(3.235.108.188) 您好!臺灣時間:2021/02/27 23:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳雄章
研究生(外文):Chen, Shawn
論文名稱:抓爬式靜電微致動器之模擬及低電壓區輸出特性的改善
論文名稱(外文):Modeling of Scratch Drive Actuator and Performance Enhancement in Low-Voltage Region
指導教授:徐文祥徐文祥引用關係
指導教授(外文):Hsu, Wen-Syang
學位類別:博士
校院名稱:國立交通大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:英文
論文頁數:75
中文關鍵詞:抓爬式微致動器微機電系統低電壓驅動抓爬式微致動器
外文關鍵詞:scratch drive actuatorSDAMEMSlow voltage scratch drive actuatorLVSDA
相關次數:
  • 被引用被引用:1
  • 點閱點閱:205
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:44
  • 收藏至我的研究室書目清單書目收藏:2
抓爬式靜電微致動器(SDA)有微牛頓等級輸出力、在數十奈米等級步進尺寸下可行進達數毫米。 迄今,此類致動器的幾何尺寸選擇主要依賴經驗,驅動電壓及輸出力亦需經由實驗測試後方有依據。為減少試誤法造成成本負擔,發展系統化的解析模型有其必要性。此外傳統矩形抓爬式微致動器的啟動電壓常超過80伏特,容易造成介電層崩潰之可靠度問題。因此開發新設計以降低操作電壓、能源消耗、並維持足夠輸出力及可靠度是另一研究重點。

本研究第一部份旨在建立抓爬式微致動器的較符合現實情況之解析模型,並以面型鎳基微加工技術製作。由於抓爬式微致動器的運動以單一方向為主,假設其沿寬度方向的變形及應力分佈一致;因此可依據Euler-Bernoulli樑的模型,配合適當的邊界條件以解出相關的積分常數,再依序推導如未接觸長度、貼底(priming)電壓、變形曲線、輸出力、彎矩及最大正向應力等特徵。上述輸出力可設為單自由度運動方程式的輸入。在長80微米、寬65微米的尺寸下,以80到120伏特為輸入範圍,其步進尺寸預測值在22到41奈米之間。以500Hz電壓測試結果發現,1500次輸入脈波所得總行程位移介於5.9到13.9微米;每個抓爬式微致動器輸出力介於12.4 到30.2微牛頓,其測試結果與預測值誤差小於10%,顯示本文提出之解析模型具有可預測輸出力的較佳實用性。

本研究第二部份提出一種新式可在較低電壓驅動的抓爬式微致動器設計,主要是將撓性接頭加入傳統矩形板的中間適當處。在同樣總長80微米和寬65微米的尺寸下,製作並測試具有不同撓性接頭尺寸及位置的設計,其結果發現啟動電壓最小可降低到約40伏,遠低於傳統同尺寸抓爬式微致動器所需要的80伏特。當輸入電壓在40到120伏之間時,其步進尺寸預測值在9到67奈米之間,而實測輸出力在4.9到19.6微牛頓之間。證實所提出的新設計可在傳統抓爬式微致動器無法操作的低電壓區有效操作。但有限元素法分析結果亦顯示,在高電壓區的最大輸出力,會受到撓性接頭最大應力達到降伏應力的限制。在此提出的融合撓性接頭的設計,將可提供抓爬式微致動器更大的設計空間,以滿足不同輸出特性的要求。
An improved model is proposed to reduce the cost due to trial and error in selection of Scratch Drive Actuator (SDA) geometry, driving voltage and output force level. Besides, a novel SDA design to reduce driving voltage from at least 80 volts to 40 volts to get better reliability with comparable output is also proposed. It is assumed that the deformation and property of SDA is same along the width direction, as the main plate may be treated by a beam model. Governing equation based on Euler-Bernoulli beam is first constructed. Solving this equation with proper boundary conditions, key SDA characteristics can be determined analytically, such as non-contact length, priming voltage, deflection curve, output force, bending moment and stress. The output force just stated is the input of SDA dynamic model of single degree-of-freedom including friction. To verify proposed model, electroplated nickel SDA arrays of 80 micron in length and 65 micron in width with suspended spring are fabricated and tested. The average travel distance after 1500 input pulses from 80 to 120 volts are measured to be from 5.9 to 13.9 micron, while average measured output forces are from 12.4 to 30.2 micro-N per SDA. Deviations between simulated and measured results are less than 10%, showing the superior ability of the proposed integrated SDA model for better performance prediction.
A low-voltage scratch drive actuator (LVSDA) is also proposed here by incorporating flexible joint into the conventional rectangular SDA to improve performance in low-voltage region. Experimental results show that, at the same total plate length of 80 micron and width of 65 micron, the proposed LVSDA can be actuated as low as 40 volts, much lower than 80 volts, the minimum required input voltage of conventional SDA. From nonlinear finite element analysis conducted by CosmosWorks, yielding effect is found to be a critical factor. Before yielding, LVSDA can provide better performance than SDA at the same input voltage. However, the yielding stress in flexible joint would limit the achievable maximum output force in high-voltage region. By varying joint length, width, or location, LVSDA has been operated in low-voltage region where the conventional SDA can not be operated, and can still provide comparable performance as SDA in high-voltage region. The proposed LVSDA design can provide more flexibility in design selection to meet different performance requirements.

Chapter 1ntroduction 1
1.1 Motivation 1
1.2 Literature review 1
1.3 Goals 4
1.4 Approach in this study 5

Chapter 2 Modeling of Scratch Drive Actuator 11
2.1 Operation principle of SDA 11
2.2 Static analysis of SDA 11
2.3 Dynamic analysis of SDA 18

Chapter 3 Performance Enhancement of Scratch Drive Actuator with Modified Flexible Joint 24
3.1 Concept design of low volatge Scratch Drive Actuator (LVSDA) 24
3.2 Qualitative analysis 25
3.3 Finite element analysis 26

Chapter 4 Fabrications and Results 34
4.1 Fabrication process 34
4.2 Analytical and testing results of SDA 39
4.3 FEA and testing results of LVSDA 55

Chapter 5 Conclusions 63
5.1 Summary 63
5.2 Future work 64

References 69
Publication List 74
Chinese Vita 75

[1] T. Akiyama, D. Collard, and H. Fujita, “Scratch Drive Actuator with Mechanical Links for Self-Assembly of Three-Dimensional MEMS,” J. Microelectromech. Syst., vol. 6, no. 1, pp. 10-17, 1997.
[2] T. Akiyama, and K. Shono, “Controlled Stepwise Motion in Polysilicon Microstructures,” J. Microelectromech. Syst., vol. 2, no. 3, pp. 106-110, 1993.
[3] J. Zhu, T. Akiyama, and K. Shono, “A Micro Step Motion of Polysilicon Structures on Silicon Substrate,” IEEE Japan Int’l Electronics Manufacturing Technology Symposium, Kanazawa, Japan, pp. 85-88, 1993.
[4] Y. Fukuta, D. Collard, T. Akiyama, E. H. Yang, and H. Fujita, ”Microactuated Self-assembling of 3D Polysilicon Structures with Reshaping Technology,” TRANSDUCERS’ 97, Chicago, IL, vol. 1, pp. 665-668, 1997.
[5] L. Fan, M. C. Wu, K. Choquette and, M. H. Crawford, “Self-Assembled Micro-XYZ Stages for Optical Scanning and Alignment,” TRANSDUCERS’97, Chicago, IL, vol. 1, pp. 319-322, 1997.
[6] C. K. Lee, Y. J. Lai, C. Y. Wu, J. A. Yeh and R. S. Huang, “Feasibility study of self-assembly mechanism for variable optical attenuator,” J. Micromechanics and Microengineering, vol.15, no.1, pp. 55-62, 2005.
[7] E. Quévy, L. Buchaillot, and D. Collard, “3-D Self-Assembling and Actuation of Electrostatic Microstructures,” IEEE Transactions on Electron Devices, vol. 48, no. 8, pp. 1833-1839, 2001.
[8] R. J. Linderman, and V. M. Bright, “Nanometer Precision Positioning Robots Utilizing Optimized Scratch Drive Actuators,” Sensors and Actuators: A 90, no. 3, pp. 292-300, 2001.
[9] Y. Kanamori, Y. Aoki, M. Sasaki, H. Hosoya, A. Wada, and K. Hane, “Fiber-optical switch using cam-micromotor driven by scratch drive actuators,” J. Micromech. Microeng., vol. 15, pp. 118–123, 2005.
[10] R. J. Linderman, P. E. Kladitis, and V. M. Bright, “Development of micro rotary fan,” Sensors and Actuators: A 95, no. 2, pp.135–142, 2002.
[11] P. E. Kladitis, R. J. Linderman, and V. M. Bright,” Self-assembled Micro Axial Fan Driven by a Scratch Drive Actuator Rotary Motor,” IEEE MEMS, Interlaken, Switzerland, pp. 598-601, 2001.
[12] B. R. Donald, C. G. Levey, C. D. McGray, D. Rus, and M. Sinclair, “Power Delivery and Locomotion of Untethered Microactuators,” J. Microelectromech. Syst., vol. 12, no. 6, pp. 947-959, 2003.
[13] B. R. Donald, C. G. Levey, and I. Paprotny,” Planar microassembly by parallel actuation of MEMS microrobots,” Journal of Microelectromechanical Systems, vol. 17, no. 4, pp. 789-808, 2008.
[14] B.R. Donald, C. G. Levey, C.D. McGray, D. Rus, and M. Sinclair, “Power Delivery and Locomotion of Untethered Microactuators,” IEEE MEMS,Kyoto, Japan, pp. 124-129, 2003.
[15] E. Dumsong, N. Afzulpurkar, and A. Tuantranont, “Design, Analytical Modeling, and Simulation of Wire-free Walking Scratch-Drive Microrobt,” IEEE Transactions on Industrial Electronics, vol. 56, no. 4, pp. 1109-1119, 2009.
[16] O. Millet, P. Bernardoni, S. Regnier, P. Bidaud, E. Tsitsiris, D. Collard, and L. Buchaillot, “Electrostatic actuated micro-gripper using an amplification mechanism,” Sensors and Actuators, A 114, no. 3, pp. 371-378, 2004.
[17] Y. Kanamori, H. Yahagi, and K. Hane, “A microtranslation table with scratch drive actuators fabricated from silicon-on-insulator wafer,“ Sensors and Actuators, A 125, no. 2, pp. 451-457, 2006.
[18] Y. Mita, T. Oba, G. Hashiguchi, M. Mita, P. Minotti and H. Fujita, “An Inverted Scratch-Drive-Actuators Array for Large Area Actuation of External Objects,” Transducers’99, Sendai, Japan, pp. 1196-1197, 1999.
[19] C. P. Langlet, T. Akiyama, and H. Fujita, “Quantitative analysis of scratch drive actuation for integrated X/Y motion system,” Proceedings of the International Conference on Solid-State Sensors and Actuators’ , Tokyo, Japan, vol. 2 , pp. 773-776, 1997.
[20] H. Kazuaki, A. Torii, and A. Ueda, “An Analysis of the Elastic Deformation of an Electrostatic Microactuator,” Transaction of IEE Japan, 118-E, no. 3, pp. 205-211, 1998.
[21] J. W. Zu, Q. Qu, and G. Cheng, “Analytical Modeling and Quantitative Analysis of Scratch Drive Actuator,” Int’l Conference of MEMS, NANO and Smart Systems, Alberta, Canada, pp. 629-635, 2004.
[22] L. Li, J. G. Brown, and D. Uttamchandani, “Comparison of theoretical and experimental determination of the flexing of scratch drive plates,” Proceedings of the SPIE, vol. 4928, Shanghai, pp. 180–189, 2002.
[23] L. Li, J. G. Brown, and D. Uttamchandani, ”Study of scratch drive actuator force characteristics,” J. Micromech. Microeng., vol. 12, no. 6, pp. 736–741, 2002.
[24] Q. Qu, J. W. Zu, and G. Cheng, “Adhesion-related failure models for scratch drive actuators,” J. Micromech. Microeng., vol. 14, no. 10, pp. 1405–1410, 2004.
[25] S. Timoshenko, and J. N. Goodier, Theory of Elasticity, (PA, MAPLE PRESS), 1951.
[26] A. Fidlin, Nonlinear Oscillations in Mechanical Engineering, (Berlin: Springer-Verlag), 2006.
[27] A. Fidlin and J. J. Thomsen, “Predicting vibration-induced displacement for a resonant friction slider,” European Journal of Mechanics of Solids, vol. 20, no. 1, pp. 155–166, 2001.
[28] J. J. Thomsen, “Some General Effects of Strong High-Frequency Excitation: Stiffening, Biasing and Smoothening,” Journal of Sound and Vibration, vol. 253, no. 4, pp. 807-831, 2002.
[29] N. Hinrichs, M. Oestreich, and K. Popp, “On the modelling of friction oscillators,” Journal of Sound and Vibration(AP), vol. 216, no. 3, pp. 435-459, 1998.
[30] J. J. Thomsen, and A. Fidlin, “Analytical approximation for stick-slip vibration amplitudes,” International Journal of Non-Linear Mechanics, vol. 38, no. 3, pp. 389-403, 2003.
[31] M. F. Spotts, Design of Machine Elements (New Jersey: Prentice-Hall), 1985.
[32] W. N. Jr, Sharpe, D. Lavan, and R. Edwards,” Mechanical properties of LIGA deposited nickel for MEMS,” TRANSDUCERS’97, Chicago, IL, pp. 607-611, 1997.
[33] E. Mazza, S. Abel, and J. Dual,”Experimental determination of mechanical properties of Ni and Ni-Fe microbars,” Microsyst. Technol., vol. 2, no. 4, pp. 197–202, 1996.
[34] L. S. Stephens, K. W. Kelly, S. Simhadri, A. B. McCandless, and E. I. Meletis,” Mechanical property evaluation and failure analysis of cantilevered LIGA nickel microposts,” J. Microelectromech. Syst., vol. 10, no. 3, pp. 347-359, 2001.
[35] H. S. Cho, K. J. Hemker, K. Lian, J. Goettert, and G. Dirras, “Measured mechanical properties of LIGA Ni structures,” Sensors and Actuators: A 103, no. 1-2, pp. 59-63, 2003.
[36] Q. Qu, J. W. Zu, and G. Cheng, “Adhesion-related failure models for scratch drive actuators,” J. Micromech. Microeng., vol. 14, no. 10, pp. 1405–1410, 2004.
[37] Y. Nemirovsky, and O. Bochobza-Degani, “A methodology and model for the pull-in parameters of electrostatic actuators,” Journal of Microelectromechanical Systems, vol. 10, no. 4, pp. 601-615, 2001.
[38] C. G. Agudelo, M. Packirisamy, G. Zhu, and L. Saydy, “Nonlinear Control of an Electrostatic Micromirror Beyond Pull-In with Experimental Validation,” Journal of Microelectromechanical Systems, vol. 18, no. 4, pp. 914-923, 2009.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 吳宗瓊、潘治民(2003)觀光慶典活動遊客花費與整體經濟效果之評估研究---以宜蘭國際童玩節為例,戶外遊憩研究期刊,17卷第1期,2004年4月。
2. 王琦瑜、張少熙、張良漢(2007)。臺北市國中生課業壓力與休閒需求之相關研究。運動與遊憩研究,2(1),1-18。
3. 黃孫權、成露茜 (2007) 文化產業、文化治理與地方認同—以台灣新興嘉年華為例。城市與設計學報第十八期。
4. 余嬪(2000)。休閒教育的實施與發展。大葉學報,9(2),1-13。
5. 高俊雄(1999)。休閒教育之理念、規劃與實現。學生輔導通訊,60,8-19。
6. 高俊雄、張孝銘(2001)。休閒需求與休閒阻礙之相關研究—以彰化市居民為實證。體育學報,30,143-151。
7. 許建民、高俊雄(2006)。青少年休閒參與動機模式之研究。大專體育學刊,8(3),51-63。
8. 陳弘順(2007)。大學生休閒活動與休閒教育推展之探討。休閒運動期刊,6,63-68。
9. 黃德祥(1996)。青少年休閒輔導-策略與措施。測驗與輔導,137,2837-2840。
10. 黃文三(1997)。青少年後期性別角色發展及其相關因素之比較研究-以高雄師大82-84 學年度大一新生為例。高雄師大學報,8,45-74。
11. 黃文三(1998)。近三十年來我國青少年性別角色研究的回顧與分析。高雄師大教育學刊,14,231-274。
12. 蘇美玲、林晏州(1999)。都市公園使用者休閒態度之研究-以臺北大安森林公園為例。戶外遊憩研究,12(1),61-86。
 
系統版面圖檔 系統版面圖檔