跳到主要內容

臺灣博碩士論文加值系統

(44.201.99.222) 您好!臺灣時間:2022/12/10 10:57
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:馬立山
研究生(外文):Ma, Li-Shan
論文名稱:模糊邏輯控制系統之穩定度分析與應用
論文名稱(外文):The Stability Analysis and its Application in Fuzzy Control Systems
指導教授:吳炳飛吳炳飛引用關係
指導教授(外文):Wu, Bing-Fei
學位類別:博士
校院名稱:國立交通大學
系所名稱:電控工程系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:98
語文別:英文
論文頁數:107
中文關鍵詞:穩態誤差參數絕對穩定度模糊邏輯控制系統Lur'e 系統Popov 準則強健控制渾沌模糊類神經網路觀測器同步
外文關鍵詞:steady state errorparametric absolute stabilityfuzzy logic control systemLur'e systemPopov criterionrobust controlChaosfuzzy-neural networkobserversynchronization
相關次數:
  • 被引用被引用:0
  • 點閱點閱:550
  • 評分評分:
  • 下載下載:140
  • 收藏至我的研究室書目清單書目收藏:0
在本篇論文中,我們分析了P與PD型之模糊邏輯控制系統之絕對穩定度,另外也提出了一種基於模糊邏輯控制系統之應用,即只利用傳輸一狀態之數值信號,並利用適應性模糊類神經觀測器 (AFNO)去同步一類的未知混沌系統。關於穩定度分析,包括兩種狀況:確定與非確定性受控體。而穩定度分析包括以下參數:參考輸入、致動增益、區間(Interval )受控體參數。對確定性受控體而言,我們利用Popov或線性化的方法,針對P與PD型之模糊邏輯控制系統,在不同參考輸入信號與致動增益下,作絕對穩定度分析,另外,關於模糊邏輯控制系統在參數空間之穩態誤差也可被分析。針對非確定性受控體,我們利用基於Lur’e系統之參數化強健Popov 準則,來作P型模糊邏輯控制系統之絕對穩定度分析,而關於非確定性受控體之PD型分析,在我們方法中,PD型之模糊邏輯控制器,為一種單一輸入之PD型模糊邏輯控制器,而且此控制器可被轉成一種特殊P型模糊邏輯控制器,而再作進一步分析。與之前研究不同的是,我們利用參數化強健Popov 準則,可針對非零之參考輸入,且非確定性之受控體,作絕對穩定度分析。我們亦利用PSPICE 元件,設計了一個模糊電流控制RC電路,透過數值與PSPICE模擬驗證我們所作分析之結果。另外,在模擬例子中,我們也利用不同平衡點的觀念,解釋模糊邏輯控制系統之震盪機制。最後,我們也比較幾種非確定性系統之絕對穩定度準則,驗證我們的分析的有效性。另一方面,模糊邏輯控制系統也可以被設計用來智慧化同步混沌信號,其應用主要觀念為只藉傳輸一狀態之數值信號,並利用AFNO去同步一類的未知混沌系統,如果此一非線性混沌系統可以藉由微分幾何的方法,被轉換成標準的Lur’e系統,則此方法便可以被應用來作同步。值得一提的是,在這一個方法中,AFNO之適應性模糊類神經(FNN)可以被線上即時調整權重,去對傳送端之非線性項作建模。另外,藉由傳送端傳送一個狀態並利用接收端之觀測器可以對傳送端未知之所有狀態作重建,當所有狀態被觀測到,傳送端與接收端便達到同步。AFNO可以線上適應性估測傳送端之狀態,即使傳送端已經切換到另一個混沌系統,接收端之AFNO還可以與新的混沌系統達到同步。另外一方面,即使存在建模誤差或外加有界干擾,AFNO亦可強健的達到同步。模擬結果驗證ANFO對混沌系統之同步應用是有效的。
This thesis analyzes the absolute stability in P and PD type fuzzy logic control systems with both certain and uncertain linear plants. In addition, the adaptive fuzzy-neural observer (AFNO) is applies to synchronize a class of unknown chaotic systems via scalar transmitting signal only. Stability analysis includes the reference input, actuator gain and interval plant parameters. For certain linear plants, the stability (i.e. the stable equilibriums of error) in P and PD types is analyzed with the Popov or linearization methods under various reference inputs and actuator gains. The steady state errors of fuzzy control systems are also addressed in the parameter plane. The parametric robust Popov criterion for parametric absolute stability based on Lur’e systems is also applied to the stability analysis of P type fuzzy control systems with uncertain plants. The PD type fuzzy logic controller in our approach is a single-input fuzzy logic controller and is transformed into the P type for analysis. In our work, the absolute stability analysis of fuzzy control systems is given with respect to a non-zero reference input and an uncertain linear plant with the parametric robust Popov criterion unlike previous works. Moreover, a fuzzy current controlled RC circuit is designed with PSPICE models. Both numerical and PSPICE simulations are provided to verify the analytical results. Furthermore, the oscillation mechanism in fuzzy control systems is specified with various equilibrium points of view in the simulation example. Eventually, the comparisons are also given to show the effectiveness of the analysis method. On the other hand, the fuzzy control system can be applied to synchronize the chaotic signals in the master end intelligently. With a scalar transmitting signal only, the AFNO is utilized to synchronize a class of unknown chaotic systems. The proposed method can be used for synchronization if nonlinear chaotic systems can be transformed into the canonical form of Lur’e system type by the differential geometric method. In this approach, the adaptive fuzzy-neural network (FNN) in AFNO is adopted on line to model the nonlinear term in the master end. Additionally, the master’s unknown states can be reconstructed from one transmitted state using observer design in the slave end. Synchronization is achieved when all states are observed. The utilized scheme can adaptively estimate the transmitter states on line, even if the transmitter is changed into another chaotic system. On the other hand, the robustness of AFNO can be guaranteed with respect to the modeling error, and external bounded disturbance. Simulation results confirm that the AFNO design is valid for the application of chaos synchronization.
1.Introduction............................1
1.1 Motivation.............................1
1.2 Organizations of the Dissertation......9
2 The Fuzzy Logic Control Systems.........10
2.1 Fuzzy Logic Controller................10
2.2 P Type Fuzzy Logic Control System.....11
2.3 PD Type Fuzzy Logic Control System....12
2.3.1 Calculation of Signed Distance......13
2.3.2 The Presentation of the SFLC System..13
2.3.3 The Analytic Representation of the SFLC
System ............................14
3. Equilibrium Points and Stability Analysis in P and PD
Type Fuzzy Control Systems.................20
3.1 Equilibrium Point Analysis for P Type Fuzzy Control
Systems with Linear Plants...............20
3.2 Stability Analysis for P Type Fuzzy Control Systems
with a Certain Linear Plant.................21
3.2.1 Frequency Domain Approach.............21
3.2.2 Time Domain Approach..................22
3.3 Stability Analysis for P Type Fuzzy Control Systems
with an Uncertain Linear Plant.............22
3.4 Transformation SFLC from PD to P Type...26
3.5 Equilibrium Point Analysis for PD Type Fuzzy Control
Systems with Linear Plants...............27
3.6 Stability Analysis for PD Type Fuzzy Control Systems
with Linear Plants..........................28
3.6.1 Frequency Domain Approach.............28
3.6.2 Time Domain Approach..................28
3.7 Stability Analysis for PD Type Fuzzy Control Systems
with Uncertain Linear Plants..............29
4.Fuzzy Current Control RC Circuit System Design......31
4.1 The Block Diagram of the Fuzzy Current Control RC
Circuit System.............................31
4.2 Circuit Plant.........................32
4.3 Fuzzy Logic Controller Circuit.........32
4.4 The Overall Design Circuit.............32
4.4.1 Voltage Controlled Current Circuit.....33
4.4.2 Current Amplifier....................33
4.4.3 PD type Signal Generation............33
5.Simulation Results.........................38
5.1 P Type Example Demonstrations..............39
5.1.1 Certain Linear Circuit Plant...........39
5.1.2 Mechanism of Oscillations in the Fuzzy Control
system...40
5.1.3 Alternative Control Function.............41
5.1.4 Uncertain linear circuit plant...........41
5.2 PD Type Example Demonstrations.............42
5.2.1 Certain Linear Circuit Plant.............42
5.2.2 Alternative Control Function. ...........42
5.2.3 Uncertain Linear Circuit Plant...........43
6.Comparisons with Other Approaches...........56
6.1 Robust Lur’e Test.........................56
6.2 Robust Circle Criterion....................57
6.3 Robust Popov Criterion ....................58
6.4 Parametric Robust Popov Criterion..........58
6.5 A Brief Summary on Comparisons ............59
7.Application: Observer-Based Synchronization for a Class
of Unknown Chaotic Systems with Adaptive Fuzzy-Neural
Network.................................69
7.1 Overview ............................69
7.2 Overall Structure of Adaptive Synchronization with
Fuzzy-Neural Observer Design............70
7.2.1 Introduction of Overall Structure...70
7.2.2 Dynamics of the Master and Slave Ends...70
7.3 Adaptive Fuzzy-Neural Network Observer Design..71
7.3.1 Fuzzy-Neural Network...................72
7.3.2 Adaptive Fuzzy-Neural Network Observer.....73
7.4 Simulation Results .......................75
7.4.1 Example 1.............................75
7.4.2 Example 2.............................77
7.5 Conclusion Remarks....................79
8.Conclusions............................91
References...............................93
VITA.....................................103
Publication List.........................104

[1]C. C. Lee, “Fuzzy Logic in Control Systems: Fuzzy Logic Control—Parts I and II,” IEEE Transaction on Systems, Man Cybernetics, vol. 20, no.2, pp. 404–435, 1990.
[2]E. H. Mamdani, “Applications of Fuzzy Algorithms for Control of Simple Dynamic Plant,” Proceedings of the IEEE, vol. 121, no.2, pp. 1585–1588, 1974.
[3]K. Tanaka and M. Sugeno, “Stability Analysis and Design of Fuzzy Control Systems,” Fuzzy Sets and Systems, vol. 45, pp. 135-156, 1992.
[4]S. G. Cao, N. W. Rees and G. Feng, “Stability Analysis of Fuzzy Control Systems,” IEEE Transaction on Systems, Man Cybernetics B, vol. 26 , no. 1, pp. 201–204, Feb. 1996.
[5]J. Joh, Y. H. Chen, and R. Langari, “On the Stability Issues of Linear Takagi-Sugeno Fuzzy Models,” IEEE Transaction on Fuzzy Systems, vol. 6, no. 3, pp. 402–410, Aug. 1998.
[6]S. G. Cao, N. W. Rees, and G. Feng, “Analysis and Design of Fuzzy Control Systems Using Fuzzy-State Space Models,” IEEE Transaction on Fuzzy Systems, vol. 7, no. 2, pp. 192–200, Apr. 1999
[7]M. Sugeno, “On Stability of Fuzzy Systems Expressed by Fuzzy Rules with Singleton Consequents,” IEEE Transaction on Fuzzy Systems, vol. 7, no. 2, pp. 201–224, Apr. 1999.
[8]G. Feng, “Approaches to Quadratic Stabilization of Uncertain Fuzzy Dynamic Systems,” IEEE Transaction Circuits and Systems I, vol. 48, no. 6, pp. 760–769, June 2001.
[9]G. Feng, “Stability Analysis of Discrete-time Fuzzy Dynamic Systems Based on Piecewise Lyapunov Functions,” IEEE Transaction on Fuzzy Systems, vol. 12, no. 1, pp. 22–28, Feb. 2004.
[10]F. H. Hsiao, C. W. Chen, Y. W. Liang, S. D. Xu, W. L. Chiang, “T-S Fuzzy Controller for Nonlinear Interconnected Systems with Multiple Time Delays,” IEEE Transaction Circuits and Systems I, vol. 52, no. 9, pp. 1883–1893, Sep. 2005.
[11]C. C. Fuh and P. C. Tung, “Robust Stability Analysis of Fuzzy Control Systems,” Fuzzy Sets and Systems, vol. 88, no.3, pp. 289-298, 1997.
[12]J. C. Lo, and Y. M. Chen, “Stability Issues on Takagi-Sugeno Fuzzy Model-Parametric Approach,” Fuzzy Sets and Systems, vol. 7, no. 5, pp. 597-607, 1999.
[13]H. K. Lam, and Lakmal D. Seneviratne, “Stability Analysis of Interval Type-2 Fuzzy-Model-Based Control Systems,” IEEE Transaction on Systems, Man Cybernetics B, vol. 38, no. 3, pp. 617–628, June 2008.
[14]H. H. Choi, “Robust Stabilization of Uncertain Fuzzy Systems Using Variable Structure System Approach,” IEEE Transaction on Fuzzy Systems, vol. 16, no. 3, pp. 715–724, June 2008.
[15]T. H. S. Li, S. H. Tsia, J. Z. Lee, M. Y. Hsiao, and C. H. Chao, “Robust Fuzzy Control for a Class of Uncertain Discrete Fuzzy Bilinear Systems,” IEEE Transaction on Systems, Man Cybernetics B, vol. 38, no. 2, pp. 510–527, April 2008.
[16]C. T. Pang and Y. Y. Lur, “On the Stability of Takagi-Sugeno Fuzzy Systems with Time Varying Uncertainties,” IEEE Transaction on Fuzzy Systems, vol. 16, no. 1, pp. 162–170, Feb. 2008.
[17]S. Xu, B. Song, J. Lu, and J. Lam, “Robust Stability of Uncertain Discrete-Time Singular Fuzzy Systems,” Fuzzy Sets and Systems, vol. 158, no. 20, pp. 2306-2316, 2007.
[18]H. K. Lam, and Lakmal D. Seneviratne, “BMI-Based Stability and Performance Design for Fuzzy-Model-Based Control Systems Subject to Parameter Uncertainties,” IEEE Transaction on Systems, Man Cybernetics B, vol. 37, no. 3, pp. 502–514, June 2007.
[19]L. Zhou, Q. Zhang and C. Yang, “Practical Stability Analysis and Synthesis of a Class of Uncertain T-S Fuzzy Systems,” Lecture Notes in Computer Science, vol. 4223, pp. 11–20, Sep. 2006.
[20]C. W. Park, H. J. Kang, “Graphical and Numerical Approach to Robust Stability Analysis of Fuzzy Modeled Systems with Parametric Uncertainty and Disturbance,” Fuzzy Sets and Systems, vol. 151, no. 1, pp. 99-117, 2005.
[21]H. K. Lam, and F. H. F. Leung, “Stability Analysis of Discrete-Time Fuzzy-Model-Based Control Systems with Time Delay: Time Delay-Independent Approach,” Fuzzy Sets and Systems, vol. 159, no. 8, pp. 990-1000, 2008.
[22]B. Chen, X. Liu, and S. Tong, “Delay-Dependent Stability Analysis and Control Synthesis of Fuzzy Dynamic Systems with Time Delay,” Fuzzy Sets and Systems, vol. 157, no. 16, pp. 2224-2240, 2006.
[23]H. N. Wu, “Delay-Dependent Stability Analysis and Stabilization for Discrete-Time Fuzzy Systems with State Delay: A fuzzy Lyapunov-Krasovskii Functional Approach,” IEEE Transaction on Systems, Man Cybernetics B, vol. 36, no. 4, pp. 954–962, Aug. 2006.
[24]Z. Zuo, and Y. Wang, “Robust Stability and Stabilization for Nonlinear Uncertain Time-Delay System via Fuzzy Control Approach,” IET Control Theory & Applications, vol. 1, no. 1, pp. 422–429, Jan. 2007.
[25]E. Tian, and C. Peng, “Delay-Dependent Stability Analysis and Synthesis of Uncertain T-S Fuzzy Systems with Time Varying Delay,” Fuzzy Sets and Systems, vol. 157, no. 4, pp. 544-559, 2006.
[26]W. J. M. Kickert and E. H. Mamdani, “Analysis of a Fuzzy Logic Controller,” Fuzzy Sets and Systems, vol. 1, no.1, pp. 29–44, 1978.
[27]E. Kim, H. Lee and M. Park, “Limit-Cycle Prediction of Fuzzy Control System Based on Describing Function Method,” IEEE Transaction on Fuzzy Systems, vol. 8, no. 1, pp. 11–22, Apr. 2000.
[28]J. Aracil and F. Gordillo, “Describing Function Method for Stability Analysis of PD and PI Fuzzy Controllers,” Fuzzy Sets and Systems, vol. 143, no. 2, pp. 233-249, 2004.
[29]G. Abdelnour, J. Y. Cheung, C-. H. Chang and G. Tinetti, “Steady-State Analysis of a Three-Term Fuzzy Controller,” IEEE Transaction on Systems, Man Cybernetics, vol. 23 , no. 2, pp. 607–610, Mar. 1993.
[30]G. Abdelnour, J. Y. Cheung, C-. H. Chang and G. Tinetti, “Application of Describing Functions in the Transient Response Analysis of a Three-Term Fuzzy Controller,” IEEE Transaction on Systems, Man Cybernetics, vol. 23 , no. 2, pp. 603–606, Mar. 1993.
[31]M. Braae and D. A. Rutherford, “Selection of Parameters for a Fuzzy Logic Controller,” Fuzzy Sets and Systems, vol. 2, no.3, pp. 185-199, 1979.
[32]C. J. Harris and C. G. Moore, “Phase Plane Analysis Tools for a Class of Fuzzy Control Systems,” Proceedings of IEEE International Conference on Fuzzy Systems, San Diego, CA, USA, pp. 511-518, Mar. 8-12, 1992.
[33]H. X. Li and H. B. Gatland, “A New Methodology for Designing a Fuzzy Logic Controller,” IEEE Transaction on Systems, Man Cybernetics, vol. 25 , no. 3, pp. 505–512, Mar. 1995.
[34]K. S. Ray and D. D. Majumder, “Application of Circle Criteria for Stability Analysis of Linear SISO and MIMO Systems Associated with Fuzzy Logic Controller,” IEEE Transaction on Systems, Man Cybernetics, vol. 14 , no. 2, pp. 345–349, Mar./Apr. 1984.
[35]R. E. Haber, G. Schmitt-Braess and R. H. Haber, A. Alique and J. R. Alique, “Using Circle Criteria for Verifying Asymptotic Stability in PI-like Fuzzy Control Systems: Application to the Milling Process,” IEE Proceedings Control Theory and Applications, vol. 150 , no. 6, pp. 619–627, Nov. 2003.
[36]A. Kandel and Y. Luo and Y.-Q. Zhang, “Stability Analysis of Fuzzy Control Systems,” Fuzzy Sets and Systems, vol.105, no.1, pp. 33-48, 1999.
[37]E. Furutani, M. Saeki, and M. Araki, “Shifted Popov Criterion and Stability Analysis of Fuzzy Control Systems,” Proceedings of Conference on Decision and Control, Tucson, AZ, USA, pp. 2790–2795, Dec. 16-18, 1992.
[38]H. Wang, A. Xue, R. Lu, and J. Wang, “Reliable Robust Tracking Control for Lur’e Singular Systems with Parameter Uncertainties,” Proceedings of American Control Conference, Seattle, Washington, USA, pp. 4312–4317, June 11-13, 2008.
[39]G. Arslan, and K. Y. Lee, “Stability Analysis of a Fuzzy Logic Controller,” Proceedings of American Control Conference, Albuqueraue, New Mexico, USA, pp. 3301–3305, June 4-6, 1997.
[40]T. Mori, T. Nishimura, and Y. Kuroe, “Stability of Lur’e Systems with Interval Plants and General Sector-Type Nonlinearities,” Proceedings of American Control Conference, Baltimore, Maryland, USA, pp. 1013–1017, June 29-July 1 ,1994.
[41]T. Mori, T. Nishimura, and Y. Kuroe, “Off-axis Circle Criteria for Lur’e Systems with Interval Plants,” Proceedings of Conference on Decision and Control, Lake Buena Vista, Florida, USA, pp. 585–586, Dec. 14-16, 1994.
[42]Y. Chen, and Y. Zhang, and Q. Li, “Delay-Dependent Absolute Stability of Lur’e Systems with Interval-Varying Delay,” Proceedings of IEEE International Conference on Networking, Sensing and Control, Sanya, Hainan, China, pp. 1696–1699, April 6-8, 2008.
[43]Q. L. Han, and D. Yue, “Absolute Stability of Lur’e Systems with Time Varying Delay,” IET Control Theory & Applications, vol. 1, no. 3, pp. 854–859, May 2007.
[44]Q. L. Han, “Absolute Stability of Time-Delay Systems with Sector-Bounded Nonlinearity,” Automatica, vol. 41, no. 12, pp. 2171-2176, Dec. 2005.
[45]Y. Wang, X. Yan, Z. Zuo, and H. Zhao, “Further Improvements on Delay-Dependent Absolute Stability of Delayed Systems with Sector-Bounded Nonlinearity,” Proceedings of IEEE International Symposium on Intelligent Control, San Antonio, Texas, USA, pp. 899–904, Sep. 3-5, 2008.
[46]R. Q. Lu, H. Y. Su, and J. Chu, “Robust Control for a Class of Uncertain Lur’e Singular Systems with Time-Delay,” Proceedings of Conference on Decision and Control, Maui, Hawaii, USA, pp. 5585–5590, Dec. 9-12, 2003.
[47]B. Butkiewicz, “Steady-State Error of a System with Fuzzy Controller,” IEEE Transaction on Systems, Man Cybernetics B, vol. 28, no. 6, pp. 855–860, Dec. 1998.
[48]C. W. Tao and J. S. Taur, “Robust Fuzzy Control for a Plant with Fuzzy Linear Model,” IEEE Transaction on Systems, Man Cybernetics B, vol. 13, no. 1, pp. 30–41, Feb. 2005.
[49]H. A. Malki, H. Li and G. Chen, “New Design and Stability Analysis of Fuzzy Proportional-Derivative Control Systems,” IEEE Transaction on Fuzzy Systems, vol. 2, no. 4, pp. 245–254, Nov. 1994.
[50]J. S. Taur and, C. W. Tao “Design and Analysis of Region-Wise Linear Fuzzy Controllers,” IEEE Transaction on Systems, Man Cybernetics B, vol. 27, no. 3, pp. 526–532, June. 1997.
[51]T. Wada, M. Ikeda, Y. Ohta and D. D. Šiljak, “Parametric Absolute Stability of Lur’e Systems,” IEEE Transaction on Automatic Control, vol. 43, no. 11, pp. 1649 – 1653, Nov. 1998.
[52]B. J. Choi, S. W. Kwak and B. K. Kim, “Design and Stability Analysis of Single-Input Fuzzy Logic Controller,” IEEE Transaction on Systems, Man Cybernetics B, vol. 30 , no. 2, pp. 303–309, Apr. 2000.
[53]M. Dahleh, A. Tesi, and A. Vicino, “On the Robust Popov Criterion for Interval Lur’e System,” IEEE Transaction on Automatic Control, vol. 38, no. 9, pp. 1400–1405, Sep. 1993.
[54]S. P. Bhattacharyya, H. Chapellat and L. H. Keel, Robust Control: The Parametric Approach, Prentice-Hall, NJ, 1995.
[55]L. M. Pecora and T. L. Carroll, “Synchronization in Chaotic Systems,” Physical Review Letters, vol.64, no.8, pp.821–824, 1990.
[56]J. A. K. Suykens, P. F. Curran and L. O. Chua, “Robust Synthesis for Master-Slave Synchronization of Lur'e Systems,” IEEE Transaction Circuits and Systems I, vol.46, no.7, pp.841–850, 1999.
[57]J. A. K. Suykens, P. F. Curran, J. Vandewalle and .L. O. Chua, “Robust Nonlinear Synchronization of Chaotic Lur'e Systems,” IEEE Transaction Circuits and Systems I, vol.44, no.10, pp.891–904, 1997.
[58]E. N. Sanchez, and J. P. Perez, “Adaptive Recurrent Neural Control for Noisy Chaos Synchronization,” Proceedings of American Control Conference, Denver, CO; USA, pp.1290–1295, June 4-6, 2003.
[59]E. N. Sanchez, J. P. Perez, J. P.Perez, L. J. Ricalde, and Guanrong Chen, “Chaos Synchronization via Adaptive Recurrent Neural Control,” Proceedings of Conference on Decision and Control, Orlando, FL, USA, pp.3526–3539, Dec. 4-7, 2001.
[60]M. Boutayeb, “Synchronization and Input Recovery in Digital Nonlinear Systems,” IEEE Transaction Circuits and Systems II, vol.51, no.8, pp.393–399, 2004.
[61]G. Grassi, and S. Mascolo, “Nonlinear Observer Design to Synchronize Hyperchotic Systems via a Scalar Signal,” IEEE Transaction Circuits and Systems I, vol.44, no.10, pp.1011–1014, 1999.
[62]O. Morg?刜, and E. Solak, “Observer Based Synchronization of Chaotic Systems,” Physical Review E, vol.54, no.5, pp.4803–4811, 1996.
[63]T. L. Liao, and N. S. Huang, “An Observer-Based Approach for Chaotic Synchronization with Application to Secure Communication,” IEEE Transaction Circuits and Systems I, vol.46, no.9, pp.1144 –1150, 1999.
[64]A. Azemi, and E. E. Yaz, “Sliding-Mode Adaptive Observer Approach to Chaotic Synchronization,” ASME Journal of Dynamic Systems, Measurement and Control, vol.122, pp.758–765, 2000.
[65]M. Feki, “Synchronization of Chaotic Systems with Parametric Uncertainties Using Sliding Observer,” International Journal of Bifurcation and Chaos, vol.14, no.7, pp.2467–2475, 2004.
[66]K. Y. Lian, C. S. Chiu, T. S. Chiang, and P. Liu, “Secure Communications of Chaotic Systems with Robust Performance via Fuzzy Observer-Based Design,” IEEE Transaction Circuits and Systems I, vol.9, no.1, pp.212–220, 2001.
[67]G. Millerioux, and J. Daafouz, “An Observer-based Approach for Input-Independent Global Chaos Synchronization of Discrete-Time Switched Systems,” IEEE Transaction Circuits and Systems I, vol.50, no.10, pp.1270–1279, 2003.
[68]J. Amirazodi, E. E. Yaz, A. Azemi, and Y. I. Yaz, “Nonlinear Observer Performance in Chaotic Synchronization with Application to Secure Communication,” Proceedings of IEEE Conference on Control Application, Glasgow, Scotland, UK, pp.76–81, Spet. 18-20, 2002.
[69]H. Nijmerijer, and I. M. Y. Mareels, “An Observer Looks at Synchronization,” IEEE Transaction Circuits and Systems I, vol.44, no.10, pp.882–890, 1997.
[70]H. Dedieu, and M. J. Ogorzalek, “Identifiability and Identification of Chaotic Systems Based on Adaptive Synchronization,” IEEE Transaction Circuits and Systems I, vol.44, no.10, pp.948-962, 1997.
[71]O. De Feo, “Self-Emergence of Chaos in the Identification of Irregular Periodic Behavior,” Chaos, vol.13, no.4, pp.1205-1215, 2003.
[72]C. H. Hyun, J. H. Kim, E. Kim and M. Park, “Adaptive Fuzzy Observer Based Synchronization Design and Secure Communications of Chaotic Systems,” Chaos, Solitons and Fractals, vol.27, no.4, pp.930-940, 2006.
[73]Y. G. Leu and T. T. Lee, “Adaptive Fuzzy-Neural Observer for a Class of Nonlinear Systems,” Proceedings of IEEE International Conference on Robotics and Automation, San Francisco, CA, USA, pp.2130–2135, April 24-28, 2000.
[74]T. Schimming and O. D. Feo, “Chaos Synchronization in Noisy Environments using Kalman Filters,” in Chaos in Circuits and Systems, G. Chen and T. Ueta, Ed. World Scientific, pp.509-527, 2002.
[75]B. Friedland, Advanced Control System Design, Prentice-Hall, NJ, 1996.
[76]K. Viswanathan, R. Oruganti and Dipti Srinivasan, “Nonlinear Function Controller: A Simple Alterative to Fuzzy Logic Controller for a Power Electronic Converter,” IEEE Transaction on Industrial Electronics, vol. 52, no. 5, pp. 1439–1448, Oct. 2005.
[77]P. Horowitz and W. Hill, The Art of Electronics, Cambridge University Press, Cambridge, UK, 2000.
[78]S. Franco, Design with Operational Amplifiers and Analog Integrated Circuits, 3rd ed., McGraw-Hill, NY, 2002.
[79]B. F. Wu, L. S. Ma, J. W. Perng, H. I. Chin and T. T. Lee, “Stability Analysis of Equilibrium Points in Static Fuzzy Control System with Reference Inputs and Adjustable Parameters,” Proceedings of IEEE International Conference on Fuzzy Systems, Vancouver, BC, Canada, pp. 10255-10261, July 16-21, 2006.
[80]Y. G. Leu, “Observer-Based Adaptive Fuzzy-Neural Control for a Class of Nonlinear Systems,” Ph.D. thesis, Department of Electrical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan, 1999.
[81]B. S. Chen, C. H. Lee, and Y. C. Chang, “ Tacking Design of Uncertain Nonlinear SISO Systems: Adaptive Fuzzy Approach,” IEEE Transaction on Fuzzy Systems, vol.4, no.1, pp.32-43, 1996.
[82]L. X. Wang, “Design and Analysis of Fuzzy Identifiers of Nonlinear Dynamic Systems,” IEEE Transaction on Automatic Control, vol.40, no.1, pp.11-23, 1995.
[83]M. Jamshidi, N. Vadiee, and T. J. Ress, Fuzzy Logic and Control, Prentice-Hall, NJ, 1993.
[84]L. X. Wang, Adaptive Fuzzy Systems and Control: Design and Stability Analysis, Prentice-Hall, NJ, 1994.
[85]C. H. Wang, T. C. Lin, T. T. Lee, and H. L. Liu, “Adaptive Hybrid Intelligent Control for Uncertain Nonlinear Dynamical Systems,” IEEE Transaction on Systems, Man Cybernetics B, vol.32, pp.583–597, 2002.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊