(3.239.192.241) 您好!臺灣時間:2021/03/02 13:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳立群
研究生(外文):Chen, Li-Chun
論文名稱:染料敏化太陽能電池之可撓性電極研究
論文名稱(外文):Study on the flexible electrode of dye-sensitized solar cells
指導教授:徐瑞坤
指導教授(外文):Hsu, Ray-Quan
學位類別:碩士
校院名稱:國立交通大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:86
中文關鍵詞:染料敏化太陽能電池TiO2奈米纖維可撓性電氣紡絲
外文關鍵詞:DSSCTiO2ElectrospinningFlexibleNanofiber
相關次數:
  • 被引用被引用:2
  • 點閱點閱:320
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:11
  • 收藏至我的研究室書目清單書目收藏:0
染料敏化太陽能電池之可撓性電極研究
研究生:陳立群 指導教授:徐瑞坤
國立交通大學機械工程學系碩士班
摘要
隨生活水準的普遍提升,人類對於能源的需求相對日益龐大,而
大部分的能源來源仰賴石化能源(Fossil Energy),使得石化能源的蘊
藏量正快速減少,如何分散對石油的依賴,尋找替代能源是十分迫切
的課題。太陽能由於取之不盡,用之不絕,近年來,各先進國家紛紛
投入大量經費與人力,期待研發出便宜又有效率的太陽能電池,進而
減輕目前電力對石化能源的依賴。
染料敏化太陽能電池(Dye-sensitized solar cell, DSSC),是較被
看好的太陽能之一,主要是製程簡易、材料成本低廉。而可撓式染料
敏化太陽能電池具有方便攜帶之特性,可應用在3C 產品、建材方面
等優勢,因此有眾多的資源投入研發。但可撓曲式太陽能電池,由於
使用Sol-Gel 方式做為電極之塗佈,易導致半導體電極產生碎裂的現
象,因此現今之光電轉換效率偏低。本研究使用可撓性透光導電材料
為基板,以Sol-Gel 及電紡方式含有二氧化鈦的高分子溶液來製作半
導體電極,染料用N719 及紅蘿蔔等染料做為比較,對電極採用白金
或碳,將其封裝完畢,以模擬太陽光(AM 1.5)進行I-V 電性分析比較。
研究中使用的材料毒性較低,不會造成環境污染。由研究結果顯
示,電紡方式(PVAc 為高分子溶液)製備的半導體電極,較Sol-Gel
為佳,且在彎折過後光電特性並無下降的趨勢。
Study on the flexible electrode of dye-sensitized solar cells
Student: Li-Chun Chen Advisor: Ray-Quen Hsu
Department of Mechanical Engineering
National Chiao Tung University
ABSTRACT
Along with the improvement of living standard, the demand for
energy is growing rapidly. Most of the energy rely on fossil fuels, but the
fossil energy reserves are dwindling fast, how to reduce the dependence
on the fossil fuels and find a replacement energy is becoming an urgent
topic. In this sense, solar energy which has enormous power and
unlimited resource is considered one of the best replacement, this is the
reason why so many researchers spend a great deal of budget for the
purpose of developing a low cost, high efficiency solar cell.
Dye sensitized solar cells( DSSC), is one of the promising
application of solar energy, mainly because of its simple manufacturing
process, and lower cost. Flexible DSSC with the characteristics of
portability, can be used in 3C products and building materials attract
many scientists’ interests. In this study, conductive materials with flexible
translucent substrate prepared by Sol-Gel method and electrospinning
were adopted. Polymer solution containing titanium dioxide was used to
produce semiconductor electrodes, and carrots and N719 were used as
dyes. Counter electrodes were platinum or carbon. The completed
package, were exposed to solar simulator (AM 1.5) to measure their IV
values.
Materials used in the study were less toxic and do not cause
environmental pollution. The results showed that cells with
electrospinning electrode (PVAc for the polymer solution) performed
better than the cells with Sol-Gel electrode, optical and electrical
properties remained almost unchanged even after bending for several
times.
目錄
摘要 ii
ABSTRACT iii
誌謝 iv
目錄 v
表目錄 x
圖目錄 xi
第一章 序論 1
1-1研究背景 1
1-2研究動機 3
1-3研究目的 4
第二章 染料敏化太陽能電池簡介 5
2-1光電效應 5
2-2光伏效應 6
2-3太陽能電池簡介 6
2-3-1太陽光電發電科技之重要歷史 7
2-3-2矽晶太陽能電池簡介 8
2-4染料敏化太陽能電池 10
2-4-1染料敏化太陽能電池發展過程 11
2-4-2染料敏化太陽能電池的構造與工作原理 12
2-4-3基板 14
2-4-4半導體電極 15
2-4-5染料 18
2-4-6電解液 21
2-4-7對電極 22
2-5電紡絲(Electrospinning) 22
2-5-1電氣紡絲原理 24
2-5-2電紡絲應用於染料敏化太陽能電池 26
2-6高分子材料 27
2-6-1聚醋酸乙烯酯(Polyvinyl acetate,PVAc) 27
2-6-2聚乙二醇 (Polyethylene oxide, PEO) 27
2-7光電轉化效率的測定 29
2-7-1空氣質量 31
第三章 實驗流程與規劃 38
3-1實驗流程 38
3-2實驗參數 38
3-3主要實驗儀器及設備 39
3-3-1電磁加熱攪拌器 39
3-3-2電紡絲設備 39
3-2-3電紡絲實驗環境的架設 40
3-4實驗材料 41
3-4-1 ITO玻璃 41
3-4-2高分子溶液 42
3-4-3染料 42
3-4-4電解液 43
3-4-5對電極 43
3-5實驗方法 43
3-5-1 Sol-gel法製備DSSC 43
3-5-2電紡絲法參數 44
3-6染料敏化太陽能電池光電特性量測 44
3-6-1儀器設備 44
3-6-2光學顯微鏡觀察絲纖維表面型態 44
3-6-3電子顯微鏡觀察表面顯微結構 45
3-6-4 X光繞射儀(XRD) 45
3-6-5太陽光模擬器(solar simulators) 46
第四章 實驗結果與討論 56
4-1染料比較 56
4-2半導體電極 56
4-2-1不同半導體電極製程於ITO玻璃之光電特性分析 57
4-2-2不同半導體電極製程於ITO PET之光電特性分析 57
4-2-3同製程不同基板之比較 58
4-2-4可撓性PET彎折測試 58
4-3以SEM觀察表面顯微結構 59
4-3-1表面化學成分分析及掃描偵測化學成分分佈 60
第五章 結論與未來展望 81
5-1結論 81
5-2未來展望 82
參考文獻 84


[1] 蔡進譯,「超高效率太陽電池-從愛因斯坦的光電效應談起」,物
理雙月刊,第七卷,701~719 頁,2005。
[2] M. Gratzel, "Photo-electrochemical cell," U.S. Patent 4927721, 22
May 1990, 1990.
[3] J. Desilvestro, M. Gratzel, L. Kavan, J. Moser, J. Augustynski,
"Highly efficient sensitization of titanium dioxide," Journal of the
American Chemical Society, vol. 107, pp. 2988-2990, 1985.
[4] B. O'Regan and M. Gratzel, "A low-cost, high-efficiency solar cell
based on dye-sensitized colloidal TiO2 films," Nature, vol. 353, pp.
737-740, 1991.
[5] H. Lindstrom, A. Holmberg, E. Magnusson, S. E. Lindquist, L.
Malmqvist, A. Hagfeldt, "A New Method for Manufacturing
Nanostructured Electrodes on Plastic Substrates," Nano Letters, vol.
1, pp. 97-100, 2001.
[6] C. J. Barbé, F. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V.
Shklover, M. Grätzel, "Nanocrystalline Titanium Oxide Electrodes
for Photovoltaic Applications," Journal of the American Ceramic
Society, vol. 80, pp. 3157-3171, 1997.
[7] 張正華,李陵嵐,葉楚帄,楊帄華,有機與塑膠太陽能電池,
五南圖書出版股份有限公司,2007。
[8] B. Jing, M. Zhang, T. Shen, "Advances in dye-sensitized solar
cell," Chinese Science Bulletin, vol. 42, pp. 1937-1948, 1997.
[9] J. Y. Kim, T. H. Kim, D. Y. Kim, N. G. Park, K. D. Ahn, "Novel
thixotropic gel electrolytes based on dicationic bis-imidazolium
salts for quasi-solid-state dye-sensitized solar cells," Journal of
Power Sources, vol. 175, pp. 692-697, 2008.
[10] J. H. Yum, P. Chen, M. Grätzel, M. K. Nazeeruddin, "Recent
Developments in Solid-State Dye-Sensitized Solar Cells,"
Chemsuschem, vol. 1, pp. 699-707, 2008.
[11] M. K. Nazeeruddin, A. Kay, I. Rodicio, R. H. Baker, E. Mueller, P.
Liska, N. Vlachopoulos, M. Grätzel, "Conversion of light to
electricity by
cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II)
85
charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on
nanocrystalline titanium dioxide electrodes," Journal of the
American Chemical Society, vol. 115, pp. 6382-6390, 1993.
[12] H. L. Simons, "Process and apparatus for producing patterned
Non-Woven fabrics," U.S Patent, Oct 1966, 1966.
[13] P. K. Baumgarten, "Electrostatic spinning of acrylic microfibers,"
Journal of Colloid and Interface Science, vol. 36, pp. 71-79, 1971.
[14] L. Larrondo and R. S. J. Manley, "Electrostatic fiber spinning from
polymer melts. II. Examination of the flow field in an electrically
driven jet," Journal of Polymer Science: Polymer Physics Edition,
vol. 19, pp. 921-932, 1981.
[15] H. R. Darrell and C. Iksoo, "Nanometre diameter fibres of polymer,
produced by electrospinning," Nanotechnology, vol. 7, p. 216,
1996.
[16] H. Fong, I. Chun, D. H. Reneker, "Beaded nanofibers formed
during electrospinning," Polymer, vol. 40, pp. 4585-4592, 1999.
[17] J. Doshi and D. H. Reneker, "Electrospinning process and
applications of electrospun fibers," Journal of Electrostatics, vol.
35, pp. 151-160, 1995.
[18] J. Zeng, X. Xu, X. Chen, Q. Liang, X. Bian, L. Yang, X. Jing,
"Biodegradable electrospun fibers for drug delivery," Journal of
Controlled Release, vol. 92, pp. 227-231, 2003.
[19] M. G. S. S.A. Angadjivand, P.D. Eitzman and M.E. Jones.,
"Method and apparatus for making a nonwoven fibrous web from
free-fiber and polar liquud," U.S. Patent 6375886, 23 Apr 2002,
2002.
[20] P. P. Tsai, H. S. Gibson, P. Gibson, "Different electrostatic methods
for making electret filters," Journal of Electrostatics, vol. 54, pp.
333-341, 2002.
[21] S. Mi Yeon, "Electrospun TiO2 electrodes for dye-sensitized solar
cells," Nanotechnology, vol. 15, p. 1861, 2004.
[22] M. Y. Song, Y. R. Ahn, S. M. Jo, D. Y. Kim, J. P. Ahn, "TiO2
single-crystalline nanorod electrode for quasi-solid-state
dye-sensitized solar cells," Applied Physics Letters, vol. 87, Sep
2005.
86
[23] M. Y. Song, D. K. Kim, K. J. Ihn, S. M. Jo, D. Y. Kim,
"Electrospun TiO2 electrodes for dye-sensitized solar cells,"
Nanotechnology, vol. 15, pp. 1861-1865, Dec 2004.
[24] M. Y. Song, D. K. Kim, K. J. Ihn, S. M. Jo, D. Y. Kim, "New
application of electrospun TiO2 solid-state dye-sensitized solar
electrode to cells," 2005, pp. 77-80.
[25] M. Y. Song, D. K. Kim, S. M. Jo, D. Y. Kim, "Enhancement of the
photocurrent generation in dye-sensitized solar cell based on
electrospun TiO2 electrode by surface treatment," 2005, pp.
635-638.
[26] Y. Hong, D. Li, J. Zheng, G. Zou, "In Situ Growth of ZnO
Nanocrystals from Solid Electrospun Nanofiber Matrixes,"
Langmuir, vol. 22, pp. 7331-7334, 2006.
[27] G. Boyle, Renewable Energy, Oxford University Press, 2004.
[28] 黃宣諭,「以電氣紡絲法製備具方向性纖維之管狀結構」,國立
交通大學,碩士論文,2009。
[29] S. Ito, M. K. Nazeeruddin, P. Liska, P. Comte, R. Charvet, P.
Péchy, M. Jirousek, A. Kay, S. M. Zakeeruddin, M. Grätzel,
"Photovoltaic characterization of dye-sensitized solar cells: effect
of device masking on conversion efficiency," Progress in
Photovoltaics: Research and Applications, vol. 14, pp. 589-601,
2006.
[30] 蔡昇佑,「染料敏化奈米太陽能電池研製與效率量測」,台北科
技大學,碩士論文,2007。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔