跳到主要內容

臺灣博碩士論文加值系統

(44.200.82.149) 您好!臺灣時間:2023/06/02 17:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃聖文
研究生(外文):Huang, Sheng-Wen
論文名稱:3MHz頻寬之四階前饋控制連續時間三角積分類比數位轉換器
論文名稱(外文):A Fourth-Order Feedforward Continuous-Time Delta-Sigma ADC with 3MHz Bandwidth
指導教授:洪崇智
指導教授(外文):Hung, Chung-Chih
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電信工程系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:98
語文別:英文
論文頁數:95
中文關鍵詞:連續時間三角積分前饋控制
外文關鍵詞:Continuous-TimeDelta-SigmaFeedforward
相關次數:
  • 被引用被引用:0
  • 點閱點閱:296
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
隨著無線通訊的蓬勃發展,應用於無線通訊中的類比數位轉換器也受到更多的矚目。相對於其他類比數位轉換器而言,三角積分 (Delta-sigma) 類比數位轉換器擁有較佳的頻寬和解析度。
其中連續時間三角積分類比數位轉換器比起離散時間三角積分類比數位轉換器更為受重視,因為其有著更低的功率消耗及較大的訊號頻寬,更適合被廣泛應用於無線通訊中。
在此篇論文中,連續時間調變器的設計流程將被呈現。首先,我們實現一應用於藍芽技術之設計。其具有1 MHz 訊號頻寬及最大訊號雜訊失真比(SNDR)為58.3 dB 的電路。此電路使用電阻取代原先轉導當作零點轉移的功用,以節省面積和功率。而另一個設計使用了前饋控制架構,此電路具有3 MHz的訊號頻寬及最大訊號雜訊失真比56.3 dB。
晶片以台積電180 奈米互補式金氧半導體製程所製造。模擬結果顯示第一顆晶片操作在100 MHz 取樣頻率下,消耗9.1 mW 的功率在1.8 V的供應電壓下。模擬結果顯示另一顆晶片操作在100 MHz 取樣頻率下,消耗11.8 mW 的功率在1.8 V的供應電壓下。
With the growth of wireless communication, there has been more focus on the analog-to-digital converter (ADC) for wireless applications. Compare with the other
analog-to-digital converters, Delta-sigma converters have better signal bandwidth and resolution. The continuous-time delta-sigma ADCs get growing interests in wireless applications because of its lower power consumption and wider bandwidth as compared with the discrete-time counterparts.
In this thesis, the design of the continuous-time modulator is presented. First of all, we fulfill a design for Bluetooth application. It achieves 58.3 dB SNDR within a
1 MHz signal bandwidth. This work replaces the transconductor with resistors as the
function of zero shifts to save chip area and power consumption. Another design takes the feedforward architecture and it only achieves 56.3 dB SNDR within a
3 MHz signal bandwidth.
Both chips have been fabricated by TSMC 180 nm CMOS process. The simulated results show that the first work consumes 9.1 mW with 100 MHz sample rate in 1.8 V supply voltage. The second work consumes 11.8 mW with 100 MHz
sample rate in 1.8 V supply voltage.
CHAPTER 1 Introduction................................1
1.1 Motivation..................................1
1.2 Thesis Overview.............................2

CHAPTER 2 Overview of Oversampling ΔΣ Modulator......4
2.1 Performance Parameters......................4
2.1.1 Signal-to-Noise Ratio (SNR).................4
2.1.2 Signal-to-Noise and Distortion Ratio (SNDR).4
2.1.3 Spurious Free Dynamic Range (SFDR)..........5
2.1.4 Dynamic Range (DR)..........................5
2.1.5 Effective Number of Bits (ENOB).............6
2.2 Sampling Theorem and Quantization...........6
2.3 Oversampling...............................11
2.4 Noise Shaping..............................12
2.4.1 First-Order Delta-Sigma Modulator..........13
2.4.2 Second-Order Delta-Sigma Modulator.........15
2.4.3 Higher-Order Delta-Sigma Modulator.........17
2.4.4 Multi-Stage (Cascade, MASH) Modulator......18

CHAPTER 3 Design of Continuous-Time ΔΣ Modulator....20
3.1 Discrete-Time and Continuous-TimeΔΣ
Modulators.................................20
3.2 Transformation of a DT DSM to a CT DSM ....22
3.3 Non-idealities in Delta-Sigma Modulator....25
3.3.1 Non-idealities of CT Integrators...........25
3.3.2 Variation of RC Time Constant..............27
3.3.3 Excess Loop Delay..........................27
3.3.4 Clock Jitter...............................30
3.3.5 Multi-bit DAC Element Mismatch.............32

CHAPTER 4 A Continuous-Time Transconductor-Capacitor
Delta-Sigma Modulator Using
feedback Resistors.........................34
4.1 System Level Design........................34
4.1.1 Loop Filter Architecture...................34
4.1.2 Non-idealities Simulation..................38
4.1.3 System Level Simulation....................40
4.2 Circuit Level Design.......................40
4.2.1 Loop Filter................................40
4.2.2 The First Stage-Active-RC Integrator.......41
4.2.3 The Remain Stages-Gm-C Integrator..........43
4.2.4 Resonator-Feedback Resistor................46
4.2.5 Comparator.................................47
4.2.6 Current Steering DAC.......................48
4.2.7 Tuning Circuit.............................49
4.2.8 Low Jitter Clock Generator.................50
4.3 Circuit Level Simulation...................51
4.4 Layout Design..............................52

CHAPTER 5 A Feedforward Fourth-Order Continuous Time
Delta-Sigma ADC with 3 MHz Bandwidth.......55
5.1 Feedforward (FF) and Feedback (FB)
Topologies.................................55
5.2 Mason’s Gain Rule.........................56
5.3 System Level Design........................59
5.3.1 Loop Filter Architecture...................59
5.3.2 Non-idealities Simulation..................60
5.3.3 System Level Simulation....................64
5.4 Circuit Level Design.......................64
5.4.1 Loop Filter................................64
5.4.2 Integrator.................................65
5.4.3 Summation Circuit..........................67
5.4.4 Comparator and Flash ADC...................70
5.4.5 Current Steering DAC.......................71
5.5 Circuit Level Simulation...................75
5.6 Layout Design..............................76

CHAPTER 6 Test Setup and Experimental Results........79
6.1 Measuring Environment......................79
6.1.1 Power Supply Regulator.....................81
6.1.2 Single-to-Differential Transformer.........82
6.2 PCB and Pin Configurations.................82
6.3 Measurement................................85
6.3.1 A Continuous-Time Transconductor-Capacitor
Delta-Sigma Modulator Using
Feedback Resistors.........................85
6.3.2 A Feedforward Fourth-Order Continuous-Time
Delta-Sigma ADC with 3 MHz Bandwidth.......87
6.3.3 Measurement Discussion.....................89

CHAPTER 7 Conclusions and Future Works...............91
7.1 Conclusions................................91
7.2 Future Works...............................92

Bibliography.............................................93
[1] Xuefeng Chen, “A Wideband Low-Power Continuous-Time
Delta-Sigma Modulator for Next Generation Wireless
Applications,” B.S. thesis,University of Oregon State,
2007.
[2] A. Johns and K. Martin, Analog Integrated Circuit
Design, John Wiley & Sons, Inc., 1997
[3] K. Lee, J. Chae, M. Aniya, K. Hamashita, S. Takeuchi
and G. C. Temes, “A Noise-Coupled Time-Interleaved
Delta-Sigma ADC With 4.2MHz Bandwidth, -98dB THD, and
79dB SNDR,” IEEE J. Solid-State Circuits,VOL.43,
NO.12, pp. 2601-2612, Dec. 2008.
[4] A. M. Thurston, T. H. Pearce, and M. J. Hawksford,
“Bandpass implementation of the sigma delta A-D
conversion technique,” Int. Conf.on A-D and D-A
Conversion. pp. 81-86, 1991.
[5] O. Shoaei, Continuous-Time Delta-Sigma A/D Converters
for High Speed Applications, PhD thesis, Carleton
University, 1996.
[6] M. Ortmanns and F. Gerfers, Continuous-Time Delta-Sigma
A/D Conversion,Springer, 2006.
[7] R. Schreier and G. C. Temes, Understanding Delta-Sigma
Data Converters, Piscataway NJ: IEEE PRESS, 2005.
[8] S. Yan and E. Sanchez-Sinencio, “A Continuous-Time
Sigma-Delta Modulator with 88-dB Dynamic Range and
1.1-MHz Signal Bandwidth,”IEEE J. Solid-State
Circuits, VOL. 39, NO. 1, pp. 75-86, Jan. 2004.
[9] B. D. Putra and G. Fettweis, “The Effect of Clock
Jitter on the Performance of Bandpass ADCs,”in ISCC,
pp. 1334-1338, Mar. 2008
[10] Z. Li , “ Design of a 14-bit Continuous-Time Delta-
Sigma A/D Modulator with 2.5MHz Signal Bandwidth,”
B.S. thesis, University of Oregon State,2006.
[11] W. L. Lee , “A novel high order interpolative
modulator topology for high resolution oversampling
A/D converters,” Master’s thesis,
Massachuetts Inst. Technol., Cambridge, MA, 1987.
[12] K. Falakshahi, C. K. K. Yang and B. A. Wooley,
“A 14-bit, 10-Msamples/sec digital-to-analog
converter using multi-bit sigma-delta modulation,”
IEEE J. Solid-State Circuits, VOL. 34, NO. 5,
pp. 607-615, May. 1999.
[13] R. J. Baker, CMOS Circuit Design, Layout, and
Simulation. IEEE PRESS, Inc., 2005.
[14] B. Razavi, Design of Analog CMOS Integrated Circuits,
New York: McGraw-Hill, 2001.
[15] Y. Ke, J. Craninckx and G. Gielen, “A Design Approach
for Power-Optimized Fully Reconfigurable A/D Converter
for 4G Radios,” IEEE Transactions on Circuit and
Systems, VOL. 55, NO. 3, pp. 229-233, Mar. 2008.
[16] J. Silva, U. Moon and G. C. Temes, “Low-Distortion
Delta-Sigma Topologies for Mash Architectures,”
IEEE ISCAS, pp. 1144–1147, 2004.
[17] S. Kwon and F. Maloberti, “Op-amp Swing Reduction in
Sigma-Delta Modulators,” IEEE ISCAS, pp. 525–528,
2004.
[18] Markus Schimper, Lukas Dorrer, Ettore Riccio and
Georgi Panov, “A 3mW Continuous-Time -Modulator for
EDGE/GSM with High Adjacent Channel Tolerance,”
IEEE 2004.
[19] Susana Paton, Antonio Di Giandomenico, Luis Hernandez,
Andreas Wiesbauer, Thomas Potscher and Martin Clara,
“A 70-mW 300-MHz CMOS Continuous-Time ΔΣ ADC With
15-MHz Bandwidth and 11 Bits of Resolution,”
IEEE J. Solid-State Circuits, VOL. 39, NO. 7,
Jul. 2004.
[20] Jose Bastos, Augusto M. Marques, Michel S.J. Steyaert
and Willy Sansen, “A 12-Bit Intrinsic Accuracy
High-Speed COMS DAC,” IEEE J. Solid-State Circuits,
VOL. 33, NO. 12, Dec. 1998.
[21] Marcel J.M. Pelgrom, AAD C.J. Duinmaijer and Anton
P.G. Welbers.“Matching Properties of MOS
Transistors,” IEEE J. Solid-State Circuits, VOL. 24,
NO. 5, Oct. 1989.
[22] STMicroelectronics, LM217, LM317, Low Current,
1.2V to 37V Adjustable Voltage Regulator,
STMicroelectronics, 2005.
[23] J. Morizio, et al., “14-bit 2.2MS/s Sigma-Delta
ADC’s,” IEEE J. Solid-State Circuits, VOL. 35,
NO. 7, Jul. 2000.
[24] K. Vleugels, S. Rabii, and B. A. Wooley, “A 2.5-V
Sigma-Delta Modulator for Broadband Communications
Applications,” IEEE J. Solid-State Circuits, VOL. 36,
NO. 12, pp. 1887–1899, Dec. 2001.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊