(3.238.186.43) 您好!臺灣時間:2021/02/28 20:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:劉財溢
研究生(外文):Liu, Tsai-I
論文名稱:用以激發電路板輻射地緣電流之新微波元件:輻射電流驅動器
論文名稱(外文):A New Microwave Component (Current Driver) for Inducing Radiating Ground Edge Current in a Printed Circuit Board
指導教授:鍾世忠鍾世忠引用關係
指導教授(外文):Chung, Shyh-Jong
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電信工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:英文
論文頁數:66
中文關鍵詞:天線電流驅動器地緣電流縮小化
外文關鍵詞:antennacurrent driverground edge currentminiaturization
相關次數:
  • 被引用被引用:0
  • 點閱點閱:228
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:29
  • 收藏至我的研究室書目清單書目收藏:0
在本論文中,我們提出一種名為電流驅動器之新型微波元件來激發地緣輻射電流。由於電流驅動器本身只作為一種小型的饋入裝置來將能量有效地饋入接地面產生輻射,因此對整體輻射的貢獻量很小,所以驅動器的尺寸可以設計得十分小而不影響整體天線特性。此種激發地緣電流作為輻射源的作法,相對於一般縮小化天線設計來說,在大幅地減小天線設計空間的同時,也不影響整體的輻射特性。此外本論文引用一種縮小化的巴倫等效電路模型來解釋電流驅動器的地緣電流產生機制並用來設計電流驅動器。在論文中,我們亦針對常用於隔離電磁干擾的金屬屏蔽盒對電流驅動器的特性影響做探討。結果指出即使在屏蔽盒緊臨電流驅動器的情況下,對驅動器的整體特性影響也不大。這顯示出電流驅動器在小型無線裝置的設計彈性。
基於上述的電流驅動器的優點,本論文提出二種基於電流驅動器的天線應用,此二種架構皆製作在常用的FR4 基板上。首先我們設計應用於WLAN 2.4 GHz的電流驅動器,此驅動器可利用集總電容或者是指插式電容來實現,整體尺寸僅 4 mm × 4 mm,並具備良好的天線輻射特性。在2.45 GHz時,量測的天線輻射效率大於60 %,並且在其接近全向性的平面上,量測的平均增益接近0 dBi。接下來,我們藉由合併二個單頻的電流驅動器來達成雙頻 WLAN 2.4/5.2 GHz操作,整體尺寸為 8.5 mm × 4 mm。我們將在論文中詳細呈現雙頻電流驅動器的設計流程。量測的天線特性在低頻 2.45 GHz 時與先前提出的單一2.4 GHz的電流驅動器特性大致相符,具有接近全向性的場型與大於60%的天線輻射效率。而在高頻5.2 GHz時,由於FR4基板在高頻的介質損耗,量測的天線效率降低至50%左右,但仍然保持接近全向性的場型。實際量測結果與模擬結果相當吻合。由於利用電流驅動器來達成天線應用具有小尺寸且具備良好的天線輻射特性等優點,因此很適合應用於無線通訊系統。

In this thesis, a new microwave component named current driver is proposed, which is capable of inducing ground edge current for radiation. Since the current driver serves as a small feeding structure with little contribution to radiation, it can be designed very small while good radiation properties are maintained. Compared to the miniaturized antennas, the approach that utilizes ground plane as the main radiation has smaller size and better antenna performance. Furthermore, a circuit model of the miniaturized balun (balanced to unbalanced transformer) is introduced to explain the current inducing mechanism and to provide some valuable physical insights into the properties of the current driver. The effect of a shielding metal box for the proximity circuitry near the current driver is also investigated. It is shown that the nearby shielding box has minor effect on the performance of the driver, which demonstrates the feasibility of the current driver for antenna applications in a compact wireless terminal.
Given the benefits shown above, two antenna applications based on the current driver are presented. Both of them are fabricated on the low cost FR4 substrate of 0.4 mm. First, the current driver for WLAN 2.4 GHz designed with a lumped capacitor or printed capacitor has a small size of about 4 mm × 4 mm. The good radiation properties are obtained at 2.45 GHz with the measured radiation efficiency over 60 % and the nearly omni-directional radiation pattern with the average gain of about 0 dBi. Secondly, the dual-band current driver for WLAN 2.4/5/2 GHz applications is achieved by combining two single-band current drivers with the overall size of about 8.5 mm × 4 mm. The measured radiation performances at 2.4 GHz are similar to the ones for the previous single 2.4 GHz current driver, which has the measured antenna radiation efficiency higher than 60 % and nearly omin-directional patterns. At 5.2 GHz, the measured radiation efficiency is reduced to about 50 % due to the high dielectric loss caused by the FR4 substrate in the high frequency. The nearly omni-directional patterns are still maintained. The simulation and measurement results come to a great agreement. Based on the compactness and design flexibilities, the current driver is feasible for wireless applications

CHAPTER 1 INTRODUCTION 1
CHAPTER 2 THEORY OF MARCHAN BALUN 8
CHAPTER 3 DESIGN OF THE SINGLE-BAND CURRENT DRIVER 13
3.1 GEOMETRY AND CIRCUIT MODEL 13
3-2 SINGLE-BAND CURRENT DRIVER DESIGN 16
3-3 SHIELDING BOX EFFECT 22
3-4 SINGLE-BAND CURRENT DRIVER DESIGN WITH A PRINTED CAPACITOR 27
3-5 MEASUREMENT AND DISCUSSION 30
3-5-1 Current driver with a lumped capacitor 30
3-5-2 Current driver with a printed capacitor 36
CHAPTER 4 DESIGN OF THE DUAL-BAND CURRENT DRIVER 40
4-1 GEOMETRY 41
4-2 DUAL-BAND CURRENT DRIVER DESIGN 42
4-2-1 Interaction between two current drivers 43
4-2-2 Parameter study of the 2.4 GHz current driver 45
4-2-3 Parameter study of the 5.2 GHz current driver 50
4-2-4 Effects of the thin metal strip connected with two current drivers 54
4-2-5 Ground size effect 56
4-3 MEASUREMENT RESULTS 57
CHAPTER 5 CONCLUSION 63
REFERENCES 64
[1] H. Mosallaei and K. Sarabandi, “Magneto-dielectrics in electromagnetic: Concept and applications,” IEEE Trans. Antennas Propagat., vol. 52, no. 6, pp. 1558-1567, Jun. 2004.
[2] K. Buell, H. Mosallaei, and K. Sarabandi, “A substrate for small patch antennas providing tunable in miniaturization factors,” IEEE Trans. Microw. Theory Tech., vol. 54 pp. 135-146, Jan. 2006.
[3] H. Mosallaei and K. Sarabandi, “Design and modeling of patch antenna printed on magneto-dielectric embedded-circuit metasubstrate,” IEEE Trans. Antennas Propag., vol. 55, pp. 45-52, Jan. 2007.
[4] A. Erentok and R. W. Ziolkowski, “Metamaterial-inspired efficient electrically small antennas,” IEEE Trans. Antennas Propag., pp. 691-707, Mar. 2008
[5] P. Jin and R. W. Ziolkowski, “Low-Q, Electrically Small, Efficient Near-Field Resonant Parasitic Antennas,” IEEE Trans. Antennas Propag., pp. 2548-2563, Sep. 2009
[6] Y.-S. Wang, M.-C. Lee, and S.-J. Chung, “Two PIFA-related miniaturized dual-band antennas, “ IEEE Trans. Antennas Propagat., vol. 55, no.3, pp. 805-811, Mar. 2007.
[7] C.-J. Lee, K. M. K. H. Leong, and T. Itoh, “Composite right/left-handed transmission line based compact resonant antennas for RF module integration,” IEEE Trans. Antennas Propagat., vol. 54, no. 8, pp. 2283-2291, Aug. 2006.
[8] J.-G. Leee and J.-H. Lee, “Zeroth order resonance loop antenna,” IEEE Trans. Antennas Propag., vol. 55, nol 3, pp. 994-997, Mar. 2007
[9] Y.-S. Wang, M.-F. Hsu, and S.-J. Chung, “A Compact Slot Antenna Utilizing a Right/Left-Handed Transmission Line Feed,” IEEE Trans. Antennas Propagat., vol. 56, no. 3, pp. 675-683, Mar. 2008.
[10] S. Pyo, S.-M. Han, J.-W. Baik, and Y.-S. Kim, “A Slot-Loaded Composite Right/Left-Handed Transmission Line for a Zeroth-Order Resonant Antenna With Improved Efficiency,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 11, pp. 2775-2782, Nov. 2009.
[11] R. C. Hansen, “Fundamental limitations in antennas,” Proc. IEEE, vol. 69, pp. 170–182, Feb. 1981.
[12] R. F. Harrington, “Effect of antenna size on gain, bandwidth, and efficiency,” J. Res. Nat. Bureau Stand., vol. 64D, pp. 1–12, Jan. 1960.
[13] J. S. McLean, “A re-examination of the fundamental limits on the radiation Q of electrically small antennas,” IEEE Trans. Antennas Propag., vol. 44, no. 5, pp. 672–676, May 1996.
[14] P. Vainikainen, J. Ollikainen, O. Kivekäs, and I. Kelander, “Resonator-based analysis of the combination of mobile handset antenna and chassis,” IEEE Trans. Antennas Propagat., vol. 50, no. pp. 1433-1444, Oct. 2002.
[15] R. Hossa, A. Byndas, and M. E. Bialkowski, “Improvement of compact terminal antenna performance by incorporating open-end slots in ground plane,” Microw. Opt. Technol. Lett., vol. 14, no. 6, pp. 283–285, Jun. 2004.
[16] P. Lindberg and E. Öjefors, “A bandwidth enhancement technique for mobile handset antennas using wavetraps,” IEEE Trans. Antennas Propagat., vol. 54, no. 8, pp. 2226-2233, Aug. 2006.
[17] Y.-S. Wang, J.-C. Lu, and S.-J. Chung, “A Miniaturized Ground Edge Current Choke—Design, Measurement, and Applications,” IEEE Trans. Antennas Propagat,, vol. 57, no. 5, pp. 1360-1366, May 2009.
[18] J. Villanen, J. Ollikainen, O. Kivekäs, and P. Vainikainen, “Coupling element based mobile terminal antenna structures,” IEEE Trans. Antennas Propagat., vol. 54, no. 7, pp. 2142-2153, Jul. 2006.
[19] L. Huang and P. Russer, “Electrically Tunable Antenna Design Procedure for Mobile Applications,” IEEE Trans. Microw. Theory Tech., vol. 56, no. 12 Part 1, pp. 2789-2797, Dec. 2008.
[20] M. Cabedo-Fabres, E. Antonino-Daviu, A. Valero-Nogueira, and M. Ferrando-Bataller, “Wideband radiating ground plane with notches,” in Proc. IEEE Ant. And Propag. Soc. Int. Symp. Dig., Washington, DC, USA, July 2005, pp. 560-563.
[21] P. Lindberg, E. Öjefors, and A. Rydberg, “Wideband slot antenna for low-profile hand-held terminal applications, “ in Proc. 36th European Microw. Conf. 2006, Manchester, UK, Sept. 2006, pp. 1698-1701.
[22] C.-L. Li, J.-P. Chang, and L.-J. Wong, “Miniature planar notch antenna of J shape,” Electron. Lett., vol. 42, no. 20, pp. 1134-1135, Sept. 2006.
[23] J. Holopainen, J. Villianen, R. Valkonen, J. Poutanen, O. Kivekäs, C. Icheln, and P. Vainikainen, “Mobile terminal antennas implemented using optimized direct feed,” in IEEE Int. Workshop on Antenna Tech, iWAT 2009, Santa Monica, CA, USA, March 2-4, 2009.
[24] K. S. Ang, Y. C. Leong, and C. H. Lee, “Analysis and design of miniaturized lumped-distributed impedance-transforming baluns,” IEEE Trans. Microw. Theory Tech., vol. 51, no. 3, pp. 1009-1017, Mar. 2003.
[25] N. Marchand, “Transmission line conversion transformers,” Electron. Lett., vol. 17, pp. 142-145, Dec. 1944.
[26] M. C. Tsai, “A new compact wideband balun,” in IEEE Microwave Millimeter-Wave Monolithic Circuits Symp. Dig., 1993, pp. 123–125.
[27] S. A. Maas and K. C. Chen, “A broad-band, planar, doubly balanced monolithic Ka-band diode mixer,” IEEE Trans. Microw. Theory Tech., vol. 41, pp. 2330–2335, Dec. 1993.
[28] High Frequency Structure Simulator (HFSS). Ansoft Corporation, Pittsburgh, PA, 2001.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 彭念瑩,〈張愛玲短篇小說集《傳奇》中的男性形象〉,《南方學院學報》,2005年,頁31-49。
2. 鍾正道,〈從佛洛伊德學說看張愛玲小說中的自戀〉,《文學新鑰》,第8期,2008年,頁75-92。
3. 翁靚芠,〈張愛玲短篇小說中男性主體的失落〉,《國文天地》,第20卷第7期,2004年,頁23-28。
4. 彭念瑩,〈張愛玲短篇小說集《傳奇》中的男性形象〉,《南方學院學報》,2005年,頁31-49。
5. 黃東陽,〈密室裏的人性實驗——解析張愛玲短篇小說〈封鎖〉的基礎意識與敘事策略〉,《輔仁國文學報》第二十七期,2008年,頁183-200。
6. 黃東陽,〈密室裏的人性實驗——解析張愛玲短篇小說〈封鎖〉的基礎意識與敘事策略〉,《輔仁國文學報》第二十七期,2008年,頁183-200。
7. 鍾正道,〈從佛洛伊德學說看張愛玲小說中的自戀〉,《文學新鑰》,第8期,2008年,頁75-92。
8. 翁靚芠,〈張愛玲短篇小說中男性主體的失落〉,《國文天地》,第20卷第7期,2004年,頁23-28。
9. 林幸謙,〈張愛玲的臨界點:閨閣話語與女性主體的邊緣化〉,《中外文學》,第24卷第5期,1995年,頁93-116。
10. 林幸謙,〈張愛玲的臨界點:閨閣話語與女性主體的邊緣化〉,《中外文學》,第24卷第5期,1995年,頁93-116。
11. 張鈞莉,〈張愛玲小說中的男性世界〉,《新書月刊》,第6期,1984年,頁32-39。
12. 張鈞莉,〈張愛玲小說中的男性世界〉,《新書月刊》,第6期,1984年,頁32-39。
 
系統版面圖檔 系統版面圖檔