(3.238.7.202) 您好!臺灣時間:2021/03/04 21:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃詩雯
研究生(外文):Huang, Shih-Wen
論文名稱:量子系統的多鐵相變與低能激發能譜
論文名稱(外文):Multiferroic Transitions and Low-Energy Excitaions of Quantum Spin Systems
指導教授:黃迪靖
指導教授(外文):Huang, Di-Jing
學位類別:博士
校院名稱:國立交通大學
系所名稱:電子物理系所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:英文
論文頁數:138
中文關鍵詞:多鐵相變共振軟X光散射共振軟非X光彈性散射低能激發能譜
外文關鍵詞:multiferroic transitionsResonant soft x-ray scatteringResonant soft x-ray inelastic scatteringlow energy excitations
相關次數:
  • 被引用被引用:0
  • 點閱點閱:164
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近數十年來,過渡金屬氧化物中的物理性質備受矚目。在這些材料中,電子的自旋、電荷與軌道等自由度與晶格緊密的結合,產生了許多豐富而有趣的物理現象。本論文,藉由共振軟X光散射研究量子系統LiCu2O2以及CuO的多鐵相變與電子結構。
第一個研究主題是,LiCu2O2的磁相轉變與基態的性質,從共振軟X光散射結果顯示,沿著 c 軸方向磁矩間的相互耦合是產生鐵電性不可或缺的要素。接著,在CuO方面實驗結果指出,溫度低於230 K以下,長程磁有序形成。溫度介於213 ~ 230 K之間,此磁性結構與晶格不相稱;隨著溫度的降低,磁結構週期變為晶格的整數倍。
同時,一座新的軟X光非彈性散射儀亦被成功的測試完成。我們利用這項新的實驗技術,研究多鐵材料--LiCu2O2 與 CuO 的電子低能激發能譜,進而瞭解這類材料的細部的電子結構。

The physical properties of transition metal oxides have received much attention for decades. The interplay among spin, charge and orbital degrees of freedom coupled with the lattice of these materials results in interesting phenomena. In this thesis, we performed measurements of resonant soft x-ray scattering to investigate the electronic properties and multiferroic transitions of quantum spin systems.
We studied the magnetic transition as well as the ground-state properties of LiCu2O2. The results of soft x-ray scattering indicate that the spin coupling along the c axis is essential for inducing electric polarization. We also found that CuO exhibits a long-range magnetic ordering which is incommensurate with the lattice for temperature between 213 and 230~K. With further cooling, an incommensurate-commensurate transition sets in and the commensurate magnetic order appears.
In addition, a soft x-ray beamline was successfully commissioned for resonant inelastic soft x-ray scattering. With this new technique, we unraveled the dd excitations of multiferroic LiCu2O2 and CuO to understand their detailed electronic structure.

1 Introduction . . . . . . . . . . . . . . 1

2 Low-Dimensional Systems and Magnetoelectric Multiferroicity . . . . . . . . . . . . . 6
2.1 Magnetic Ordering . . . . . . . . . . . . . . . . . . 6
2.2 Low-Dimensional Quantum Spin System . . . . . . 8
2.3 Frustration . . . . . . . . . . . . . . . . . . . . 10
2.4 Magneto-electric Coupling . . . . . . . . . . . 12
2.5 Multiferroics . . . . . . . . . . . . . . . . . . . . 16

3 X-ray Spectroscopic Techniques . . . . . . . . . .35
3.1 Interaction between X-rays and Matters . .. . . . . 35
3.2 X-ray Absorption and Emission . . . . . . . . . . . 39
3.2.1 Photoemission Spectroscopy . . . .. . . . . . 39
3.2.2 X-ray Absorption . . . . . . . . . . . . . . 40
3.3 X-ray Scattering . . . . . . . . . . . . . . 41
3.3.1 Resonant X-ray Magnetic scattering . .. . . . . 47
3.3.2 Resonant Inelastic Soft-X-ray Scattering (RIXS) .. 51
3.4 Instrumentation . . . . . . . . . . . . . . . . . 57
3.4.1 Resonant Soft X-ray Magnetic Scattering . . . . 57
3.4.2 Resonant Inelastic Soft X-ray Scattering—Traditional
Designed . . . . . . . . . . . . . . . . 59
3.4.3 A Novel Design for Resonant Soft X-ray Inelastic Scattering. . . . . . . . . .64
3.4.4 Commissioning Results of Novel Soft X-ray Inelastic
Beamline . . . . . . . . . . . . . 69
3.4.5 Non-Resonant Inelastic Hard X-ray Scattering . . 74

4 Multiferroic Quantum Magnet of LiCu2O2 80
4.1 Introduction . . . . .. . . . . . . . . . . . . . . 80
4.2 Soft X-ray Absorption . . . . . . . . . . . . . . 89
4.3 dd excitations . . . . . . . . . . . . . . . 93
4.4 Multiferroic Transitions . . . . . . .. . . . . . . . 96

5 X-ray Spectroscopy of Cuprate CuO . . . . . . . . . 114
5.1 Introduction . . . . . . . . . . . . . . . . . . . 114
5.2 dd excitations . . . . . . . .. . . . . . . . . . . 118
5.2.1 Soft X-Ray Resonant Inelastic Scattering . . . . 118
5.2.2 Non-Resonant Inelastic X-ray Scattering . .. . 122
5.3 Magnetic Transitions . . . . . . . . . . . . . . 128

6 Conclusion and Future work 134

Chapter 1
[1] J. G. Bednorz and K. A. Muller, Z. Phys. 64, 189 (1986).
[2] S. Jin, T. H. Tiefel, M. McDormack, R. A. Fastnacht, R. Ramesh, and L. H. Chen, Sceince 264, 413 (1994).
[3] T. Kimura, T. Goto, H.Shintani, K.Ishizaka, T. Arima, and Y. Tokura, Nature (London) 426, 55 (2003).
[4] N. Hur, S. Park, P. A. Sharma, J.S. Ahn, S. Guha, and S.-W. Cheong, Nature (London) 429, 392 (2004).
[5] Yoshinori Tokura, Physics Today, 50 July (2003).
Chpater 2
[1] P. W. Anderson, Magnetism vol. 1, Academic Press, New York (1963).
[2] B. J. Goodenough, Magnetism and the Chemical Bond. Interscience-Wiley, New York (1963).
[3] S. Sachdev, Quantum Phase Transitions, Cambride University Press (1999).
[4] H. A. Bethe, Z. Phys. 71, 205 (1931).
[5] L. Van Hove, physica 16, 137 (1950).
[6] R. B. Griffiths, Phys. Rev. 136, A437 (1964).
[7] N. D. Mermin and H. Wagner, Phys. Rev. Lett. 17, 1133 (1966).
[8] R. Bursill, G. A. Gehring, D. J. J. Farnell, J. B. Parkioson, T. Xiang, and Chen Zeng, J. Phys. Condens. Matter, 7 8605(1995).
[9] B. S. Shastry, B. Sutherland, Phys. Rev. Lett. 47, 964 (1981).
[10] F. D. M. Haldane, Phys. Rev. 23, 04925 (1982).
[11] K. Okamoto, K. Kimura, Phys. Lett. A 179, 433 (1992).
[12] S. R. White, I. Affleck, Phys .Rev. B 54, 9862 (1996).
[13] A. A. Aligia, C. D. Batista, F. H. L.Essler, Phys. Rev. B 62, 3259 (2000).
[14] S. Zvyagin, G. Cao, Y. Xin, S. Macall, T. Caldwell,W. Moulton, L-C. Brunel, A. Angerhofer, J. E. Crow, Phys. Rev. B 66, 064424 (2002).
[15] H. Schmid, Ferroelectrics 162, 317 (1994).
[16] W. Eerenstein, N. D. Mathur, and J. F. Scott, Nature 442, 759 (2006).
[17] P. Curie, J. Phys. 3, (Sec. III). 393-415 (1984).
[18] P. W. Anderson, Science 235, 1196 (1987).
[19] A. P. Ramirez, A. Hayashi, R. J. Cava, R. Siddharthan, and B. S. Shastry, Nature 399, 333 (1999).
[20] N. A. Hill, J. Phys. Chem. B 104, 6694 (2000).
[21] N. A. Hill and A. Filippetti, J. Magn. Magn. Mater. 242, 976 (2002).
[22] T. Kimura, T. Goto, H.Shintani, K.Ishizaka, T. Arima, and Y. Tokura, Nature (London) 426, 55 (2003).
[23] N. Hur, S. Park, P. A. Sharma, J.S. Ahn, S. Guha, and S.-W. Cheong, Nature (London) 429, 392 (2004).
[24] D. I. Khomskii, J. Magn. Magn. Mater. 306, 1 (2006).
[25] Dmitry V. Efremov, Jeroen van den Brink, and D. I. Khomskii, Nat. Meter. 3, 853 (2004).
[26] J. van den Brink and D. I. Khomskii, J. Phys.: Condens. Matter 20, 434217 (2008).
[27] S. Picozzi, K. Yamauchi, I. A. Sergienko, C. Swn, B. Sanyal, and E. Dagotto, J. Phys.: Condens. Matter 20, 434217 (2008).
[28] A. Daoud-Aladine, J. Rodr´iguez-Carvajal, L.Pinsard-Gaudart, M. T. Fern`andez-D´iaz and A. Revcolevschi, Phys. Rev Lett. 89, 097205 (2002)
[29] S.-W. Cheong and M. Mostovoy, Nat. Mater. 6, 23 (2007).
[30] N. Ikeda, H. Ohsumi, K. Ohwada, K. Ishii, T. Inami, K. Kakurai, Y. Murakami, K. Yoshii, S. Mori, Y. Horibe, and J. Kito, Nature 436, 1136 (2005).
[31] H. Katsura, N. Nagaosa, and A. V. Balatsky, Phys. Rev. Lett. 95, 57205 (2005).
[32] M. Mostovoy, Phys. Rev. Lett. 96, 067601 (2006).
[33] L. D. Landau and E. M. Lifshitz, Electrodynamics of continuous media, Pergamon, Oxford (1960)
[34] I. A. Sergienko and E. Dagotto, Phys. Rev. B 73, 094434 (2006).
[35] I. Dzyaloshinsky, J. Phys. Chem. Solids 4, 241 (1958).
[36] T. Moriya, Phys. Rev. 120, 91 (1960).
[37] P. W. Anderson, Phys. Rev. Lett. 3, 325 (1959).
Chapter 3
[1] J. J. Sakura, Advance Quantum Mechanics, Addison-Wesley, London, UK, (1967), and references therein.
[2] Didier S`ebilleau, X-ray and Electron Spectroscopies: An Introduction, Lect. Note. Phys. 697, 15-57 (2006).
[3] M. Blume, J. Appl. Phys. 57, 3615 (1985), and references therein.
[4] S. H¨ufner, Photonelectron Spectroscopy, Springer-Verlag, Berlin, Germany, (1996).
[5] F. de Groot, Chem. Rev. 101, 1779 (2001).
[6] J. St¨ohr, NEXAFS spectroscopy, Springer-Verlag, Berlin, Germany, (1992).
[7] M. Altarelli, Resonant X-ray Svattering: A Theoretical Introduction, Lect. Notes Phys. 697. 201-242 (2006), and references therein.
[8] J. P. Hannon, G. T. Trammell, M. Blume, and D. Gibbs, Phys. Rev. Lett. 61, 1245 (1988).
[9] A. Kotani and S. Shin, Review of Modern Phys. 73, 203 (2001), and references therein.
[10] Luuk J. P. Ament, Michel van Veenendaal, Thomas P. Devereaux, John P. Hill, and Jeroen vam den Brink. (unpublished), and references therein.
[11] H. A. Kramers and W. Heisenberg, Z. Phys. 31, 681 (1925)
[12] See for example W. Sch¨ulke in Handbook on Synchrotron Radiaion, Vol. 3, edtited by G. Brown and D. E. Moncton, North Holland, Amsterdam, (1991), and references therein.
[13] D. Gibbs, D. R. Harshman, E. D. Isaacs, D. B. McWhan, D. Mills and C. Vettier, Phys. Rev. Lett. 61, 1241 (1988).
[14] S. B. Wilkins, P. D. Hatten, M. D. Roper, D. Prabhakaran, A. T. Boothroyd, Phys. Rev. Lett. 90, 187201 (2003).
[15] N. Stoji´c, N. Binggeli, M. Altarelli, Phys. Rev. B 72, 104108 (2005).
[16] S. B. Wilkins, N. Stoji´c,T. A. W. Beale, N. Binggeli,C. W. M. Castleton,
P. Bencok, D. Prabhakaran,P. D. Hatten, and M. Altarelli, Phys. Rev. Lett. 71, 245102 (2005).
[17] U. Staub, V. Scagnoli, A. M. Mulders, K. Katsumata, Z. Honda, H. Grimmer, M. Horisberger, and J. M. Tonnerre, Phys. Rev. B 71, 214421 (2005).
[18] J. Okamoto, D. J. Huang, C.-Y. Mou, K. S. Chao, H.-J. Lin, S. Park, S-W. Cheong, and C. T. Chen, Phys. Rev. Lett. 98, 157202 (2007).
[19] G. Ghirghelli, N. B. Brookes, E. Annese, H. Berfer, C. Dallera, M. Grioni, L. Perferri, A. Tagliaferri, and L. Braicovich, Phys. Rev. Lett. 92, 117406 (2004).
[20] G. Ghiringhelli, M Matsubara, C. Dallera, F. Fracassi, R. Gusmeroli, A. Piazzalunga, A. Tagliaferri, N. B. Brookes, A. Kotani and L. Braicovich, J. Phys.: Condens. Matter 17, 5397 (2005).
[21] L. Van Hove, phys. Rev. 95, 249 (1954).
[22] J. Nordgren, J. Electron Spectrosc. Relat. Phenom. 110-111, ix (2000), and references therein.
[23] H. S. Fung, C. T. Chen, L. J. Huang, C. H. Chang, S. C. Chung, D, J, Wang, T. C. Tseng and K. L. Tsang, Synchritrin Radiation Instrumentation CP705, 655 (2003).
[24] C. T. Chen, Nucl. Instrum. Methods Phys. Res. A 256, 595 (1987).
[25] C. T. Chen et al., unpublished.
[26] T. C. Tseng, D. J. Wang, S. Y. Perng, C. T. Chen, C. K. Kuan, and S. H. Chang, MEDSI 02, APS, USA, 97 (2002).
[27] T. C. Tseng, D. J. Wang, S. Y. Perng, C. K. Kuan, J. R. Lin, S. H. Chang and C. T. Chen, J. Synchrotron. Rad. 10, 450-454 (2003).
[28] T. C. Tseng, D. J. Wang, S. Y. Perng, and C. T. Chen, MEDSI 04, ESRF, France (2004).
[29] D. J. Wang, T. C. Tseng, S. Y. Perng, and C. T. Chen, NSRRC Active Report 2004.2005.
[30] H. Ishii, Y. Ishiwata, R. Eguchi, Y. Harada, M. Watanabe, A. Chainani, and S. Shin, J. Phys. Soc. Jpn. 70, 1813 (2001).
[31] Hsiao-Yu Huang, Electronic Excitations of NiO and CoO Revealed by Resonant Inelastic Soft X-ray Scattering, Master thesis (2009).
[32] Y. Q. Cai, P. Chow, C. C. Chen, H. Ishii, K. L. Tsang, C. C. Kao, K. S. Liang, and C. T. Chen, AIP Conf. Proc. 705, 340 (2004).
Chapter 4
[1] T. Masuda, A. Zheludev, A. Bush, M. Markina, and A. Vasiliev, Phys. Rev. Lett. 92, 177201 (2004).
[2] A. A. Gippius, E. N. Morozava, A. S. Moskvin, A. V. Zalessky, A. A. Bush, M. Baentiz, H. Roser, S.-L. Drechsler, Phys. Rev. B 40, 020406 (2004).
[3] S. Zvyagin, G. Cao, Y. Xin, S. Macall, T. Caldwell,W. Moulton, L-C. Brunel, A. Angerhofer, J. E. Crow, Phys. Rev. B 66, 064424 (2002).
[4] L. Mihaly, B. Dora, A. Vanyolos, H. Berger and L. Forro, Phys. Rev. Lett. 97, 067206 (2006).
[5] S. Seki, Y. Yamasaki, M. Soda, M. Matsuura, K. Hirota, and Y. Tokura, Phys. Rev. Lett. 100, 127201 (2008).
[6] S. Park, Y. J. Choi, C. L. Zhang and S-W. Cheong, Phys. Rev. Lett. 98, 057601 (2007).
[7] H. Katsure, N. Nagaosa, and A. V. Balatsky, Phys. Rev. Lett. 95, 57205 (2005).
[8] H. Katsura, S. Onoda, J. H. Han, and N. Nagaosa, Phys. Rev. Lett.
101, 187207 (2008).
[9] I. A. Sergienko and E. Dagotto, Phys. Rev. B. 73, 094434 (2006).
[10] H. J. Xiang and M.-H. Whangbo, Phys. Rev. Lett. 99, 257(2007).
[11] A. S. Moskvin and S.-L. Drechsler, arXiv:0710.0496v1.
[12] A. S. Moskvin, Yu. D. Panov, and S.-L. Drechsler, Phys. Rev. B 79, 104112 (2009).
[13] S. Furakawa, M. Sato, Y. Saiga, and S nmoda, arXiv : 0802,3256v2.
[14] S. Chakravarty, B. I. Halperin, and D. R. Nelson, Phys. Rev. Lett. 60, 1057 (1988).
[15] S. Chakravarty, B. I. Halperin, and D. R. Nelson, Phys. Rev. B 39, 2344 (1989).
[16] C. T. Chen, F. Sette, Y. Ma, M. S. Hybertsen, E. B. Stechel, W. M. C. Foulkes, M. Schluter, S-W. Cheong, A. S. Cooper, L. W. Rupp, Jr., B. Batlogg, Y. L. Soo, Z. H. Ming, A. Krol. and Y. H. Kao, Phys. Rev. Lett. 66, 104 (1991).
[17] C. T. Chen, L. H. Tjeng, J. Kwo, H. L. Kao, P. Rudolf, F. Sette, and R. M. Fleming, Phys. Rev. Lett. 68, 2543 (1992).
[18] J. Ghijsen, L. H. Tjeng, J. van Ele, H. Eskes, J. Westerink, G. A. Sawatzky, and M. T. Czyzyk, Phys. Rev. B. 38, 11322 (1988).
[19] J. Ghijsen, L. H. Tjeng, H. Eskes, G. A. Sawatzky, and R. L. Johnson, Phys. Rev. B. 42, 2268 (1990).
[20] L. H. Tjeng, C. T. Chen, and S.-W. Cheong, Phys. Rev. B 45, 8205 (1992).
[21] M. Grioni, J. F. van Acker, M. T. Czyˇzyk, and J. C. Fuggle, Phys. Rev. B 45, 3309 (1992).
[22] M. Finazzi, G. Ghiringhelli, O. Tjernberg, Ph. Ohresser, and N. B. Brookes, Phys. Rev. B 61, 4629 (2000).
[23] H. Eskes, L. H. Tjeng, and G. A. Sawatzky, Phys. Rev. B. 41 288, (1990).
[24] M. A. van Veememdaal and G. A. Sawatzky, Phys. Rev. B 49, 3473 (1994).
[25] J. P. Hannon, G. T. Trammell, M. Blume, and D. Gibbs, Phys. Rev. Lett. 61, 1245 (1988).
[26] U. Staub, V. Scagnoli, A. M. Mulders, K. Katsumata, Z. Honda, H. Grimmer, M. Horisberger, and J. M. Tonnerre, Phys. Rev. B 71, 214421 (2005).
[27] See e.g., J. Okamoto, D. J. Huang, C.-Y. Mou, K. S. Chao, H.-J. Lin, S. Park, S-W. Cheong, and C. T. Chen, Phys. Rev. Lett. 98, 157202
(2007), and reference therein.
[28] S. B. Wilkins, P. D. Hatten, M. D. Roper, D. Prabhakaran, A. T. Boothroyd, Phys. Rev. Lett. 90, 187201 (2003).
[29] S. B. Wilkins, N. Stoji´c,T. A. W. Beale, N. Binggeli,C. W. M. Castleton, P. Bencok, D. Prabhakaran,P. D. Hatten, and M. Altarelli, Phys. Rev. Lett. 71, 245102 (2005).
[30] N. Stoji´c, N. Binggeli, M. Altarelli, Phys. Rev. B 72, 104108 (2005).
[31] H. Stragier, J. O. Cross, J. J. Rehr, L. B. Soresen, C. E. Bouldin, and
J. C. Woicil, Phys Rev. Lett. 69, 3064 (1992).
[32] T. Masuda, A. Zheludev, B. Roessli, A. Bush, M. Markina, and A. Vasiliev, Phys. Rev. Lett. 94, 0399706 (2005).
[33] V. V. Mazurenko, S. L. Skornyakoy, A. V. Kozhevnikov, F. Mila, and V. I. Anisimov, Phys. Rev. B 75, 224408 (2007).
[34] M. Greven, R. J. Birgeneau, Y. Endoh, M. A. Kastner, B. Keimer, M. Matsuda, G. Shirane, and T. R. Thurston, Phys. Rev. Lett. 72, 1096 (1994).
Chapter 5
[1] T. Shimizu, T. Matsumoto, A. Goto, K. Yoshimra and K. Kosuge, J. Phys. Soc. Japan 72, 2165-2168 (2003).
[2] T. Kimura, T. Sekio, H. Nakamura, T. Siegrist, and A. Ramire, Nature Mater, 7, 291 (2008).
[3] S. ˙Asbrink and L. J. Norrby, Acta Crystallogr. Sect. B 26, 8 (1970).
[4] B. X. Yang, T. R. Thurston, J. M. Tranquada, and G. Shirane, Phys. Rev. B 39, 4343 (1989).
[5] J. Ghijsen, L. H. Tjeng, J. van Ele, H. Eskes, J. Westerink, G. A. Sawatzky, and M. T. Czyzyk, Phys. Rev. B. 38, 11322 (1988).
[6] J. Ghijsen, L. H. Tjeng, H. Eskes, G. A. Sawatzky, and R. L. Johnson, Phys. Rev. B. 42, 2268 (1990).
[7] L. H. Tjeng, C. T. Chen, and S-W. Cheong, Phys. Rev. B 45, 8205 (1992).
Chapter 6
[1] L. Braicovich, L.J.P. Ament, V. Bisogni, F. Forte, C. Aruta, G. Balestrino, N. B. Brookes, G. M. De Luca, P. G. Medaglia, F. Miletto Granozio, M. Radovic, M. Salluzzo, J. van den Brink, and G. Ghiringhelli, Phys. Rev. Lett. 102, 167401 (2009).
[2] G. Ghiringhelli, A. Piazzalunga, C. Dallera, T. Schmitt, V. Strocov J. Schlappa, L. Patthey, X. Wang, H. Berger, and M. Grioni, Phys. Rev.Lett. 102, 027401 (2009).
[3] C. Ulrich, L.J.P.Ament, G. Ghiringhelli, L. Braicovich, M. Moretti Sala,
N.Pezzotta, T.Schmitt, G. Khaliullin, J. van den Brink, H. Roth, T. Lorenz and B.Keimer, Phys. Rev. Lett. 103, 107205 (2009).
[4] J. Schlappa, T. Schmitt, F.Vernay, V. N. Strocov, V. Ilakovac, B. Thielemann, H. M. RØnnow, S. Vanishri, A. Piazzalunga, X. Wang, L. Braicovich, G. Ghiringhelli, C. Marin, J.Mesot, B. Delley, and L. Pattey, Phys. Rev. Lett. 103, 047401 (2009).
[5] Luunk J. P. Ament, Giacomo, Ghiringhelli, Macro Moretti Sala, Lucio Braicovich and Jeroen van den Brink, Phys. Rev Lett. 103, 117003 (2009).
[6] L. Braicovich, J. van den Brink, V. Bisogni, M. Moretti. Sala, L. J. P. Ament, N. B. Brookes, G. M. De Luca, M.Salluzzo, T. Schmitt, V. N. Strocov, and G. Ghiringhelli, Phys. Rev. Lett. 104, 077002 (2010).
[7] Luuk J. P. Ament, Michel van Veenendaal, Thomas P. Devereaux, John P. Hill, and Jeroen van den Brink. (unpublished).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔