術實現 0.5伏特(近臨界)和0.3伏特(次臨界)之間的運作,分別在625仟赫讀取頻率和20仟赫的寫入頻率耗功0.535微瓦和0.163微瓦。此提出的動態電源調整先進先出記憶體若一直處於低功耗模式可省下達69.5%的功率,若在低功耗模式的期間長於48.66微秒則不會有多餘的功率消耗。
Sub/Near-threshold SRAM is a significant approach to reduce power consumption in energy-constrained SoC design. Nevertheless, in sub/near- threshold region, the primary concerns of SRAM are stability and reliability instead of high-speed. In this thesis, a novel 8T sub/near-threshold SRAM is presented firstly, which has 18% improvement in write margin and 68.8% reduction in write variation (standard deviation) compared to conventional dual-port SRAM. Secondly, a 9T subthreshold SRAM is proposed to efficiently enable implementation of bit-interleaving structure. A 1kb bit- interleaved SRAM is implemented in UMC 65nm technology to verify the proposed scheme, which operates at the minimum energy point of 0.3V with 5.824pJ energy consumption per read/write operation. Thirdly, an extremely low power 0.5V 32kb 8T SRAM-based FIFO memory, which employs adaptive power control system and power gating, is implemented for healthcare applications in UMC 90nm technology, with 4.81μW power consumption. Finally, dynamic voltage scaling (DVS) reduces energy consumption by adjusting system supply voltage depending on performance requirement. A 1kb DVS 8T SRAM-based FIFO memory is implemented to operate between 0.5V (near-threshold) and 0.3V (subthreshold) in UMC 65nm technology, with 0.535μW and 0.163μW power consumption, respectively, at 625kHz reading frequency and 20kHz writing frequency. The proposed DVS FIFO memory can provide up to 69.5% power savings when low-power mode is always engaged, and there is no power overhead if the period of low-power mode is longer than 48.66μs.
Chapter 1 Introduction 1
1.1 Background 1
1.2 Challenges 2
1.3 Motivation 3
1.4 Thesis Organization 4
Chapter 2 Previous Low-Power SRAM Designs 5
2.1 Introduction 5
2.1.1 SRAM Column Circuitry 6
2.1.2 Ultra-Low Voltage SRAM 7
2.2 Power Dissipation 8
2.2.1 Dynamic Power 8
2.2.2 Leakage Power 10
2.2.3 Short-Circuit Power 14
2.3 SRAM Bit-Cell Stability 15
2.3.1 Static Noise Margin (SNM) 15
2.3.2 Write Margin (WM) 16
2.4 Conventional Symmetric 6T SRAM 17
2.4.1 Symmetric 6T SRAM Bit-Cell 17
2.4.2 Read/Write Operation 18
2.4.3 Read Disturbance 19
2.4.4 Straight Line Layout 21
2.4.5 Variation in Low Voltage 21
2.5 Well-Known Low Power Single-Port SRAM 22
2.5.1 Schmitt Trigger based subthreshold SRAM (ST-1) 23
2.5.2 Schmitt Trigger based subthreshold SRAM (ST-2) 24
2.5.3 10T Subthreshold SRAM with Bit-Interleaving Scheme 25
2.5.4 10T Subthreshold SRAM with auto-compensation (AC) 26
2.6 Well-Known Low Power Dual-Port SRAM 27
2.6.1 8T SRAM 27
2.6.2 8T Subthreshold SRAM 30
2.6.3 10T Subthreshold SRAM (I) 32
2.6.4 10T Subthreshold SRAM (II) 33
2.6.5 Sensing Amplifier Schemes 34
2.7 Summary 35
Chapter 3 A Novel 8T Sub/Near-threshold SRAM Cell Design 37
3.1 Introduction 37
3.1.1 Conventional Dual-Port SRAM Bit-Cell 37
3.1.2 Conventional Dual-Port SRAM limitation 38
3.2 A Novel 8T Sub/Near-threshold SRAM Bit-Cell 39
3.2.1 Layout Consideration 40
3.3 Read-Ability and Read-Stability Improvement 41
3.3.1 Hold SNM and Read SNM 41
3.3.2 Read-Ability Improvement 43
3.4 Write-Ability Improvement 47
3.4.1 Write Mode 47
3.4.2 Write-Ability and Write-Stability Improvement 48
3.5 Power Consumption 50
3.6 Summary 52
Chapter 4 A 1kb 9T Subthreshold SRAM with Bit-Interleaving
Scheme in 65nm CMOS 53
4.1 Introduction 53
4.2 A Novel 9T Subthreshold SRAM bit-cell 55
4.2.1 Basic Operation 56
4.2.2 Energy per Operation 57
4.2.3 Hold Mode 58
4.2.4 Read Mode 59
4.2.5 Write Mode 61
4.2.6 Layout Consideration 64
4.3 Bit-Interleaving Scheme 65
4.3.1 Soft Error 66
4.3.2 Half-Selected Disturbance 67
4.3.2 Bit-Interleaving Scheme 68
4.3.3 9T SRAM with Bit-Interleaving Scheme 69
4.4 Architecture of proposed SRAM 71
4.4.1 Address Decoders and Word-Line Driver 72
4.4.2 Read/Write Circuits 73
4.4.3 Pulse Control Circuits and Replica Column 74
4.5 Post-Layout Simulation Result 76
4.6 Summary 78
Chapter 5 A 32kb Near-threshold SRAM Based FIFO in 90nm
CMOS and a 1kb DVS FIFO in 65nm CMOS for WBANs 79
5.1 Introduction 79
5.1.1 Wireless Sensor Node for WBANs 80
5.2 Ultra-Low Power FIFO Memory 82
5.2.1 8T SRAM Storage Element 83
5.2.2 Shift Register Based Read/Write Pointer 84
5.2.3 Adaptive Power Control 87
5.2.4 Write Pulse Control Circuitry with Replica Column 89
5.2.5 Read Pulse Control Circuitry with Replica Column 91
5.3 A 32kb 0.5V SRAM-Based FIFO in 90nm CMOS 92
5.3.1 Post-Layout Simulation Result 93
5.4 A 1kb DVS SRAM-Based FIFO in 65nm CMOS 95
5.4.1 Introduction 95
5.4.1 Switched Capacitor DC-DC Converter 97
5.4.2 Supply Switch and DVS Controller 98
5.4.3 Post-Layout Simulation Result 100
5.4.4 Analysis of DVS FIFO Energy Consumption 102
5.5 Summary 104
Chapter 6 Conclusions 105
6.1 Conclusions 105
6.2 Future Work 106
Bibliography 107
7.1 Chapter 1 107
7.2 Chapter 2 107
7.3 Chapter 3 111
7.4 Chapter 4 112
7.5 Chapter 5 113
Vita 116

[1.1] Jan M. Rabaey, Anantha Chandrakasan, borivoje Nikolic, Digital Integrated Circuit – a Design Perspective, second edition. Prentice Hall, Dec. 2002.
[1.2] N.Yoshinobu, H. Masahi, K. Takayuki, and K. Itoh, “Reviewand future prospects of low-voltage RAM circuits,” IBM J. Res. Develop., vol. 47, Sep. 2003, pp. 525–552.
[1.3] A. Wang, A. Chandrakasan, and S. Kosonocky, “Optimal Supply and Threshold Scaling for Subthreshold CMOS Circuits,” IEEE Computer Society Annual Symposium on VLSI, Apr. 2002, pp. 5–9.
[1.4] Naveen Verma, Joyce Kwong, and Anantha P. Chandrakasan, “Nanometer MOSFET Variation in Minimum Energy Subthreshold Circuits,” IEEE Trans. on Electron Devices, January 2008, pp.163-174.
[1.5] Anantha P. Chandrakasan, Denis C. Daly, Daniel Frederic Finchelstein, Joyce Kwong, Yogesh Kumar Ramadass, Mahmut Ersin Sinangil, Vivienne Sze, Naveen Verma, “Technologies for Ultradynamic Voltage Scaling”, IEEE Proceedings, Vol. 98, Issue 2, Feb. 2010, pp. 191-214.
[1.6] Naveen Verma and Anantha P. Chandrakasan, “A 256kb 65nm 8T subthreshold SRAM employing sense-amplifier redundancy,” IEEE JSSC, January 2008, pp. 141-149.

[2.1] Andrei Pavlov and Manoj Sachdev, CMOS SRAM Circuit Design and Parametric Test in Nano-Scaled Technologies. Springer Verlag, June 2008.
[2.2] A. P. Chandrakasan, S. Sheng, and R. W. Brodersen, “Low-Power CMOS Digital Design,” IEEE JSSC, vol. 27, no. 4, April 1992, pp. 473-484.
[2.3] M. Horowitz, T. Indermaur, and R. Gonzalez, “Low-Power Digital Design,” IEEE ISLPED, October 1994, pp. 8-11.
[2.4] J.C. Lin, A.S. Oates, H.C. Tseng, Y.P. Liao, T.H. Chung, K.C. Huang, P. Y. Tong, S.H. Yau, and Y.F. Wang, “Prediction and control of NBTI-induced SRAM vccmin drift,” IEEE Electron Devices Meeting , October 2006, pp. 345-348.
[2.5] J. Davis et al. “A 5.6GHz 64kB Dual-Read Data Cache for the POWER6TM Processor,” IEEE ISSCC, February 2006, pp. 622–623.
[2.6] M. Khellah et al., “A 4.2GHz 0.3mm2 256kb Dual-Vcc SRAM Building Block in 65nm CMOS,” IEEE ISSCC, February 2006, pp. 624-625.
[2.7] Ramy E. Aly and Magdy A. Bayoumi, “Low-power cache design using 7T SRAM cell,” IEEE Trans. on Circuits and Systems, April 2007, pp. 318-322.
[2.8] Mu-Tien Chang, Po-Tsang Huang, Wei Hwang, “A robust ultra-low power asynchronous FIFO memory with self-adaptive power control,” IEEE SOCC, Sept. 2008, pp. 175-178.
[2.9] A. Kawasumi, T. Yabe, Y. Takeyama, O. Hirabayashi, K. Kushida, A. Tohata, T. Sasaki, A. Katayama, G. Fukano, Y. Fujimura, and N. Otsuka, “A Single-Power-Supply 0.7V 1GHz 45nm SRAM with An Asymmetrical Unit-β-ratio Memory Cell,” IEEE ISSCC, Feb. 2008, pp. 382-383.
[2.10] Koichi Takeda, Yasuhiko Hagihara, Yoshiharu Aimoto, Masahiro Nomura, Yoetsu Nakazawa, Toshio Ishii, and Hiroyuki Kobatake, “A Read-Static-Noise-Margin-Free SRAM Cell for Low-VDD and High- Speed Applications,” IEEE JSSC, January 2006, pp. 113-121.
[2.11] Mohammad Sharifkhani and Manoj Sachdev, “An Energy Efficient 40 kb SRAM Module with Extended Read/Write Noise Margin in 0.13um CMOS,” IEEE JSSC, Feb. 2009, pp.620-630.
[2.12] Benton H. Calhoun and Anantha Chandrakasan “A 256kb Sub-threshold SRAM in 65nm CMOS,” IEEE ISSCC, February 2006, pp. 628-629.
[2.13] Naveen Verma, Anantha P. Chandrakasan, “A 65nm 8T Sub-Vt SRAM Employing Sense-Amplifier Redundancy,” IEEE ISSCC, Feb 2007, pp. 328-329.
[2.14] Tae-Hyoung Kim, Jason Liu, John Keane, Chris H. Kim, “A High-Density Subthreshold SRAM with Data-Independent Bitline Leakage and Virtual Ground Replica Scheme,” IEEE ISSCC, Feb 2007, pp. 330-331.
[2.15] Jaydeep P. Kulkarni, Keejong Kim, and Kaushik Roy, “A 160 mV, Fully Differential, Robust Schmitt Trigger Based Subthreshold SRAM,” IEEE ISLPED, August 2007, pp. 171-176.
[2.16] Jaydeep P. Kulkarni, Keejong Kim, Sang Phill Park and Kaushik Roy, “Process Variation Tolerant SRAM Array for Ultra Low Voltage Applications,” IEEE DAC, June 2008, pp. 108-113.
[2.17] Tae-Hyoung Kim, Jason Liu and Chris H. Kim “An 8T Subthreshold SRAM Cell Utilizing Reverse Short Channel Effect for Write Margin and Read Performance Improvement,” IEEE CICC, Sept. 2007, pp. 241-244.
[2.18] Mu-Tien Chang and Wei Hwang, “A Fully Differential Subthreshold SRAM Cell with Auto-Compensation,” IEEE APCCAS, Nov. 2008, pp.1771-1774.
[2.19] I. J. Chang, J. J. Kim, S. P. Park, and K. Roy, “A 32kb 10T Subthreshold SRAM Array with Bit-Interleaving and Differential Read Scheme in 90nm CMOS,” IEEE ISSCC, February 2008, pp. 388-389.
[2.20] A. Kawasumi, T. Yabe, Y. Takeyama, O. Hirabyashoi, K. Kushida, A. Tohata, T. Sasaki, A. Katayama, G. Fukano, Y. Fujimura, N. Otsuka, “A Single- Power-Supply 0.7V 1GHz 45nm SRAM with An Asymmetrical Unit- β-ratio Memory Cell,” IEEE ISSCC. Feb. 2008, pp. 382-383.
[2.21] Mahmut E. Sinangil, Naveen Vermal, and Anantha P. Chandrakasan, “A Reconfigurable 8T Ultra-Dynamic Voltage Scalable (U-DVS) SRAM in 65 nm CMOS”, IEEE JSSC, Nov. 2009, pp. 3163-3173.
[2.22] F. Fallah and M. Pedram, “Standby and Active Leakage Current Control and Minimization in CMOS VLSI Circuits,” IEICE Trans. Electron, vol. E88-C, no. 4, April 2005, pp. 509-519.
[2.23] Kaushik Roy, S. Mukhopadhyay, and H. Mahomoodi-Meimand, “Leakage Current Mechanisms and Leakage Reduction Techniques in Deep-Submicrometer CMOS Circuits,” Proceedings of the IEEE, vol. 91, no. 2, February 2003, pp. 305-327.
[2.24] Semiconductor Industry Association, International Technology Roadmap for Semiconductors, 2003 edition, http://public.itrs.net.
[2.25] N. Yang, W. K. Henson, and J. Wortman, “A Comparative Study of Gate Direct Tunneling and Drain Leakage Currents in N-MOSFETS with Sub-2100-nm Gate Oxides,” IEEE Trans. Electron Devices, vol. 47, August 2000, pp. 1636-1644.
[2.26] S. Mukhopadhyay, C. Neau, R. T. Cakici, A. Agarwal, C. H. Kim, and K. Roy, “Gate Leakage Reduction for Scaled Devices Using Transistor Stacking,” IEEE Trans. VLSI System, vol. 11, no. 4, August 2003, pp. 716-730.
[2.27] K. Nose, M. Hirabayashi, H. Kawaguchi, S. Lee, and T. Sakurai, “Vth -Hopping scheme to reduce subthreshold leakage for low-power processors,” IEEE JSSC, vol. 37, Mar. 2002, pp. 413–419.
[2.28] S. Rusu and S. Tam, “A Dual-Core Multi-Threaded Xeon® Processor with 16MB L3 Cache,” IEEE ISSCC, February 2006, pp. 102-103.
[2.29] M. Khellah, N. Kim, et al., “A 4.2Ghz, 130Mb/cm2, dual-Vcc SRAM in 65nm CMOS featuring active power management with autonomous compensation of PVT variation & aging impacts,” IEEE ISSCC, Feb. 2006.
[2.30] K. Nii et al., “A 90 nm Low Power 32K-Byte Embedded SRAM with Gate Leakage Suppression Circuit for Mobile Applications,” Digest of Tech. Papers, Symp. VLSI Circuits, 2003, pp. 247-250.
[2.31] H. J. M. Veendrick, “Short-Circuit Dissipation of Static CMOS Circuitry and Its Impact on the Design of Buffer Circuits”, IEEE JSSC, vol. sc-19, August 1984, pp. 468-473.
[2.32] H. Pilo, “SRAM Design in the Nanoscale Era,” IEEE ISSCC, 2005, pp. 366-367.
[2.33] M. Khare, S. H. Ku, R. A. Donaton, S. Greco, C. Brodsky, X. Chen, A. Chou, et al., "A High Performance 90nm SOI Technology with 0.992 µm2 6T-SRAM Cell," IEDM Tech., pp. 407-410, December 2002.
[2.34] Hamzaoglu, F.Kevin ZhangYin WangAnn, H.J.Bhattacharya, U.Zhanping ChenYong-Gee NgPavlov, A.Smits, K.Bohr, “A 153Mb-SRAM design with dynamic stability enhancement and leakage reduction in 45nm high-Κ metal-Gate CMOS technology,” IEEE ISSCC, Feb. 2008, pp. 376-621.
[2.35] L. Chang, D.M. Fried, J. Hergenrother, J.W. Sleight, R.H. Dennard, R.K. Montoye, L. Sekaric, S.J. McNab, A.W. Topol, C.D. Adams, K.W. Guarini, W. Haensch, ”Stable SRAM cell design for the 32nm node and beyond,” IEEE Symposium on VLSI , June 2005, pp. 128- 129.
[2.36] Leland Chang, R. K. Montoye, Yutaka Nakamura, Kevin A. Batson, Richard J. Eickemeyer, Robert H. Dennard, Wilfried Haensch, and Damir Jamsek, “An 8T-SRAM for variability tolerance and low-voltage operation in high-performance caches,” IEEE JSSC, April 2008, pp. 956-963.
[2.37] Naveen Verma, Anantha P. Chandrakasan, “A High-Density 45 nm SRAM Using Small-Signal Non-Strobed Regenerative Sensing,” IEEE JSSC, vol.44, Jan. 2009, pp. 163-173.

[3.1] N. Verma, J. Kwong, and A.P. Chandrakasan, “Nanometer MOSFET Variation in Minimum Energy Subthreshold Circuits,” IEEE Trans. on Electron Devices, Jan. 2008, pp. 163-174.
[3.2] K. J. Kuhn, “Reducing variation in advanced logic technologies: Approaches to process and design for manufacturability of nanoscale CMOS,” IEEE IEDM, Dec. 2007, pp.471-474.
[3.3] M. J. M. Pelgrom, A. C. J. Duinmaijer, and A. P. G. Welbers, “Matching properties of MOS transistors,” IEEE JSSC, vol.24, Oct. 1989, pp. 1433-1439.
[3.4] S. Mukhopadhyay, R. Rao, J.J. Kim, C.T. Chuang, “Capacitive coupling based transient negative bit-line voltage (Tran-NBL) scheme for improving write-ability of SRAM design in nanometer technologies,” IEEE ISCAS, May 2008, pp384-387.
[3.5] R. E. Aly, M. A. Bayoumi, “Low-power cache design using 7T SRAM cell,” IEEE J. of Trans. on Circuits and Systems, April 2007, pp. 318-322.
[3.6] N. Verma, A.P. Chandrakasan, “A 256 kb 65 nm 8T Subthreshold SRAM Employing Sense-Amplifier Redundancy,” IEEE JSSC, Jan. 2008, pp 141-149.
[3.7] T.H. Kim, J. Liu, J.Keane, C.H. Kim, “A 0.2 V, 480 kb Subthreshold SRAM With 1 k CellsPer Bitline for Ultra-Low-Voltage Computing,” IEEE JSSC, Feb. 2008, pp 518-529.
[3.8] Benton Highsmith Calhoun, Anantha P. Chandrakasan, “A 256-kb 65-nm Sub-threshold SRAM Design for Ultra-Low-Voltage Operation,” IEEE JSSC, vol. 42, March 2007, pp. 680-688.
[3.9] Tae-Hyoung Kim, Hanyong Eom, J. Keane, C. Kim, "Utilizing Reverse Short Channel Effect for Optimal Subthreshold Circuit Design,” IEEE ISLPED, July 2006, 127-130.
[3.10] H. Yamauchi, “Embedded SRAM Trend in Nano-Scale CMOS,” IEEE MTDT, Dec. 2007, pp. 19-22.
[3.11] K. Zhang, K. Hose, V. De, and B. Senyk, “The scaling of data sensing schemes for high speed cache design in sub-0.18 um technologies,” IEEE ISVLSI, June 2000, pp. 226–227.
[3.12] I.J. Chang, J.J. Kim, S.P. Park, K. Roy, “A 32 kb 10T Sub-Threshold SRAM Array With Bit-Interleaving and Differential Read Scheme in 90 nm CMOS,” IEEE JSSC, Feb. 2009, pp 650-658.
[3.13] D.P. Wang, H.J. Liao, H. Yamauchi, D.-P. Wang, H.-J. Liao, H. Yamauchi, W. Hwang, Y. L. Lin, Y. H. Chen, H. C. Chang, “A 45nm Dual-Port SRAM with Write and Read Capability Enhancement at Low Voltage,” IEEE SOCC, June 2007, pp. 211-214.
[3.14] Ramy E. Aly, M.I. Faisal, M.A. Bayoumi, “Novel 7T sram cell for low power cache design,” IEEE SOCC, Sept. 2005, pp.171-174.

[4.1] Mark Horowitz, Donald Stark, and Elad Alon, “Digital Circuit Design Trends,” IEEE JSSC, vol.43, April 2008, pp. 757-761.
[4.2] Y. Morita, H. Fujiwara, H. Noguchi1 Y. Iguchi, K. Nii, H. Kawaguchi, and M. Yoshimoto, “Area Optimization in 6T and 8T SRAM Cells Considering Vth Variation in Future Processes,” IEICE Trans. on Electronics, Oct. 2007, pp. 1949-1956.
[4.3] I.J. Chang, J.J. Kim, S.P. Park, K. Roy, “A 32 kb 10T Sub-Threshold SRAM Array With Bit-Interleaving and Differential Read Scheme in 90 nm CMOS,” IEEE JSSC, Feb. 2009, pp 650-658.
[4.4] Jaydeep P. Kulkarni, Keejong Kim, Sang Phill Park, and Kaushik Roy, "Process variation tolerant SRAM array for ultra low voltage applications," IEEE DAC, June 2008, pp. 108-113.
[4.5] C.Y. Lu, J.M. Song, “Reverse short-channel effects on threshold voltage in submicrometer salicide devices”, IEEE Electron Device Letters, Vol.10, Oct. 1989, pp. 446-448.
[4.6] N. Verma and A.P. Chandrakasan, “A 256 kb 65 nm 8T Subthreshold SRAM Employing Sense-Amplifier Redundancy,” IEEE JSSC, Jan. 2008, pp 141-149.
[4.7] J.P. Kulkarni, K. Kim, and K. Roy, “A 160 mV Robust Schmitt Trigger Based Subthreshold SRAM,” IEEE JSSC, Oct. 2007, pp. 2303-2313.
[4.8] N. Derhacobian, V.A. Vardanian, Y. Zorian, “Embedded memory reliability: the SER challenge,” IEEE MTDT, Aug. 2004, pp. 104-110.
[4.9] R. Baumann, Silicon Technol. Dev. Group, TI Inc., “The impact of technology scaling on soft error rate performance and limits to the efficacy of error correction,” IEEE IEDM, Feb. 2003, pp. 329-332.
[4.10] J. Maiz, S. Hareland, K. Zhand, and P. Armstrong, “Characterization of multi-bit soft error events in advanced SRAMs,” IEEE IEDM, Dec. 2003, pp. 21.4.1-21.4.4.
[4.11] S. Ishikura, M. Kurumada, T. Terano, Y. Yamagami, N. Kotani, K. Satomi, K. Nii, M. Yabuuchi, Y. Tsukamoto, S. Ohbayashi, T. Oashi, H. Makino, H. Shinohara and H. Akamatsu, “A 45 nm 2-port 8T-SRAM Using Hierarchical Replica Bitline Technique With Immunity From Simultaneous R/W Access Issues,” IEEE JSSC, Vol. 43, April 2008, pp. 938-945.
[4.12] P. Hazucha et al., “Neutron soft error rate measurements in 90-nm CMOS process and scaling trends from 0.25-μm to 90-nm generation,” IEEE IEDM, Dec. 2003, pp. 21.5.1-21.5.4.
[4.13] T. Kim, J. Liu, J. Keane, and C. H. Kim, “A high-density subthreshold SRAM with data-independent bitline leakage and virtual ground replica scheme,” IEEE JSSC, vol. 43, Feb. 2008, pp. 518-529.
[4.14] Tae-Hyoung Kim, Jason Liu, Chris H. Kim, “A Voltage Scalable 0.26V, 64kb 8T SRAM With Vmin Lowing Technique and Deep Sleep Mode,” IEEE JSSC, vol. 44, June 2009, pp. 1785-1795.

[5.1] J. Y. Yu, W. C. Liao, and C. Y. Lee, “An MT-CDMA Based Wireless Body Area Network for Ubiquitous Healthcare Monitoring,” IEEE BioCAS, November 2006.
[5.2] J. Y. Yu, C. C. Chung, W. C. Liao, and C. Y. Lee, “A sub-mW Multi-Tone CDMA Baseband Transceiver Chipset for Wireless Body Area Network Applications,” IEEE ISSCC, Feb. 2007, pp. 364-365.
[5.3] M.T. Chang, P.T. Huang, and W. Hwang, “A Robust Ultra-Low Power Asynchronous FIFO Memory With Self-Adaptive Power Control,” IEEE SOCC, Oct. 2008, pp. 175-178.
[5.4] G. Gerosa, S. Gary, C. Dietz, P. Dac, K. Hoover, J. Alvarez, H. Sanchez, P. Ippolito, N. Tai, S. Litch, J. Eno, J. Golab, N. Vanderschaaf, J. Kahle, “A 2.2 W, 80 MHz Superscalar RISC Microprocessor,” IEEE JSSC, vol. 29, no. 12, pp. 1440-1454, December 1994.
[5.5] C. A. Otto, E. Jovanov, and A. Milenkovic, “A WBAN-based System for Health Monitoring at Home,” IEEE-EMBS, September 2006, pp. 20-23.
[5.6] E. Jovanov, A. Milenkovic, C. A. Otto, P. C. de Groen, “A wireless body area network of intelligent motion sensors for computer assisted physical rehabilitation,” J. of Neuro Engineering and Rehabilitation, 2:6, March 2005.
[5.7] B. Fu and P. Ampadu, “Comparative Analysis of Ultra-Low Voltage Flip-Flops for Energy Efficiency,” IEEE ISCAS, May 2007, pp. 1173-1176.
[5.8] Tsan-Wen Chen, Jui-Yuan Yu, Chien-Ying Yu, Chen-Yi Lee, “A 0.5 V 4.85 Mbps Dual-Mode Baseband Transceiver With Extended Frequency Calibration for Biotelemetry Applications,” IEEE JSSC, vol.44, Nov. 2009, pp. 2966-2976.
[5.9] J. Y. Yu, C. C. Chung, W. C. Liao, and C. Y. Lee, “A sub mW Multi-Tone CDMA Baseband Transceiver Chipset for Wireless Body Area Network Applications,” IEEE ISSCC, Feb. 2007, pp. 364-365.
[5.10] Anantha P. Chandrakasan, Denis C. Daly, Daniel Frederic Finchelstein, Joyce Kwong, Yogesh Kumar Ramadass, Mahmut Ersin Sinangil, Vivienne Sze, Naveen Verma, “Technologies for Ultradynamic Voltage Scaling”, IEEE Proceedings, Vol. 98, Issue 2, Feb. 2010, pp. 191-214.
[5.11] Mahmut E. Sinangil, N. Verma, A.P. Chandrakasan, “A Reconfigurable 8T Ultra-Dynamic Voltage Scalable (U-DVS) SRAM in 65 nm CMOS”, IEEE JSSC, Nov. 2009, pp. 3163-3173.
[5.12] J. Kwong, Y. Ramadass, N. Verma, M. Koesler, K. Huber, H. Moormann, and A.P. Chandrakasan, “A 65nm Sub-Vt Microcontroller with Integrated SRAM and Switched-Capacitor DC-DC Converter,” IEEE JSSC, vol. 44, Jan. 2009, pp. 115-126.
[5.13] Hong-Wei Huang, Ke-Horng Chen, and Sy-Yen Kuo, “Dithering Skip Modulation, Width and Dead Time Controllers in Highly Efficient DC-DC Converters for System-On-Chip Applications,” IEEE JSSC, vol. 42, Nov. 2007, pp. 2451–2465.
[5.14] Y. K. Ramadass and A. P. Chandrakasan, “Voltage scalable switched capacitor DC-DC converter for ultra-low-power on-chip applications,” IEEE PESC, June 2007, pp. 2353–2359.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔