|
[1.1] Jan M. Rabaey, Anantha Chandrakasan, borivoje Nikolic, Digital Integrated Circuit – a Design Perspective, second edition. Prentice Hall, Dec. 2002. [1.2] N.Yoshinobu, H. Masahi, K. Takayuki, and K. Itoh, “Reviewand future prospects of low-voltage RAM circuits,” IBM J. Res. Develop., vol. 47, Sep. 2003, pp. 525–552. [1.3] A. Wang, A. Chandrakasan, and S. Kosonocky, “Optimal Supply and Threshold Scaling for Subthreshold CMOS Circuits,” IEEE Computer Society Annual Symposium on VLSI, Apr. 2002, pp. 5–9. [1.4] Naveen Verma, Joyce Kwong, and Anantha P. Chandrakasan, “Nanometer MOSFET Variation in Minimum Energy Subthreshold Circuits,” IEEE Trans. on Electron Devices, January 2008, pp.163-174. [1.5] Anantha P. Chandrakasan, Denis C. Daly, Daniel Frederic Finchelstein, Joyce Kwong, Yogesh Kumar Ramadass, Mahmut Ersin Sinangil, Vivienne Sze, Naveen Verma, “Technologies for Ultradynamic Voltage Scaling”, IEEE Proceedings, Vol. 98, Issue 2, Feb. 2010, pp. 191-214. [1.6] Naveen Verma and Anantha P. Chandrakasan, “A 256kb 65nm 8T subthreshold SRAM employing sense-amplifier redundancy,” IEEE JSSC, January 2008, pp. 141-149.
[2.1] Andrei Pavlov and Manoj Sachdev, CMOS SRAM Circuit Design and Parametric Test in Nano-Scaled Technologies. Springer Verlag, June 2008. [2.2] A. P. Chandrakasan, S. Sheng, and R. W. Brodersen, “Low-Power CMOS Digital Design,” IEEE JSSC, vol. 27, no. 4, April 1992, pp. 473-484. [2.3] M. Horowitz, T. Indermaur, and R. Gonzalez, “Low-Power Digital Design,” IEEE ISLPED, October 1994, pp. 8-11. [2.4] J.C. Lin, A.S. Oates, H.C. Tseng, Y.P. Liao, T.H. Chung, K.C. Huang, P. Y. Tong, S.H. Yau, and Y.F. Wang, “Prediction and control of NBTI-induced SRAM vccmin drift,” IEEE Electron Devices Meeting , October 2006, pp. 345-348. [2.5] J. Davis et al. “A 5.6GHz 64kB Dual-Read Data Cache for the POWER6TM Processor,” IEEE ISSCC, February 2006, pp. 622–623. [2.6] M. Khellah et al., “A 4.2GHz 0.3mm2 256kb Dual-Vcc SRAM Building Block in 65nm CMOS,” IEEE ISSCC, February 2006, pp. 624-625. [2.7] Ramy E. Aly and Magdy A. Bayoumi, “Low-power cache design using 7T SRAM cell,” IEEE Trans. on Circuits and Systems, April 2007, pp. 318-322. [2.8] Mu-Tien Chang, Po-Tsang Huang, Wei Hwang, “A robust ultra-low power asynchronous FIFO memory with self-adaptive power control,” IEEE SOCC, Sept. 2008, pp. 175-178. [2.9] A. Kawasumi, T. Yabe, Y. Takeyama, O. Hirabayashi, K. Kushida, A. Tohata, T. Sasaki, A. Katayama, G. Fukano, Y. Fujimura, and N. Otsuka, “A Single-Power-Supply 0.7V 1GHz 45nm SRAM with An Asymmetrical Unit-β-ratio Memory Cell,” IEEE ISSCC, Feb. 2008, pp. 382-383. [2.10] Koichi Takeda, Yasuhiko Hagihara, Yoshiharu Aimoto, Masahiro Nomura, Yoetsu Nakazawa, Toshio Ishii, and Hiroyuki Kobatake, “A Read-Static-Noise-Margin-Free SRAM Cell for Low-VDD and High- Speed Applications,” IEEE JSSC, January 2006, pp. 113-121. [2.11] Mohammad Sharifkhani and Manoj Sachdev, “An Energy Efficient 40 kb SRAM Module with Extended Read/Write Noise Margin in 0.13um CMOS,” IEEE JSSC, Feb. 2009, pp.620-630. [2.12] Benton H. Calhoun and Anantha Chandrakasan “A 256kb Sub-threshold SRAM in 65nm CMOS,” IEEE ISSCC, February 2006, pp. 628-629. [2.13] Naveen Verma, Anantha P. Chandrakasan, “A 65nm 8T Sub-Vt SRAM Employing Sense-Amplifier Redundancy,” IEEE ISSCC, Feb 2007, pp. 328-329. [2.14] Tae-Hyoung Kim, Jason Liu, John Keane, Chris H. Kim, “A High-Density Subthreshold SRAM with Data-Independent Bitline Leakage and Virtual Ground Replica Scheme,” IEEE ISSCC, Feb 2007, pp. 330-331. [2.15] Jaydeep P. Kulkarni, Keejong Kim, and Kaushik Roy, “A 160 mV, Fully Differential, Robust Schmitt Trigger Based Subthreshold SRAM,” IEEE ISLPED, August 2007, pp. 171-176. [2.16] Jaydeep P. Kulkarni, Keejong Kim, Sang Phill Park and Kaushik Roy, “Process Variation Tolerant SRAM Array for Ultra Low Voltage Applications,” IEEE DAC, June 2008, pp. 108-113. [2.17] Tae-Hyoung Kim, Jason Liu and Chris H. Kim “An 8T Subthreshold SRAM Cell Utilizing Reverse Short Channel Effect for Write Margin and Read Performance Improvement,” IEEE CICC, Sept. 2007, pp. 241-244. [2.18] Mu-Tien Chang and Wei Hwang, “A Fully Differential Subthreshold SRAM Cell with Auto-Compensation,” IEEE APCCAS, Nov. 2008, pp.1771-1774. [2.19] I. J. Chang, J. J. Kim, S. P. Park, and K. Roy, “A 32kb 10T Subthreshold SRAM Array with Bit-Interleaving and Differential Read Scheme in 90nm CMOS,” IEEE ISSCC, February 2008, pp. 388-389. [2.20] A. Kawasumi, T. Yabe, Y. Takeyama, O. Hirabyashoi, K. Kushida, A. Tohata, T. Sasaki, A. Katayama, G. Fukano, Y. Fujimura, N. Otsuka, “A Single- Power-Supply 0.7V 1GHz 45nm SRAM with An Asymmetrical Unit- β-ratio Memory Cell,” IEEE ISSCC. Feb. 2008, pp. 382-383. [2.21] Mahmut E. Sinangil, Naveen Vermal, and Anantha P. Chandrakasan, “A Reconfigurable 8T Ultra-Dynamic Voltage Scalable (U-DVS) SRAM in 65 nm CMOS”, IEEE JSSC, Nov. 2009, pp. 3163-3173. [2.22] F. Fallah and M. Pedram, “Standby and Active Leakage Current Control and Minimization in CMOS VLSI Circuits,” IEICE Trans. Electron, vol. E88-C, no. 4, April 2005, pp. 509-519. [2.23] Kaushik Roy, S. Mukhopadhyay, and H. Mahomoodi-Meimand, “Leakage Current Mechanisms and Leakage Reduction Techniques in Deep-Submicrometer CMOS Circuits,” Proceedings of the IEEE, vol. 91, no. 2, February 2003, pp. 305-327. [2.24] Semiconductor Industry Association, International Technology Roadmap for Semiconductors, 2003 edition, http://public.itrs.net. [2.25] N. Yang, W. K. Henson, and J. Wortman, “A Comparative Study of Gate Direct Tunneling and Drain Leakage Currents in N-MOSFETS with Sub-2100-nm Gate Oxides,” IEEE Trans. Electron Devices, vol. 47, August 2000, pp. 1636-1644. [2.26] S. Mukhopadhyay, C. Neau, R. T. Cakici, A. Agarwal, C. H. Kim, and K. Roy, “Gate Leakage Reduction for Scaled Devices Using Transistor Stacking,” IEEE Trans. VLSI System, vol. 11, no. 4, August 2003, pp. 716-730. [2.27] K. Nose, M. Hirabayashi, H. Kawaguchi, S. Lee, and T. Sakurai, “Vth -Hopping scheme to reduce subthreshold leakage for low-power processors,” IEEE JSSC, vol. 37, Mar. 2002, pp. 413–419. [2.28] S. Rusu and S. Tam, “A Dual-Core Multi-Threaded Xeon® Processor with 16MB L3 Cache,” IEEE ISSCC, February 2006, pp. 102-103. [2.29] M. Khellah, N. Kim, et al., “A 4.2Ghz, 130Mb/cm2, dual-Vcc SRAM in 65nm CMOS featuring active power management with autonomous compensation of PVT variation & aging impacts,” IEEE ISSCC, Feb. 2006. [2.30] K. Nii et al., “A 90 nm Low Power 32K-Byte Embedded SRAM with Gate Leakage Suppression Circuit for Mobile Applications,” Digest of Tech. Papers, Symp. VLSI Circuits, 2003, pp. 247-250. [2.31] H. J. M. Veendrick, “Short-Circuit Dissipation of Static CMOS Circuitry and Its Impact on the Design of Buffer Circuits”, IEEE JSSC, vol. sc-19, August 1984, pp. 468-473. [2.32] H. Pilo, “SRAM Design in the Nanoscale Era,” IEEE ISSCC, 2005, pp. 366-367. [2.33] M. Khare, S. H. Ku, R. A. Donaton, S. Greco, C. Brodsky, X. Chen, A. Chou, et al., "A High Performance 90nm SOI Technology with 0.992 µm2 6T-SRAM Cell," IEDM Tech., pp. 407-410, December 2002. [2.34] Hamzaoglu, F.Kevin ZhangYin WangAnn, H.J.Bhattacharya, U.Zhanping ChenYong-Gee NgPavlov, A.Smits, K.Bohr, “A 153Mb-SRAM design with dynamic stability enhancement and leakage reduction in 45nm high-Κ metal-Gate CMOS technology,” IEEE ISSCC, Feb. 2008, pp. 376-621. [2.35] L. Chang, D.M. Fried, J. Hergenrother, J.W. Sleight, R.H. Dennard, R.K. Montoye, L. Sekaric, S.J. McNab, A.W. Topol, C.D. Adams, K.W. Guarini, W. Haensch, ”Stable SRAM cell design for the 32nm node and beyond,” IEEE Symposium on VLSI , June 2005, pp. 128- 129. [2.36] Leland Chang, R. K. Montoye, Yutaka Nakamura, Kevin A. Batson, Richard J. Eickemeyer, Robert H. Dennard, Wilfried Haensch, and Damir Jamsek, “An 8T-SRAM for variability tolerance and low-voltage operation in high-performance caches,” IEEE JSSC, April 2008, pp. 956-963. [2.37] Naveen Verma, Anantha P. Chandrakasan, “A High-Density 45 nm SRAM Using Small-Signal Non-Strobed Regenerative Sensing,” IEEE JSSC, vol.44, Jan. 2009, pp. 163-173.
[3.1] N. Verma, J. Kwong, and A.P. Chandrakasan, “Nanometer MOSFET Variation in Minimum Energy Subthreshold Circuits,” IEEE Trans. on Electron Devices, Jan. 2008, pp. 163-174. [3.2] K. J. Kuhn, “Reducing variation in advanced logic technologies: Approaches to process and design for manufacturability of nanoscale CMOS,” IEEE IEDM, Dec. 2007, pp.471-474. [3.3] M. J. M. Pelgrom, A. C. J. Duinmaijer, and A. P. G. Welbers, “Matching properties of MOS transistors,” IEEE JSSC, vol.24, Oct. 1989, pp. 1433-1439. [3.4] S. Mukhopadhyay, R. Rao, J.J. Kim, C.T. Chuang, “Capacitive coupling based transient negative bit-line voltage (Tran-NBL) scheme for improving write-ability of SRAM design in nanometer technologies,” IEEE ISCAS, May 2008, pp384-387. [3.5] R. E. Aly, M. A. Bayoumi, “Low-power cache design using 7T SRAM cell,” IEEE J. of Trans. on Circuits and Systems, April 2007, pp. 318-322. [3.6] N. Verma, A.P. Chandrakasan, “A 256 kb 65 nm 8T Subthreshold SRAM Employing Sense-Amplifier Redundancy,” IEEE JSSC, Jan. 2008, pp 141-149. [3.7] T.H. Kim, J. Liu, J.Keane, C.H. Kim, “A 0.2 V, 480 kb Subthreshold SRAM With 1 k CellsPer Bitline for Ultra-Low-Voltage Computing,” IEEE JSSC, Feb. 2008, pp 518-529. [3.8] Benton Highsmith Calhoun, Anantha P. Chandrakasan, “A 256-kb 65-nm Sub-threshold SRAM Design for Ultra-Low-Voltage Operation,” IEEE JSSC, vol. 42, March 2007, pp. 680-688. [3.9] Tae-Hyoung Kim, Hanyong Eom, J. Keane, C. Kim, "Utilizing Reverse Short Channel Effect for Optimal Subthreshold Circuit Design,” IEEE ISLPED, July 2006, 127-130. [3.10] H. Yamauchi, “Embedded SRAM Trend in Nano-Scale CMOS,” IEEE MTDT, Dec. 2007, pp. 19-22. [3.11] K. Zhang, K. Hose, V. De, and B. Senyk, “The scaling of data sensing schemes for high speed cache design in sub-0.18 um technologies,” IEEE ISVLSI, June 2000, pp. 226–227. [3.12] I.J. Chang, J.J. Kim, S.P. Park, K. Roy, “A 32 kb 10T Sub-Threshold SRAM Array With Bit-Interleaving and Differential Read Scheme in 90 nm CMOS,” IEEE JSSC, Feb. 2009, pp 650-658. [3.13] D.P. Wang, H.J. Liao, H. Yamauchi, D.-P. Wang, H.-J. Liao, H. Yamauchi, W. Hwang, Y. L. Lin, Y. H. Chen, H. C. Chang, “A 45nm Dual-Port SRAM with Write and Read Capability Enhancement at Low Voltage,” IEEE SOCC, June 2007, pp. 211-214. [3.14] Ramy E. Aly, M.I. Faisal, M.A. Bayoumi, “Novel 7T sram cell for low power cache design,” IEEE SOCC, Sept. 2005, pp.171-174.
[4.1] Mark Horowitz, Donald Stark, and Elad Alon, “Digital Circuit Design Trends,” IEEE JSSC, vol.43, April 2008, pp. 757-761. [4.2] Y. Morita, H. Fujiwara, H. Noguchi1 Y. Iguchi, K. Nii, H. Kawaguchi, and M. Yoshimoto, “Area Optimization in 6T and 8T SRAM Cells Considering Vth Variation in Future Processes,” IEICE Trans. on Electronics, Oct. 2007, pp. 1949-1956. [4.3] I.J. Chang, J.J. Kim, S.P. Park, K. Roy, “A 32 kb 10T Sub-Threshold SRAM Array With Bit-Interleaving and Differential Read Scheme in 90 nm CMOS,” IEEE JSSC, Feb. 2009, pp 650-658. [4.4] Jaydeep P. Kulkarni, Keejong Kim, Sang Phill Park, and Kaushik Roy, "Process variation tolerant SRAM array for ultra low voltage applications," IEEE DAC, June 2008, pp. 108-113. [4.5] C.Y. Lu, J.M. Song, “Reverse short-channel effects on threshold voltage in submicrometer salicide devices”, IEEE Electron Device Letters, Vol.10, Oct. 1989, pp. 446-448. [4.6] N. Verma and A.P. Chandrakasan, “A 256 kb 65 nm 8T Subthreshold SRAM Employing Sense-Amplifier Redundancy,” IEEE JSSC, Jan. 2008, pp 141-149. [4.7] J.P. Kulkarni, K. Kim, and K. Roy, “A 160 mV Robust Schmitt Trigger Based Subthreshold SRAM,” IEEE JSSC, Oct. 2007, pp. 2303-2313. [4.8] N. Derhacobian, V.A. Vardanian, Y. Zorian, “Embedded memory reliability: the SER challenge,” IEEE MTDT, Aug. 2004, pp. 104-110. [4.9] R. Baumann, Silicon Technol. Dev. Group, TI Inc., “The impact of technology scaling on soft error rate performance and limits to the efficacy of error correction,” IEEE IEDM, Feb. 2003, pp. 329-332. [4.10] J. Maiz, S. Hareland, K. Zhand, and P. Armstrong, “Characterization of multi-bit soft error events in advanced SRAMs,” IEEE IEDM, Dec. 2003, pp. 21.4.1-21.4.4. [4.11] S. Ishikura, M. Kurumada, T. Terano, Y. Yamagami, N. Kotani, K. Satomi, K. Nii, M. Yabuuchi, Y. Tsukamoto, S. Ohbayashi, T. Oashi, H. Makino, H. Shinohara and H. Akamatsu, “A 45 nm 2-port 8T-SRAM Using Hierarchical Replica Bitline Technique With Immunity From Simultaneous R/W Access Issues,” IEEE JSSC, Vol. 43, April 2008, pp. 938-945. [4.12] P. Hazucha et al., “Neutron soft error rate measurements in 90-nm CMOS process and scaling trends from 0.25-μm to 90-nm generation,” IEEE IEDM, Dec. 2003, pp. 21.5.1-21.5.4. [4.13] T. Kim, J. Liu, J. Keane, and C. H. Kim, “A high-density subthreshold SRAM with data-independent bitline leakage and virtual ground replica scheme,” IEEE JSSC, vol. 43, Feb. 2008, pp. 518-529. [4.14] Tae-Hyoung Kim, Jason Liu, Chris H. Kim, “A Voltage Scalable 0.26V, 64kb 8T SRAM With Vmin Lowing Technique and Deep Sleep Mode,” IEEE JSSC, vol. 44, June 2009, pp. 1785-1795.
[5.1] J. Y. Yu, W. C. Liao, and C. Y. Lee, “An MT-CDMA Based Wireless Body Area Network for Ubiquitous Healthcare Monitoring,” IEEE BioCAS, November 2006. [5.2] J. Y. Yu, C. C. Chung, W. C. Liao, and C. Y. Lee, “A sub-mW Multi-Tone CDMA Baseband Transceiver Chipset for Wireless Body Area Network Applications,” IEEE ISSCC, Feb. 2007, pp. 364-365. [5.3] M.T. Chang, P.T. Huang, and W. Hwang, “A Robust Ultra-Low Power Asynchronous FIFO Memory With Self-Adaptive Power Control,” IEEE SOCC, Oct. 2008, pp. 175-178. [5.4] G. Gerosa, S. Gary, C. Dietz, P. Dac, K. Hoover, J. Alvarez, H. Sanchez, P. Ippolito, N. Tai, S. Litch, J. Eno, J. Golab, N. Vanderschaaf, J. Kahle, “A 2.2 W, 80 MHz Superscalar RISC Microprocessor,” IEEE JSSC, vol. 29, no. 12, pp. 1440-1454, December 1994. [5.5] C. A. Otto, E. Jovanov, and A. Milenkovic, “A WBAN-based System for Health Monitoring at Home,” IEEE-EMBS, September 2006, pp. 20-23. [5.6] E. Jovanov, A. Milenkovic, C. A. Otto, P. C. de Groen, “A wireless body area network of intelligent motion sensors for computer assisted physical rehabilitation,” J. of Neuro Engineering and Rehabilitation, 2:6, March 2005. [5.7] B. Fu and P. Ampadu, “Comparative Analysis of Ultra-Low Voltage Flip-Flops for Energy Efficiency,” IEEE ISCAS, May 2007, pp. 1173-1176. [5.8] Tsan-Wen Chen, Jui-Yuan Yu, Chien-Ying Yu, Chen-Yi Lee, “A 0.5 V 4.85 Mbps Dual-Mode Baseband Transceiver With Extended Frequency Calibration for Biotelemetry Applications,” IEEE JSSC, vol.44, Nov. 2009, pp. 2966-2976. [5.9] J. Y. Yu, C. C. Chung, W. C. Liao, and C. Y. Lee, “A sub mW Multi-Tone CDMA Baseband Transceiver Chipset for Wireless Body Area Network Applications,” IEEE ISSCC, Feb. 2007, pp. 364-365. [5.10] Anantha P. Chandrakasan, Denis C. Daly, Daniel Frederic Finchelstein, Joyce Kwong, Yogesh Kumar Ramadass, Mahmut Ersin Sinangil, Vivienne Sze, Naveen Verma, “Technologies for Ultradynamic Voltage Scaling”, IEEE Proceedings, Vol. 98, Issue 2, Feb. 2010, pp. 191-214. [5.11] Mahmut E. Sinangil, N. Verma, A.P. Chandrakasan, “A Reconfigurable 8T Ultra-Dynamic Voltage Scalable (U-DVS) SRAM in 65 nm CMOS”, IEEE JSSC, Nov. 2009, pp. 3163-3173. [5.12] J. Kwong, Y. Ramadass, N. Verma, M. Koesler, K. Huber, H. Moormann, and A.P. Chandrakasan, “A 65nm Sub-Vt Microcontroller with Integrated SRAM and Switched-Capacitor DC-DC Converter,” IEEE JSSC, vol. 44, Jan. 2009, pp. 115-126. [5.13] Hong-Wei Huang, Ke-Horng Chen, and Sy-Yen Kuo, “Dithering Skip Modulation, Width and Dead Time Controllers in Highly Efficient DC-DC Converters for System-On-Chip Applications,” IEEE JSSC, vol. 42, Nov. 2007, pp. 2451–2465. [5.14] Y. K. Ramadass and A. P. Chandrakasan, “Voltage scalable switched capacitor DC-DC converter for ultra-low-power on-chip applications,” IEEE PESC, June 2007, pp. 2353–2359.
|