(18.210.12.229) 您好!臺灣時間:2021/03/03 17:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:楊子嫻
研究生(外文):Yang, Tzu-Hsien
論文名稱:利用一維電磁帶隙結構設計之五頻近地印刷型單極天線
論文名稱(外文):A Printed Penta-band Ground-Proximity Monopole Antenna Designed Using One-Dimensional EBG Structures
指導教授:鍾世忠鍾世忠引用關係
指導教授(外文):Chung, Shyh-Jong
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電信工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:英文
論文頁數:53
中文關鍵詞:一維電磁帶隙結構五頻天線印刷型天線單極天線
外文關鍵詞:One-Dimensional EBG StructuresPenta-band AntennaPrinted AntennaMonopole Antenna
相關次數:
  • 被引用被引用:0
  • 點閱點閱:265
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:55
  • 收藏至我的研究室書目清單書目收藏:0
隨著筆電無線通訊的發展,運用於筆電的內嵌式五頻天線的需求逐漸增長。在筆電內嵌式天線運用中,天線的寬度被筆電邊緣寬度所限制,所以需要一個近地且狹小的天線設計。然而,當天線非常接近地平面時,因為受到地面反向鏡像電流的影響,天線的效率勢必會減少。為了解決這個問題,我們將電磁能隙結構運用於地面邊緣處,如此可以改善接地面鏡像電流所造成的阻抗匹配、天線增益退化等問題,因此可將天線直接放置於具有高阻抗電磁表面的金屬接地面之上,而不影響原有天線特性。
本論文提出一種一維電磁能隙結構,不同於傳統的電磁帶隙結構,此一維電磁能隙結構採用印刷方式實現並聯LC共振電路,能有效縮小結構體積並有利於簡單製作。根據上述優勢,本論文提出兩種利用一維電磁能隙結構所設計的平面印刷近地天線,此兩種天線皆可用低成本的FR4基板製造。首先提出一個利用一維電磁能隙結構設計之高效率近地偶極天線,該天線與地面之間的距離只有10毫米,整體尺寸10毫米× 153毫米。此天線擁有良好的效能,量測的天線輻射效率在GSM (824 MHz-960 MHz) 頻段中皆有55.6%以上。接著提出一個利用一維電磁能隙結構設計之五頻(GSM850/900/1800/1900/UMTS)近地單極天線。在此我們結合兩種不同的一維電磁能隙結構來提供較寬的電磁能隙結構共振頻寬,如此一來可以將單極天線近地放置且在GSM (824 MHz-960 MHz)頻段中仍維持良好的天線效能。在較高的頻段(1710 MHz-2170 MHz)中,一部份的一維電磁能隙結構能夠產生新的電流路徑並有效的輻射,達成五頻天線的需求。相較於之前的設計,第二個天線擁有較小的尺寸和更大的頻寬。此天線尺寸為10毫米× 63毫米,且在五頻頻段中皆有超過51.5%的輻射效能。鑑於此一維電磁能隙結構擁有縮小的面積和良好的設計的靈活性,因此很適合運用於近地印刷式天線設計,以符合商業天線應用。

The demand for compact internal WWAN (Wireless Wide Area Network) antenna embedded in the laptop computer for penta-band operation has seen growing attention. For laptop computer applications, the width of the antenna is limited to the overall width of the edge of laptop computers, which results in narrow and low profile needs. However, when the antenna is very close to the ground plane, it is bound to reduce the antenna efficiency. To solve this problem, the EBG structure is applied to the ground plane, which behaves as a high impedance surface at the resonance frequency of the EBG structure. Thus, the antenna can placed close to the ground plane while maintaining the antenna performance.
The new 1-D EBG structure is proposed in this thesis. Unlike the conventional EBG structures, the proposed 1-D EBG structure utilizes a printed parallel LC circuit, which is more compact and easy to fabricate. According to the advantages shown above, two antenna applications base on the 1-D EBG structure are presented. Both of them are fabricated on low cost FR4 substrate of 0.4 mm. First, a high efficiency ground-proximity dipole antenna using 1-D EBG structure is designed. The distance between antenna and the ground plane is only 10 mm with the overall size of 10 mm × 163 mm. The good radiation properties are obtained with the measured radiation efficiency over 55.6% for GSM (824 MHz-960 MHz) applications.
Secondly, the penta-band (GSM850/900/1800/1900/UMTS) ground-proximity printed penta-band monopole antenna is achieved with different 1-D EBG structures combined together. These 1-D EBG structures are combined to provide wider EBG operation bandwidth for GSM (824 MHz-960 MHz), so the monopole antenna and ground plane can be placed in close proximity without affecting the antenna performance in the lower band. In the higher band (1710 MHz-2170 MHz), the 1-D EBG structures can be viewed as efficient radiators, which create additional two resonances and penta-band is thus achieved. Compared to the previous design, the second antenna has a smaller size of 10 mm × 63 mm. The radiation performance is still maintained, which is all above 51.5% in penta-band. Given the design flexibilities and compactness, the antenna designed with 1-D EBG structures is feasible to commercial applications.

摘要 I
ABSTRACT III
ACKNOWLEDGEMENT V
CONTENTS VI
CONTENTS OF TABLES VII
CONTENTS OF FIGURES VIII
CHAPTER 1 INTRODUCTION 1
1.1 BACKGROUND 1
1.2 LITERATURE SURVEY 3
1.3 CONTRIBUTION 7
1.4 THESIS ORGANIZATION 8
CHAPTER 2 ELECTROMAGNETIC BAND-GAP STRUCTURE DESIGN 10
2.1 THEORY OF ELECTROMAGNETIC BAND GAP (EBG) STRUCTURES 10
2.1.1 THEORY OF CONVENTIONAL EBG STRUCTURE 10
2.1.2 THEORY OF 1-D EBG STRUCTURE 12
2.2 SIMULATION APPROACHES TO EBG STRUCTURES 13
2.2.1 SIMULATION FOR CONVENTIONAL EBG STRUCTURE 13
2.2.2 SIMULATION FOR 1-D EBG STRUCTURE 15
CHAPTER 3 A HIGH EFFICIENCY GROUND-PROXIMITY DIPOLE ANTENNA 22
3.1 DESIGN OF 1-D EBG STRUCTURE 23
3.2 DESIGN OF A GROUND-PROXIMITY DIPOLE ANTENNA 23
3.3 EXPERIMENTAL RESULTS 26
CHAPTER 4 A PENTA-BAND GROUND-PROXIMITY MONOPOLE ANTENNA 30
4.1 DESIGN OF 1-D EBG STRUCTURES 31
4.2 DESIGN OF GROUND-PROXIMITY MONOPOLE ANTENNAS 34
4.3 DESIGN OF A PENTA-BAND GROUND-PROXIMITY MONOPOLE ANTENNA 38
4.4 EXPERIMENTAL RESULTS 43
CHAPTER 5 CONCLUSIONS 49
REFERENCE 50


[1] Wikipedia. Available: http://en.wikipedia.org/wiki/WWAN
[2] K.R. Boyle, P.G. Steeneken, “A Five-Band Reconfigurable PIFA for Mobile Phones,” Antennas and Propagation, vol. 55, Issue 11, pp. 3300-3309, Nov. 2007.
[3] R.F.J. Broas , D.F. Sievenpiper, and E. Yablonovitch, “A High-Impedance Ground Plane Applied to a Cellphone Handset Geometry,” Microw. Theory and Techniques, vol. 49, Issue 7, no. 6, pp. 1262-1265, August. 2002.
[4] M.F. Abedin, M.Z. Azad, and M. Ali, “Wideband Smaller Unit-Cell Planar EBG Structures and Their Application,” Antennas and Propagation, vol. 56, Issue 3, pp. 903-908, March 2008.
[5] H. D. Yang, N. G. Alexopoulos, and E. Yablonovitch, “Photonic band-gap materials for high-gain printed circuit antennas,” IEEE Trans. Antennas Propag., vol. 45, no. 1, pp. 185–187, Jan. 1997.
[6] R. Coccioli, F. R. Yang, K. P. Ma, and T. Itoh, “Aperture-coupled patch antenna on UC-PBG substrate,” IEEE Trans. Microw. Theory Tech., vol. 47, pp. 2123–2130, Nov. 1999.
[7] M. Rahman and M. Stuchly, “Wide-band microstrip patch antenna with planar PBG structure,” n Proc. IEEE AP-S Int. Symp. Dig., Jul. 2001,vol. 2, pp. 486–489.
[8] S. Sharma and L. Shafai, “Enhanced performance of an aperture-coupled rectangular microstrip antenna on a simplified uniplanar compact photonic bandgap (UCPBG) structure,” in Proc. IEEE AP-S Int. Symp.Dig., Jul. 2001, vol. 2, pp. 498–501.
[9] J. S. Colburn and Y. Rahmat-Samii, “Patch antennas on externally perforated high dielectric constant substrates,” IEEE Trans. Antennas Propag., vol. 47, pp. 1785–1794, Dec. 1999.
[10] F. Yang and Y. Rahmat-Samii, “Mutual coupling reduction of microstrip antennas using electromagnetic band-gap structure,” in Proc. IEEE AP-S Int. Symp. Dig., Jul. 2001, vol. 2, pp. 478–481.
[11] R. Gonzalo, P. de Maagt, and M. Sorolla, “Enhanced patch-antenna performance by suppressing surface waves using photonic-bandgap substrates,” IEEE Trans. Microw. Theory Tech., vol. 47, no. 11, pp.2131–2138, Nov. 1999.
[12] Y. J. Park, A. Herschlein, and W. Wiesbeck, “A photonic bandgap (PBG) structure for guiding and suppressing surface waves in millimeter-wave antennas,” IEEE Trans. Microw. Theory Tech., vol. 49, no. 10, pp. 1854–1859, Oct. 2001.
[13] F. Yang and Y. Rahmat-Samii, “Microstrip antennas integrated with electromagnetic band-gap (EBG) structures: A low mutual coupling design for array applications,” IEEE Trans. Antennas Propag., vol. 51, pp. 2939–2949, Oct. 2003.
[14] M. F. Abedin and M. Ali, “Effects of a smaller unit cell planar EBG structure on the mutual coupling of a printed dipole array,” IEEE Antennas Wireless Propag. Lett., vol. 4, pp. 274–276, 2005.
[15] F. Yang and Y. Rahmat-Samii, “A low profile circularly polarized curl antenna over electromagnetic band-gap (EBG) surface,” Microw. Opt. Tech. Lett., vol. 31, no. 4, pp. 478–481, Nov. 2001.
[16] F. Yang and Y. Rahmat-Samii, “Reflection phase characterizations of the EBG ground plane for low profile wire antenna applications,” IEEE Trans. Antennas Propag., vol. 51, no. 10, pp. 2691–2703, Oct. 2003.
[17] M. F. Abedin and M. Ali, “Effects of EBG reflection phase profiles on the input impedance and bandwidth of ultra-thin directional dipoles,” IEEE Trans. Antennas Propag., vol. 53, no. 11, pp. 3664–3672, Nov. 2005.

[18] M. F. Abedin and M. Ali, “A low profile dipole antenna backed by a planar EBG structure,” Proc. IEEE Int. Workshop on Antenna Tech., Small Antennas and Novel Metamaterials, Mar. 6–8, 2006, pp. 13–16.
[19] Z. Li and Y. Rahmat-Samii, “PBG, PMC and PEC ground planes: A case study of dipole antennas,” Proc. IEEE AP-S Int. Symp. Dig., Jul. 2000, vol. 2, pp. 674–677.
[20] D. Sievenpiper, L. Zhang, R. F. J. Broas, N. G. Alexopolus, and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microw. Theory Tech., vol. 47, pp.2059–2074, Mar. 1999.
[21] A. S. Barlevy and Y. Rahmat-Samii, “Characterization of electromagnetic band-gaps composed of multiple periodic tripods with interconnecting vias: concept analysis, and design,” IEEE Trans. Antennas Propag., vol. 49, pp.242–353, Mar. 2001.
[22] F.-R.Yang, K.-P. Ma,Y. Qian, and T. Itoh, “A uniplanar compact photonic-bandgap (UC-PBG) structure and its applications for microwave circuit,” IEEE Trans. Microwave Theory Tech., vol. 47, pp.1509–1514, Nov. 1999.
[23] V. Radisic, Y. Qian, R. Coccioli, and T. Itoh, “Novel 2-D photonic bandgap structure for microstrip lines,” IEEE Microw. and Guided Wave Lett., vol. 8, no. 2, pp. 69–71, 1998.
[24] S. Clavijo, R. E. Diaz, and W. E. McKinzie, “Design methodology for Sievenpiper highimpedance surfaces: an artificial magnetic conductor for positive gain electrically small antennas,” IEEE Trans. Antennas Propag., vol. 51, no. 10, pp. 2678–2690, Jul. 2003.
[25] H. Nakano, K. Hitosugi, N. Tatsuzawa, D. Togashi, H. Mimaki, and J. Yamauchi, “Effects on the radiation characteristics of using a corrugated reflector with a helical antenna and an electromagnetic band-gap reflector with a spiral antenna,” IEEE Trans. Antennas Propag., vol. 53, no. 1, pp.191–199, Oct. 2005.

[26] M. Rahman and M. A. Stuchly, “Transmission line–periodic circuit representation of planar microwave photonic bandgap structures,” Microw. Opt. Tech. Lett., vol. 30, no. 1, pp. 15–19, Dec. 2001.
[27] D. F. Sievenpiper, High Impedance electromagnetic surfaces, Ph.D. dissertation, Electrical Engineering Department, University of California, Los Angeles, 1999.
[28] G. V. Eleftheriades and K. G. Balmain, Negative Refraction Metamaterials: Fundamental Principles and Applications, Wiley-IEEE Press, 2005.
[29] High Frequency Structure Simulator (HFSS). Ansoft Corporation, Pittsburgh, PA, 2001.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔