(54.236.58.220) 您好!臺灣時間:2021/03/05 00:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林宗漢
研究生(外文):Lin, Tjung-Han
論文名稱:多鐵性正交結構鈥錳氧薄膜之磁電特性研究
論文名稱(外文):Magnetoelectric characteristics of substrate-stabilized multiferroic orthorhombic HoMnO3 thin films
指導教授:莊振益
指導教授(外文):Juang, Jenh-Yih
學位類別:博士
校院名稱:國立交通大學
系所名稱:電子物理系所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:英文
論文頁數:80
中文關鍵詞:多鐵正交結構鈥錳氧薄膜磁電特性
外文關鍵詞:MultiferroicOrthorhombic phaseHoMnO3 thin filmsMagnetoelectric characteristics
相關次數:
  • 被引用被引用:0
  • 點閱點閱:160
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要研究具有E-type反鐵磁有序磁結構之多鐵性正交結構鈥錳氧薄膜之磁有序誘發鐵電特性等物理性質。我們首先以固態燒結法製備出具有六方結構的稀土元素錳氧化物(離子半徑較小之鈥元素);並利用X-ray繞射儀及超導量子干涉儀(SQUID)來分析靶材之晶體結構與磁相變等特性。另一方面,為了探索其正交結構磁電耦合之基本物理特性,本研究乃以製備具良好晶軸取向之薄膜為初期之首要目標。實驗結果顯示藉由選擇鈦酸鍶(110)、鑭鋁氧(110)、與鈦酸鍶(100)三種基板,我們可分別製備出具單一軸向之a、b、與c軸薄膜;除此之外,亦藉由上述匹配之基板來調變鈥錳氧薄膜正交結構之晶格常數,進而利用這些薄膜來進行相關磁電特性的量測以確認磁電耦合的機制是否存在,並與理論預測做比較。
This dissertation is aimed primarily at exploring the manifestations of magnetic ordering induced ferroelectricity expected in the E-type multiferroic orthorhombic HoMnO3. We first prepare the hexagonal HoMnO3 bulk synthesized by conventional solid-state reaction processes. The structural and magnetic characteristics of these samples were examined by x-ray diffraction and superconducting quantum interference device (SQUID) to ensure the stoichiometry of the material. Since within the frameworks of various microscopic mechanisms the magnetic ordering and associated ferroelectricity are intimately related to specific crystallographic orientations, it is thus essential to obtain well-aligned orthorhombic HoMnO3 (o-HMO) thin films capable of revealing the relevant properties along respective crystallographic orientations. To this respect, we have carefully calculated the in-plane lattice mismatch and chose SrTiO3(110), LaAlO3(110), and SrTiO3(100) as the substrates for preparing the a-, b-, and c-axis-oriented o-HMO thin films. Moreover, the external strain force originated from the epitaxial relation between these substrates and thin films during deposition can also serve as an excellent method in slightly modifying the lattice parameters with desired crystal structures. Finally, the magnetic ordering anisotropy and the ferroelectricity in these epitaxial o-HMO thin films were investigated to check whether or not the predicted marked enhancement of the magnetoelectric effect does indeed exists in these E-type multiferroic perovskite manganites.
Abstract (in Chinese) i
Abstract (in English) ii
Contents iv
List of Figures vi

Chapter 1 Introduction 1
1.1 The discovery of manganites with gigantic magnetoelectric effect 1
1.2 Origin of the magnetism-induced ferroelectricity in multiferroic orthorhombic RMnO3 6
1.2.1 Spiral magnetism 6
1.2.2 Collinear magnetism 9
1.3 Survey of the magnetic phase diagram versus R3+-ion radius in the perovskites RMnO3 family 11
1.4 Motivation 13
1.5 Organization of this dissertation 15
References 16

Chapter 2 Exchange interactions and environmental effects in perovskite manganites 18
2.1 Introduction 18
2.2 Superexchange 18
2.3 Double exchange 19
2.4 Crystal field and Jahn-Teller effect 21
2.5 Tolerance Factor and E-phase magnetic structure 23
References 26

Chapter 3 Experimental procedures 27
3.1 Preparation and characterization of polycrystalline sample of hexagonal HoMnO3 27
3.1.1 Introduction 27
3.1.2 Experimental 28
3.1.3 Results and discussion 28
3.2 Epitaxial stabilization of oxide thin films 32
3.2.1 The b-axis-oriented o-HoMnO3 thin films 35
3.2.2 The c-axis-oriented o-HoMnO3 thin films 36
3.2.1 The a-axis-oriented o-HoMnO3 thin films 36
References 38

Chapter 4 Magnetoelectric properties of orthorhombic HoMnO3 thin films with various orientations 40
4.1 Anomalous magnetic ordering in b-axis-oriented HoMnO3 thin films 40
4.1.1 Probing the anisotropic characterization of orthorhombic HoMnO3 thin films 40
4.1.2 Results and Discussion 41
4.1.3 Summary 45

4.2 Strain-induced effects on antiferromagnetic ordering and magnetocapacitance in orthorhombic HoMnO3 thin films 46
4.2.1 Directly probing the magnetoelectric coupling in orthorhombic HoMnO3 thin films 46
4.2.2 Results and Discussion 48
4.2.3 Summary 54

4.3 Magnetism-induced ferroelectric polarization in the c-axis-oriented orthorhombic HoMnO3 thin films 55
4.3.1 Introduction 55
4.3.2 Results and Discussion 57
4.3.3 Summary 63

4.4 Magnetic and electric properties of the a-axis-oriented orthorhombic HoMnO3 thin films 64
4.4.1 Introduction 64
4.4.2 Results and Discussion 65
4.4.3 Summary 72
References 73

Chapter 5 Summary and conclusions 76

Biographical notes 78

Acknowledgements 80

Ch. 1
[1] J. B. Goodenough & J. M. Longo, Crystallographic and Magnetic Properties of Perovskites and Perovskite-Related Compounds, Springer Verlag, 1970.
[2] T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, and Y. Tokura, Nature ( London) 426, 55 (2003).
[3] T. Goto, T. Kimura, G. Lawes, A. P. Ramirez, and Y. Tokura, Phys. Rev. Lett. 92, 257201 (2004).
[4] 張維仁,國立交通大學博士論文 (2006).
[5] M. Tachibana, T. Shimoyama, H. Kawaji, T. Atake, and E. Takayama-Muromachi, Phys. Rev. B 75, 144425 (2007).
[6] T. Kimura, S. Ishihara, H. Shintani, T. Arima, K. T. Takahashi, K. Ishizaka, and Y. Tokura, Phys. Rev. B 68, 060403(R) (2003).
[7] N. Hur, S. Park, P. A. Sharma, J. S. Ahn, S. Guha, and S. -W. Cheong, Nature (London) 429, 392 (2004).
[8] H. Katsura, N. Nagaosa, and Alexander V. Balatsky, Phys. Rev. Lett. 95, 057205 (2005).
[9] H. Katsura, Alexander V. Balatsky, and N. Nagaosa, Phys. Rev. Lett. 98, 027203 (2007).
[10] M. Mostovoy, Phys. Rev. Lett. 96, 067601 (2006).
[11] S. Picozzi, K. Yamauchi, B. Sanyal, I. A. Sergienko, and E. Dagotto, Phys. Rev. Lett. 99, 227201 (2007).
[12] I. A. Sergienko, C. Sen, and E. Dagotto, Phys. Rev. Lett. 97, 227204 (2006).
[13] K. Yamauchi, F. Freimuth, S. Blügel, and S. Picozzi, Phys. Rev. B 78, 014403 (2008).
[14] C.-Y. Ren, Phys. Rev. B 79, 125113 (2009).
[15] R. Kajimoto, H. Yoshizawa, H. Shintani, T. Kimura, and Y. Tokura, Phys. Rev. B 70, 012401 (2004).
[16] N. Aliouane, O. Prokhnenko, R. Feyerherm, M. Mostovoy, J. Strempfer, K. Habicht, K. C. Rule, E. Dudzik, A. U. B. Wolter, A. Maljuk and D. N. Argyriou, J. Phys.: Condens. Matter. 20 434215 (2008).
[17] S.-W. Cheong and M. Mostovoy, Nat. Mater. 6, 13 (2007).
[18] C. Jia, S. Onoda, N. Nagaosa, and J. H. Han, Phys. Rev. B 76, 144424 (2007).
[19] M. Kenzelmann, A. B. Harris, S. Jonas, C. Broholm, J. Schefer, S. B. Kim, C. L. Zhang, S,-W. Cheong, O. P. Vajk, and J. W. Lynn, Phys. Rev. Lett. 95, 087206 (2005).
[20] T. Kimura, G. Lawes, T. Goto, Y. Tokura, and A. P. Ramirez, Phys. Rev. B 71, 224425 (2005).
[21] A. Muñoz, M. T. Casáis, J. A. Alonso, M. J. Martínez-Lope, J. L. Martínez, and M. T. Fernández-Díaz, Inorg. Chem. 40, 1020 (2001).
[22] B. Lorenz, Y. Q. Wang, Y. Y. Sun, and C. W. Chu, Phys. Rev. B 70, 212412 (2004).
[23] B. Lorenz, Y. -Q. Wang, and C. W. Chu, Phys. Rev. B 76, 104405 (2007).
[24] J.-S. Zhou and J. B. Goodenough, Phys. Rev. Lett. 96, 247202 (2006).
[25] J. B. Goodenough, Phys. Rev. B 74, 014422 (2006).
[26] H. W. Brinks, J. Rodríguez-Carvajal, H. Fjellvåg, A. Kjekshus, and B. C. Hauback, Phys. Rev. B 63, 094411 (2001).
[27] W. Prellier, M. P. Singh, and P Murugavel, J. Phys.: Condens. Matter 17, R803 (2005).
[28] M. I. Bichurin, D. Viehland, and G. Srinivasan, Journal of Electroceramics 19, 243 (2007).
[29] C.-W. Nan, M. I. Bichurin, S. Dong, D. Viehland, and G. Srinivasan, J. Appl. Phys. 103, 031101 (2008).
[30] Y. Zhang, Z. Li, C. Deng, J. Ma, Y. Lin, and C.-W. Nan, Appl. Phys. Lett. 92, 152510 (2008).
[31] R. Ramesh, and Nicola A. Spaldin, Nat. Mater. 6, 21 (2007).
[32] J.-H. Lee, P. Murugavel, D. Lee, T. W. Noh, Y. Jo, M.-H. Jung, K. H. Jang, and J.-G. Park, Appl. Phys. Lett. 90, 012903 (2007).
[33] J.-H. Lee, P. Murugavel, H. Ryu, D. Lee, J. Y. Jo, J. W. Kim, H. J. Kim, K. H. Kim, Y. Jo, M.-H. Jung, Y. W. Oh, Y.-W. Kim, J. G. Yoon, J.-S. Chung, and T. W. Noh, Adv. Mater. 18, 3125 (2006).
[34] D. Lee, J.-H. Lee, P. Murugavel, S. Y. Jang, T. W. Noh, Y. Jo, M.-H. Jung, Y. D. Ko, and J.-S. Chung, Appl. Phys. Lett. 90, 182504 (2007).
[35] D. Lee, J.-H. Lee. S. Y. Jang, P. Murugavel, Y. D. Ko, and J.-S. Chung, Journal of Crystal Growth 310, 829 (2008).

Ch. 2
[1] C. Zener, Phys. Rev. 81, 440 (1951).
[2] C. Zener, Phys. Rev. 83, 299 (1951).
[3] C. Zener, Phys. Rev. 82, 403 (1951).
[4] E. Dagotto et al., “Nanoscale Phase Separation and Colossal Magnetoresistance: The Physics of manganites and Related Compounds”, Springer Publishing Company, Inc., 2003, Chap. 2.
[5] P. W. Anderson and H. Hasegawa, Phys. Rev. 100, 675 (1955).
[6] P.-G. de Gennes, Phys. Rev. 118, 141 (1960).
[7] B. Lorenz, A.P. Litvinchuk, M.M. Gospodinov, and C.W. Chu, Phys. Rev. Lett. 92, 087204 (2004)
[8] 謝志昌,國立交通大學博士論文 (2008).
[9] B. H. Kim and B. I. Min, Phys. Rev. B 80, 064416 (2009).
[10] The term of incommensuration (ICM) means that the spin ordering periodicity is not compatible in a rational manner to the periodicity of the underlying crystal structure.
[11] A. Muñoz, M. T. Casáis, J. A. Alonso, M. J. Martínez-Lope, J. L. Martínez, and M. T. Fernández-Díaz, Inorg. Chem. 40, 1020 (2001).
[12] S. Picozzi, K. Yamauchi, G. Bihlmayer and S. Blügel, Phys. Rev. B 74, 094402 (2006).
[13] I. A. Sergienko, C. Sen, and E. Dagotto, Phys. Rev. Lett. 97, 227204 (2006).

Ch. 3
[1] A. Waintal, and J. Chenavas, J. Mater. Res. Bull. 2, 819 (1967).
[2] V. E. Wood, A. E. Austin, E. W. Collings, and K. C. Brog, J. Phys. Chem. Solids 34, 859 (1973).
[3] W. C. Koehler, H. L. Yakel, E. O. Wollan, and J. W. Cable, Phys. Lett. 9, 93 (1964).
[4] G. A. Smolenskii, and I. E. Chupis, Sov. Phys.-Usp. 25, 475 (1982).
[5] I. G. Ismaelzade, and S. A. Kizhaev, Sov. Phys. Solid State 7, 236 (1965).
[6] N. Iwata, and K. Kohn, J. Phys. Soc. Japan 67, 3318 (1998).
[7] K. Yoshii, and H. Abe, J. Solid State Chem. 165, 131 (2002).
[8] E. Galstyan, B. Lorenz, K. S. Martirosyan, F. Yen, Y. Y. Sun, M. M. Gospodinov, and C. W. Chu, J. Phys.: Condens. Matter 20, 325241 (2008).
[9] A. Munoz, J. A. Alonso, M. J. Martinez-Lope, M. T. Casais, J. L. Martinez, and M. T. Fernandez-Diaz, Chem. Mater. 13, 1497 (2001).
[10] A. Midya, P. Mandal, S. Das, S. Banerjee, L. S. Sharath Chandra, V. Ganesan, and S. Roy Barman, Appl. Phys. Lett. 96, 142514 (2010).
[11] B. Lorenz, A. P. Litvinchuk, M. M. Gospodinov, and C. W. Chu, Phys. Rev. Lett. 92, 087204 (2004).
[12] B. Lorenz, F. Yen, M. M. Gospodinov, and C. W. Chu, Phys. Rev. B 71, 014438 (2005).
[13] H. Sugie, N. Iwata, and K. Kohn, J. Phys. Soc. Japan 71, 1558 (2002).
[14] A. Ohtomo, and H. Y. Hwang, Nature 427, 423 (2004).
[15] A. Brinkmann, M. Huijben, M. Van Zalk, J. Huijben, U. Zeitler, J. C. Maan, W. G. Van Der Wiel, G. Rijnders, D. H. A. Blank, and H. Hilgenkamp, Nature Mater. 6, 493 (2007).
[16]N. Reyren, S. Thiel, A. D. Caviglia, L. Fitting Kourkoutis, G. Hammerl, C. Richter, C. W. Schneider, T. Kopp, A.-S. Rüetschi, D. Jaccard, M. Gabay, D. A. Muller, J.-M. Triscone, and J. Mannhart, Science 317, 1196 (2007).
[17] D. B. Chrisey and G. K. Hubler, “Pulsed laser deposition of thin films”, John Wiley & Sons, New York, 1994.
[18] Fully coherent interfaces are those where there is complete continuity of atomic planes and lines across the interface between two phases. Semi-coherent interfaces are those in which the disregistry between two crystal structures across the interface is accommodated by periodic misfit dislocations in the interface; A. R. Wildes, J. Mayer, and K. Theis-Bröhl, Thin Solid Films 401, 7 (2001).
[19] B. Lorenz, Y. -Q. Wang, and C. W. Chu, Phys. Rev. B 76, 104405 (2007).
[20] F. Ye, B. Lorenz, Q. Huang, Y. Q. Wang, Y. Y. Sun, C. W. Chu, J. A. Fernandez-Baca, P. Dai, and H. A. Mook, Phys. Rev. B 76, 060402(R) (2007).
[21] B. Lorenz, Y. Q. Wang, Y. Y. Sun, and C. W. Chu, Phys. Rev. B 70, 212412 (2004).
[22] J.-S. Zhou and J. B. Goodenough, Phys. Rev. Lett. 96, 247202 (2006).
[23] H. W. Brinks, J. Rodríguez-Carvajal, H. Fjellvåg, A. Kjekshus, and B. C. Hauback, Phys. Rev. B 63, 094411 (2001).
[24] X. Martí, F. Sánchez, V. Skumryev, V. Laukhin, C. Ferrater, M. V. García-Cuenca, M. Varela, and J. Fontcuberta, Thin Solid Films 516, 4899 (2008).
[25] A. A. Bosak, A. A. Kamenev, I. E. Graboy, S. V. Antonov, O. Yu. Gorbenko, A. R. Kaul, C. Dubourdieu, J. P. Senateur, V. L. Svechnikov, H. W. Zandbergen, and B. Holländer, Thin Solid Films 400, 149 (2001).
[26] A. Alonso, M. J. Martínez-Lope, M. T. Casais, and M. T. Fernández-Díaz, Inorg. Chem. 39, 917 (2000).
[27] S. C. Chae, Y. J. Chang, S. S. A. Seo, T. W. Noh, D.-W. Kim, and C. U. Jung, Appl. Phys. Lett. 89, 182512 (2006).
[28] C. C. Hsieh, T. H. Lin, H. C. Shih, C.-H. Hsu, C. W. Luo, J.-Y. Lin, K. H. Wu, T. M. Uen, and J. Y. Juang, J. Appl. Phys. 104, 103912 (2008).

ch. 4
[1] T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, and Y. Tokura, Nature ( London) 426, 55 (2003).
[2] N. Hur, S. Park, P. A. Sharma, J. S. Ahn, S. Guha, and S. -W. Cheong, Nature (London) 429, 392 (2004).
[3] W. Eerenstein, N. D. Mathur, and J. F. Scott, Nature (London) 442, 759 (2006).
[4] D. I. Khomskii, J. Magn. Magn. Mater. 306, 1 (2006).
[5] S.-W. Cheong and M. Mostovoy, Nat. Mater. 6, 13 (2007).
[6] I. A. Sergienko, C. Sen, and E. Dagotto, Phys. Rev. Lett. 97, 227204 (2006).
[7] B. Lorenz, Y. -Q. Wang, and C. W. Chu, Phys. Rev. B 76, 104405 (2007).
[8] F. Ye, B. Lorenz, Q. Huang, Y. Q. Wang, Y. Y. Sun, C. W. Chu, J. A. Fernandez-Baca, P. Dai, and H. A. Mook, Phys. Rev. B 76, 060402(R) (2007).
[9] B. Lorenz, Y. Q. Wang, Y. Y. Sun, and C. W. Chu, Phys. Rev. B 70, 212412 (2004).
[10] J.-S. Zhou and J. B. Goodenough, Phys. Rev. Lett. 96, 247202 (2006).
[11] H. W. Brinks, J. Rodríguez-Carvajal, H. Fjellvåg, A. Kjekshus, and B. C. Hauback, Phys. Rev. B 63, 094411 (2001).
[12] A. Muñoz, M. T. Casáis, J. A. Alonso, M. J. Martínez-Lope, J. L. Martínez, and M. T. Fernández-Díaz, Inorg. Chem. 40, 1020 (2001).
[13] S. Picozzi, K. Yamauchi, B. Sanyal, I. A. Sergienko, and E. Dagotto, Phys. Rev. Lett. 99, 227201 (2007).
[14] J. A. Alonso, M. J. Martínez-Lope, M. T. Casais, and M. T. Fernández-Díaz, Inorg. Chem. 39, 917 (2000).
[15] S. C. Chae, Y. J. Chang, S. S. A. Seo, T. W. Noh, D.-W. Kim, and C. U. Jung, Appl. Phys. Lett. 89, 182512 (2006).
[16]A. Muñoz, J. A. Alonso, M. T. Casais, M. J. Martínez-Lope, J. L. Martínez, and M. T. Fernández-Diaz, J. Phys.: Condens. Matter 14, 3285 (2002).
[17] T. Kimura, G. Lawes, T. Goto, Y. Tokura, and A. P. Ramirez, Phys. Rev. B 71, 22425 (2005).
[18] X. Martí, V. Skumryev, V. Laukhin, F. Sánchez, M.V. García-Cuenca, C. Ferrater, M. Varela, and J. Fontcuberta, J. Mater. Res. 22, 2096 (2007).
[19] M. Mostovoy, Phys. Rev. Lett. 96, 067601 (2006).
[20] T. Goto, T. Kimura, G. Lawes, A.P. Ramirez, and Y. Tokura, Phys. Rev. Lett. 92, 257201 (2004).
[21] O. Prokhnenko, R. Feyerherm, E. Dudzik, S. Landsgesell, N. Aliouane, L.C. Chapon, and D.N. Argyriou, Phys. Rev. Lett. 98, 057206 (2007).
[22] T. H. Lin, C. C. Hsieh, H. C. Shih, C. W. Luo, T. M. Uen, K. H. Wu, J. Y. Juang, J.-Y. Lin, C. H. Hsu, and S. J. Liu, Appl. Phys. Lett. 92, 132503 (2008).
[23] Steen Mørup, Daniel E Madsen, Cathrine Frandsen, Christian R H Bahl, and Mikkel F Hansen, J. Phys.: Condens. Matter 19, 213202 (2007).
[24] Airat Khasanov, Jian He, Jay Gaillard, Keqin Yang, Apparao M. Rao,_C. Michelle Cameron, J. M. Schmeltzer, John G. Stevens, and Amar Nath, Appl. Phys. Lett. 93, 013103 (2008).
[25] S. Picozzi, K. Yamauchi, G. Bihlmayer, and S. Blügel, Phys. Rev. B 74, 094402 (2006).
[26] B. Lorenz, A.P. Litvinchuk, M.M. Gospodinov, and C.W. Chu, Phys. Rev. Lett. 92, 087204 (2004).
[27] L. Néel, C. R. Acad. Sci. Paris 252, 4075 (1961).
[28] Our preliminary electric field dependent polarization measurements performed on these films, though still suffered from leakage current problem, have clearly shown ferroelectric polarization emerging at T ? 36.2 K (slightly higher than the ICM-CM transition temperature) and saturated for T < 20 K.
[29] H. Katsura, N. Nagaosa, and A. V. Balatsky, Phys. Rev. Lett. 95, 057205 (2005).
[30] C. Jia, S. Onoda, N. Nagaosa, and J. H. Han, Phys. Rev. B 74, 224444 (2006).
[31] D. Rubi, Sriram Venkatesan, B. J. Kooi, J. Th. M. De Hosson, T. T. M. Palstra, and B. Noheda, Phys. Rev. B 78, 020408(R) (2008).
[32] M. Tachibana, T. Shimoyama, H. Kawaji, T. Atake, and E. Takayama-Muromachi, Phys. Rev. B 75, 144425 (2007).
[33] T. H. Lin, H. C. Shih, C. C. Hsieh, C. W. Luo, J.-Y. Lin, J. L. Her, H. D. Yang, C.-H. Hsu, K. H. Wu, T. M. Uen, and J. Y. Juang, J. Phys.: Conden. Matter 21, 026013 (2009).
[34] C. C. Hsieh, T. H. Lin, H. C. Shih, C.-H. Hsu, C. W. Luo, J.-Y. Lin, K. H. Wu, T. M. Uen, and J. Y. Juang, J. Appl. Phys. 104, 103912 (2008).
[35] T. C. Han, and J. G. Lin, Appl. Phys. Lett. 94, 082502 (2009).
[36] K. Yamauchi, F. Freimuth, S. Blügel, and S. Picozzi, Phys. Rev. B 78, 014403 (2008).
[37] D. Rubi, C. de Graaf, C. J. M. Daumont, D. Mannix, R. Broer, and B. Noheda, Phys. Rev. B 79, 014416 (2009).
[38] René Meyer, Rainer Waser, Klaus Prume, Torsten Schmitz and Stephan Tiedke, Appl. Phys. Lett. 86, 142907 (2005).
[39] The resistivity of the film increases from 109 Ω-cm at room temperature to over 1010 Ω-cm near 13 K.
[40] M. A. Zurbuchen, T. Wu, S. Saha, J. Mitchell, and S. K. Streiffer, Appl. Phys. Lett. 87, 232908 (2005).
[41] Y. H. Chu, Q. Zhan, C.-H. Yang, M. P. Cruz, L. W. Martin, T. Zhao, P. Yu, R. Ramesh, P. T. Joseph, I. N. Lin, W. Tian, and D. G. Schlom, Appl. Phys. Lett. 92, 102909 (2008); J. Li, H. Liang, B. Nagaraj, W. Cao, Chi H. Lee, and R. Ramesh, J. of Lightwave Technology 21, 3282 (2003).
[42] N. A. Spaldin, and M. Fiebig, Science 309, 391 (2005).
[43] C. Y. Ren, Phys. Rev. B 79, 125113 (2009).
[44] T. H. Lin, C. C. Hsieh, C. W. Luo, J.-Y. Lin, C. P. Sun, H. D. Yang, C.-H. Hsu, Y. H. Chu, K. H. Wu, T. M. Uen, and J. Y. Juang, J. Appl. Phys. 106, 103923 (2009).=44
[45] X. Marti, I. Fina, V. Skumryev, C. Ferrater, M. Varela, L. Fábrega, F. Sánchez, and J. Fontcuberta, Appl. Phys. Lett. 95, 142903 (2009).
[46] S. Ishiwata, Y. Kaneko, Y.Tokunaga, Y. Taguchi, T.-H. Arima, and Y. Tokura, Phys. Rev. B 81, 100411(R) (2010).

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 陳華凱,2000,〈由「中國威脅論」看中共信心建立措施的運用-歷史的觀點〉,《共黨問題研究》,26(3),62
2. 林文童,1999,〈兩岸「信心建立措施」之芻議〉,《共黨問題研究》,25(11),82。
3. 楊永明、唐欣偉,1999,〈信心建立措施與亞太安全〉,《問題與研究》,38(6),3。
4. 林文程,2000b,〈中共對信心建立措施的立場及作法〉,《戰略與國際研究季刊》,
5. 何思慎,2007,〈日、中升溫,台灣失落,〉,《展望與探索》,5(5),5。
6. 王順合,2003,〈論兩岸可能之軍事衝突與我之危機管理措施〉,《展望與探索月
7. 縱橫,2009,〈希拉蕊首度東亞行之評析〉,《展望與探索》,7(3),4。
8. 楊志恆,2009,〈中共舉辦國際觀艦式之意涵〉,《展望與探索》,7(5),24。
9. 林正義,1998,〈歐洲及亞太信心暨安全建立措施之研究〉,《理論與政策》,47,
10. 林文程,2000a,〈中共參與亞太多邊安全機制之目的與立場〉,《中國事務》,第
11. 蕭全政,2004,〈論中共的和平崛起〉,《政治科學論叢》,22,頁25。
12. 張五岳、呂明洋,2008,〈中共對台政策評析〉,《展望與探索》,6(2),4。
13. 郭臨伍,2000,〈信心建立措施與兩岸關係〉,《戰略與國際研究》,2(1),133~135。
14. 耿慶武,2001,〈「一個中國」兩難的「雙贏」解決方案〉,《遠景季刊》,2(4),
 
系統版面圖檔 系統版面圖檔