|
[1] L. Zhao and C. Thorpe. “Stereo- and neural network-based pedestrian detection.” IEEE Trans. on ITS, 1(3), 2000. [2] Y.-T. Chen and C.-S. Chen. “Fast human detection using a novel boosted cascading structure with meta stages.” IEEE TIP, 17(8):1452–1464, 2008. [3] J. Wang et al. “An Adjacent Multiple Pedestrians Detection BASED on ART2 Neural Network.” ISNN 2006, LNCS 3972, pp. 244-252, 2006 [4] D. Duque, H. Santos, and P. Cortez. “Moving Object Detection Unaffected by Cast Shadows, Highlights and Ghosts.” IEEE International Conference image processing, 2005 [5] Li-Qun Xu, Jose Luis Landabaso, Montse Pardas, “Shadow Removal with Blob-based Morphological Reconstruction for Error Correction” IEEE ICASSP. vol. 4, No. 5, 2005. [6] Heikkila, J. and O. Silven, “A real-time system for monitoring of cyclists and pedestrians,” IEEE Workshop on Visual Surveillance, Fort Collins, CO, Jun.26, 1999, pp.74-81. [7] Cedras, C. and M. Shah, “Motion-based recognition: a survey,” Image and Vision Computing, vol.13, No.2, pp.129-155, March 1995. [8] A. Neri, S. Colonnese, G. Russo, and P. Talone, “Automatic moving object and background separation,” Signal Process. 66, 219-232(1998). [9] S. Chien, Y. Huang, and L. Chen, “Predictive watershed: a fast watershed algorithm for video segmentation,” IEEE Trans. Circuits Syst. Video Technol. 13(5), 453-461 (2003) [10] S. Chien, S. Ma, and L. Chen, “Efficient moving object segmentation algorithm using background registration technique,” IEEE Trans. Circuits Syst. Video Trchnol. 12(7), 577-586 (2002). [11] Collins, R. T., A. J. Lipton, and T. Kanade, “A System for Video Surveillance and Monitoring”, Technical Report, CMU-RI-TR-00-12, Robotics Institute, Carnegie Mellon University, May 2000. [12] Kim et al., “Real-time disparity estimation using foreground segmentation for stereo sequences.” Optical Engineering 45(3), 037402 (2006) [13] R.Cucchiara, C. Grana, M. Piccardi, A. Prati, and S.Sirotti, “Improving shadow suppression in moving object detection with HSV color information.” IEEE Int’l Conference on Intelligent Transportation Systems, Aug. 2001,pp.334-339. [14] P. Kumar, K. Sengupta, and S. Ranganath, ”Real time detection and recognition of human profiles using inexpensive desktop cameras.” in Proc. ICPR’00, pp. 1096-1099, IEEE Computer Soc., (2000). [15] A. Shashua, Y. Gdalyahu, and G. Hayun, “Pedestrian detection for driving assistance systems: Single-frame classification and system level performance.” in Proc. IEEE Intell. Vehicles Symp. Jun. 2004, pp. 1-6. [16] N. Dalal and B. Triggs. “Histograms of oriented gradients for human detection.” IEEE Comput. Soc. Conf. Comput. Vision and Pattern Recogn., 2005. [17] Q. Zhu, C. Yeh, T. Cheng, and S. Avidan, “Fast human detection using a cascade of histograms of oriented gradients,” IEEE Conf. Comput. Vis. Pattern Recog., Jun. 2006, pp. 1491-1498 [18] P. Viola and M. Jones, “Rapid object detection using a boosted cascade of simple features,” IEEE Proc. Int. Conf. Computer Vision and Pattern Recognition, 2001, vol. 1, pp. 511-518. [19] A. Khashman., “Intelligent Face Recognition: Local Versus Global Pattern Averaging.” Berlin Springer, 2006. [20] S. Munder, D.M. Gavrila: An experimental study on pedestrian classification. IEEE Trans. Pattern Anal. Mach. Intell. 28(11), 1863-1868 (2006) [21] http://groups.inf.ed.ac.uk/vision/CAVIAR/CAVIARDATA1/ [22] D.J. Hand, R.J. Till. “A simple generalization of the area under the ROC curve to multiple class classification problems.” Machine Learning, 45, 171-186. (2001).
|