(34.201.11.222) 您好!臺灣時間:2021/02/25 04:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李其懋
研究生(外文):Lee, Chi-Mao
論文名稱:針對無線感知網路下多頻帶傳輸機制的設計與分析
論文名稱(外文):Design and Analysis of Transmission Strategies in Channel-Hopping Cognitive Radio Networks
指導教授:方凱田
指導教授(外文):Feng, Kai-Ten
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電信工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:英文
論文頁數:47
中文關鍵詞:感知無線網路多頻帶選擇資源擷取控制通訊協定跳頻選擇機制
外文關鍵詞:cognitive radio networkmulti-channel selectionMACchannel-hopping protocol
相關次數:
  • 被引用被引用:0
  • 點閱點閱:178
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:28
  • 收藏至我的研究室書目清單書目收藏:0
近幾年來,基於跳頻選擇機制的資源擷取控制通訊協定 (channel-hopping based medium access control (MAC) protocols) 被提出來增進分散式多頻帶無線感知網路 (cognitive radio (CR) networks) 下的通道容量而不需使用額外的控制通道,在其中,每個感知使用者必須隨機去跟隨初始的跳頻序列 (channel-hopping sequence) 去進行通道的偵測以及資料傳輸。在本論文中,無線隨意感知網路基於跳頻選擇機制的資源擷取控制通訊協定在配對傳輸以及廣義傳輸的模式底下,考慮現實感知網路中的不完美通道檢測以及同步,利用排隊理論模型 (queueing theory) 提出感知網路下的通道吞吐量分析以及主要使用網路 (primary networks) 所能提供的通道空閒資源和其所受感知使用者影響所產生的封包延遲。接著,根據此分析模型,基於動態規畫 (dynamic programming) 的技巧,在主要使用者的封包延遲限制之下提出最佳的跳頻選擇機制 (OCS),藉著開發最佳的資源分配機制去平衡通道空閒資源和通道使用率,此方法可以找出此網路底下最佳的通道吞吐量,同時降低對主要使用者的干擾。除此之外,在廣義的傳輸模式底下存在著所謂的邏輯分割問題 (logical partition problem),由於感知網路中感知使用者溝通成功率的下降,它會造成網路中吞吐量嚴重的減少,由其是在比較雍塞的感知網路底下,因此,在此論文中,兩個演算法被提出來減緩此問題的發生,它們分別是喚醒連續競爭機制 (WSC) 以及喚醒計數器重設連續競爭機制 (WCSC),藉由解決不完美通道檢測所產生的盲點,造成感知使用者被阻擋在通道外面,此兩種方法可以增加感知使用者間溝通的次數,更而增加網路中的吞吐量。從模擬的結果中可以看出所提出的最佳的跳頻選擇機制、喚醒連續競爭機制、喚醒計數器重設連續競爭機制的確和其它傳統的跳頻機制相比可以大幅提升網路的吞吐量,並且確保主要使用網路的封包延遲限制。
In recent years, channel-hopping based medium access control (MAC) protocols are proposed to improve the capacity in a decentralized multi-channel cognitive radio (CR) networks without extra usage of a control channel. Each CR user has to stochastically follow a default channel-hopping sequence in order to sense a channel and to conduct its frame transmission. In this thesis, based on the channel-hopping protocol in both the paired and generalized CR network, an analysis is conducted on both the probability of channel availability and the average frame delay for the primary queueing networks. Analytical model is proposed by considering the impact caused by the imperfect sensing of the CR users and the imperfect synchronization between the primary and CR networks. According to the proposed model with realistic considerations, an optimal channel-hopping sequence (OCS) approach is designed for the CR users based on dynamic programming technique. It is designed by exploiting the optimal load balance between both the channel availability and channel utilization within the delay constraints of primary users (PUs). By adopting the OCS approach, the maximum aggregate throughput of CR users and the quality of service (QoS) requirement of PUs can both be achieved. Moreover, in addition to the paired CR networks, the logical partition problem that occurs in the generalized CR network will also be addressed. The problem can severely degrade the aggregate throughput due to the decreasing probability in connectivity between the CR users, especially under CR network with heavy traffic. Therefore, both the wake-up successive contention (WSC) and the wake-up counter-reset successive contention (WCSC) algorithms are proposed to increase the number of negotiations by exploring a blind spot in imperfect sensing and amending the contention mechanisms between the CR users. Numerical results illustrate that the proposed OCS, OCS-WSC, and OCS-WCSC schemes can e®ectively maximize the aggregate throughput compared to the conventional channel-hopping sequences, and as well guarantee the QoS requirement of the PUs.

Chapter 1 Introduction 1
Chapter 2 Proposed Optimal Channel-Hopping Sequence (OCS)
Approach under Paired CR Networks 6
2.1 Imperfect Sensing 9
2.2 Probability of Channel Availability for CRPs and PU's
Average Frame Delay 10
2.3 Aggregate Throughput of CRPs 14
2.4 Proposed OCS Approach 16
2.5 Dynamic Programming Formulation for Proposed OCS
Approach 18
Chapter 3 Proposed Optimal Channel-Hopping Sequence (OCS)
Approach under Generalized CR Networks 20
3.1 Aggregate Throughput and Proposed OCS Approach 22
3.2 Enhancement with Wake-Up Successive Contention (WSC)
Algorithm 25
3.3 Enhancement withWake-Up Counter-Reset Successive
Contention (WCSC) Algorithm 28
Chapter 4 Performance Evaluation 29
4.1 Simulation Parameters 29
4.2 Simulation Results 30
4.2.1 Determination of Quantized Level in DP Formulation 30
4.2.2 Performance Validation and Comparison under Paired CR
Networks 32
4.2.2.1 Characterization of Channel-Hopping Probability for
a Single Channel 32
4.2.2.2 Performance Validation and Comparison 34
4.2.3 Performance Validation and Comparison under
Generalized CR Networks 37
4.2.3.1 Performance Validation of Proposed OCS Approach 37
4.2.3.2 Performance Comparison 39
4.2.3.3 Enhancement with WSC and WCSC Mechanisms 41
Chapter 5 Conclusion 44
[1] F. C. Commission, \Spectrum policy task force report, FCC 02-155." Nov. 2002.
[2] S. Haykin, \Cognitive radio: brain-empowered wireless communications," IEEE J. Select. Areas
Commun, vol. 23, pp. 201{220, Feb. 2005.
[3] C. R. Stevenson, G. Chouinard, Z. Lei, W. Hu, S. J. Shellhammer, and W. Caldwell, \IEEE
802.22: The ¯rst cognitive radio wireless regional area network standard," IEEE Communications
Magazine MCOM, vol. 47, pp. 130{138, Jan. 2009.
[4] IEEE 802.22 Wireless RAN, \Functional requirements for the 802.22 WRAN standard, IEEE
802.22- 05/0007r46," Oct. 2005.
[5] I. F. Akyildiz, W. Y. Lee, M. C. Vuran, and S. Mohanty, \Next generation/dynamic spectrum
access/cognitive radio wireless networks: a survey," Computer Networks (Elsevier), vol. 50, pp.
2127 { 2159, Sept. 2006.
[6] S. Srinivasa and S. A. Jafar, \How much spectrum sharing is optimal in cognitive radio networks?"
IEEE Trans. Wireless Commun, vol. 7, pp. 4010 { 4018, Oct. 2008.
[7] A. C. C. Hsu, D. S. L. Wei., and C. C. J. Kuo, \A cognitive mac protocol using statistical channel
allocation for wireless ad-hoc networks," IEEE WCNC, pp. 105 { 110, Mar. 2007.
[8] A. K.-L. Yau, P. Komisarczuk, and P. D. Teal, \On multi-channel mac protocols in cognitive
radio networks," Proc. IEEE ATNAC, pp. 300 { 305, Dec. 2008.
[9] Q. Zhao, L. Tong, A. Swami, and Y. Chen, \Decentralized cognitive MAC for opportunistic
spectrum access in ad hoc networks: A POMDP framework," IEEE J. Select. Areas Commun,
vol. 25, pp. 589 { 600, Apr. 2007.
[10] J. Jia, Q. Zhang, and X. Shen, \HC-MAC: A hardware-constrained cognitive mac for e±cient
spectrum management," IEEE J. Select. Areas Commun, vol. 26, pp. 106 { 117, Jan. 2008.
[11] H. Su and X. Zhang, \Channel-hopping based single transceiver mac for cognitive radio networks,"
Proc. IEEE CISS, pp. 197{202, Mar. 2008.
[12] C. Xin and X. Cao, \A cognitive radio network architecture without control channel," Proc. IEEE
GLOBECOM, pp. 1 { 6, Dec. 2009.
[13] P. Bahl, R. Chandra, and J. Dunagan, \SSCH: Slotted seeded channel hopping for capacity
improvement in IEEE 802.11 ad-hoc wireless networks," ACM MobiCom, pp. 216 { 230, 2004.
[14] L. Le and E. Hossain, \OSA: A MAC protocol for opportunistic spectrum access in cognitive
radio networks," Proc. IEEE WCNC, pp. 1426 { 1430, Apr. 2008.
[15] J. Cai and A. S. Alfa, \Optimal channel sensing in wireless communication networks with cognitive
radio," Proc. IEEE ICC, pp. 1 { 5, Jun. 2009.
[16] J. Gambini, O. Simeone, Y. Bar-Ness, U. Spagnolini, and T. Yu, \Packet-wise vertical handover
for unlicensed multi-standard spectrum access with cognitive radios," IEEE Trans. Wireless Com-
mun, vol. 7, pp. 5172 { 5176, Dec. 2008.
[17] I. Suliman and J. Lehtomaki, \Optimizing detection parameters for time-slotted cognitive radios,"
IEEE VTC, pp. 1 { 4, Apr. 2009.
[18] Y. C. Liang, Y. Zeng, E. C. Y. Peh, and A. T. Hoang, \Sensing-throughput tradeo® for cognitive
radio networks," IEEE Trans. Wireless Commun, vol. 7, pp. 1326{1337, Apr. 2008.
[19] A. Ghasemi and E. S. Sousa, \Spectrum sensing in cognitive radio networks: requirements, chal-
lenges and design trade-o®s," IEEE Communications Magazine MCOM, vol. 46, pp. 32 { 39, Apr.
2008.
[20] A. Gravey and G. Hebuterne, \Simultaneity in discrete-time single server queues with bernoulli
inputs," Performace Evaluation, vol. 14, pp. 123{131, Jan. 1992.
[21] T. Meisling, \Discrete-time queuing theory," Operations Research, vol. 6, pp. 96 { 105, Jan. 1958.
[22] D. Gross and C. M. Harris, Fundamentals of Queueing Theory, 4th ed. Wiley, 2008.
[23] A. T. Hoang, D. T. C. Wong, and Y.-C. Liang, \Design and analysis for an 802.11-based cognitive
radio network," Proc. IEEE WCNC, pp. 1 { 6, Apr. 2009.
[24] IEEE Standard 802.11, Part 11: Wireless LAN Medium Access Control (MAC) and Physical
Layer (PHY) Speci¯cations, 1999.
[25] A. V. Adamis, K. N. Maliatsos, and P. Constantinou, \Methods for reducing interference caused
to licensed systems by overlay-CSMA/CA cognitive radios," Proc. IEEE CROWNCOM, pp. 1 {
6, May. 2008.
[26] S. Zheng, Y. C. Liang, P. Y. Kam, and A. T. Hoang, \Cross-layered design of spectrum sensing
and mac for opportunistic spectrum access," Proc. IEEE WCNC, pp. 1 { 6, Apr. 2009.
[27] D. P. Bertsekas, Dynamic Programming and Optimal Control, 3rd ed. Athena Scienti¯c, 2005.
[28] L. Gao and S. Cui, \Power and rate control for delay-constrained cognitive radios via dynamic
programming," IEEE Trans. Vehicular Technology, vol. 58, pp. 4819 { 4827, Nov. 2009.
[29] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms, 3rd ed.
The MIT Press,, 2009.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔