|
1.Fairley, K.; Carson, N.; Gutch, R.; Leighton, P.; Grounds, A.; Laird, E.; McCallum, P.; Sleeman, R.; O'Keefe, C., Site of infection in acute urinary-tract infection in general practice*. The Lancet 1971, 298, (7725), 615-618.
2.Johnson, J. R., Virulence factors in Escherichia-coli urinary-tract infection. Clin. Microbiol. Rev. 1991, 4, (1), 80-128.
3.Ronald, A., The etiology of urinary tract infection: Traditional and emerging pathogens. Dm Disease-a-Month 2003, 49, (2), 71-82.
4.Parsons, C. L., The role of the urinary epithelium in the pathogenesis of interstitial cystitis/prostatitis/urethritis. Urology 2007, 69, 9-16.
5.Foxman, B., Recurring urinary tract infection: incidence and risk factors. Am. J. Public Health 1990, 80, (3), 331.
6.Snellings, N. J.; Tall, B. D.; Venkatesan, M. M., Characterization of Shigella type 1 fimbriae: Expression, FimA sequence, and phase variation. Infect. Immun. 1997, 65, (6), 2462-2467.
7.Klemm, P., 2 Regulatory fim genes, fimB and fimE, control the phase variation of type-1 fimbriae in Escherichia-coli. Embo Journal 1986, 5, (6), 1389-1393.
8.Dozois, C. M.; Pourbakhsh, S. A.; Fairbrother, J. M., Expression of P-fimbriae and Type-1 (f1) fimbriae in pathogenic Escherichia coli from poultry. Vet. Microbiol. 1995, 45, (4), 297-309.
9.Gally, D. L.; Bogan, J. A.; Eisenstein, B. I.; Blomfield, I. C., Environmental-regulation of the fim switch controlling type-1 fimbrial phase variation in Escherichia-coli K12 - effects of temperature and media. J. Bacteriol. 1993, 175, (19), 6186-6193.
10.Gander, R. M.; Thomas, V. L., Distribution of type-1 and P-pili on uropathogenic Escherichia-coli O6. Infect. Immun. 1987, 55, (2), 293-297.
11.Sharon, N.; Ofek, I., Safe as mother's milk: Carbohydrates as future anti-adhesion drugs for bacterial diseases. Glycoconjugate J. 2000, 17, (7-9), 659-664.
12.Sharon, N., Carbohydrates as future anti-adhesion drugs for infectious diseases. Biochimica Et Biophysica Acta-General Subjects 2006, 1760, (4), 527-537.
13.Saleemuddin, M.; Husain, Q., Concanavalin A - a useful ligand for glycoenzyme immobilization - a review. Enzyme Microb. Technol. 1991, 13, (4), 290-295.
14.Neth, O.; Jack, D. L.; Dodds, A. W.; Holzel, H.; Klein, N. J.; Turner, M. W., Mannose-binding lectin binds to a range of clinically relevant microorganisms and promotes complement deposition. Infect. Immun. 2000, 68, (2), 688-693.
15.Zand, R.; Agrawal, B.; Goldstein, I., pH-dependent conformational changes of concanavalin A. Proc. Natl. Acad. Sci. U. S. A. 1971, 68, (9), 2173.
16.Cacioppo, E.; Pusey, M. L., The effects of acid treatment and calcium-ions on the solubility of concanavalin-A. J. Cryst. Growth 1992, 122, (1-4), 208-212.
17.Bouckaert, J.; Loris, R.; Poortmans, F.; Wyns, L., Crystallographic structure of metal-free concanavalin A at 2.5 angstrom resolution. Proteins-Structure Function and Bioinformatics 1995, 23, (4), 510-524.
18.Wang, J.; Cunningham, B.; Edelman, G., Unusual fragments in the subunit structure of concanavalin A. Proceedings of the National Academy of Sciences 1971, 68, (6), 1130.
19.Ben-Bassat, H.; Goldblum, N., Concanavalin A Receptors on the Surface Membrane of Lymphocytes from Patients with Hodgkin's Disease and other Malignant Lymphomas. Proc. Natl. Acad. Sci. U. S. A. 1975, 72, (3), 1046-1049.
20.Lei, H. Y.; Chang, C. P., Lectin of Concanavalin A as an anti-hepatoma therapeutic agent. J. Biomed. Sci. 2009, 16.
21.Doyle, R.; Birdsell, D., Interaction of concanavalin A with the cell wall of Bacillus subtilis. J. Bacteriol. 1972, 109, (2), 652.
22.Chen, G. Y.; Chen, C. Y.; Chang, M. D. T.; Matsuura, Y.; Hu, Y. C., Concanavalin A Affinity Chromatography for Efficient Baculovirus Purification. Biotechnol. Progr. 2009, 25, (6), 1669-1677.
23.Woller, E.; Cloninger, M., Mannose functionalization of a sixth generation dendrimer. Biomacromolecules 2001, 2, (3), 1052-1054,Dam, T. K.; Roy, R.; Das, S. K.; Oscarson, S.; Brewer, C. F., Binding of multivalent carbohydrates to concanavalin A and Dioclea grandiflora lectin - Thermodynamic analysis of the "multivalency effect". J. Biol. Chem. 2000, 275, (19), 14223-14230.
24.Dam, T.; Roy, R.; Das, S.; Oscarson, S.; Brewer, C., Binding of Multivalent Carbohydrates to Concanavalin A andDioclea grandiflora Lectin. J. Biol. Chem. 2000, 275, (19), 14223.
25.Mammen, M.; Choi, S.; Whitesides, G., Polyvalent interactions in biological systems: implications for design and use of multivalent ligands and inhibitors. Angew. Chem. Int. Ed. 1998, 37, (20), 2754-2794.
26.Gestwicki, J.; Cairo, C.; Strong, L.; Oetjen, K.; Kiessling, L., Influencing receptor- ligand binding mechanisms with multivalent ligand architecture. J. Am. Chem. Soc 2002, 124, (50), 14922-14933.
27.Steinberg, S. M.; Poziomek, E. J.; Engelmann, W. H.; Rogers, K. R., A review of environmental applications of bioluminescence measurements. Chemosphere 1995, 30, (11), 2155-2197.
28.Virta, M.; Lineri, S.; Kankaapaa, P.; Karp, M.; Peltonen, K.; Nuutila, J.; Lilius, E. M., Determination of complement-mediated killing of bacteria by viability staining and bioluminescence. Appl. Environ. Microbiol. 1998, 64, (2), 515-519.
29.Li, R. C.; Nix, D. E.; Schentag, J. J., New turbidimetric assay for quantitation of viable bacterial densities. Antimicrob. Agents Chemother. 1993, 37, (2), 371-374.
30.Thimm, T.; Tebbe, C. C., Protocol for rapid fluorescence in situ hybridization of bacteria in cryosections of microarthropods. Appl. Environ. Microbiol. 2003, 69, (5), 2875-2878.
31.Diaz, M.; Herrero, M.; Garcia, L. A.; Quiros, C., Application of flow cytometry to industrial microbial bioprocesses. Biochem. Eng. J. 2010, 48, (3), 385-407.
32.Lanciotti, R. S.; Kerst, A. J., Nucleic acid sequence-based amplification assays for rapid detection of West Nile and St. Louis encephalitis viruses. J. Clin. Microbiol. 2001, 39, (12), 4506-4513.
33.Wang, A. M.; Doyle, M. V.; Mark, D. F., Quantitation of messenger-RNA by the polymerase chain-reaction. Proc. Natl. Acad. Sci. U. S. A. 1989, 86, (24), 9717-9721.
34.Rennard, S. I.; Berg, R.; Martin, G. R.; Foidart, J. M.; Robey, P. G., Enzyme-linked immunoassay (ELISA) for connective-tissue components. Anal. Biochem. 1980, 104, (1), 205-214.
35.Textor, M.; Ruiz, L.; Hofer, R.; Rossi, A.; Feldman, K.; Hahner, G.; Spencer, N. D., Structural chemistry of self-assembled monolayers of octadecylphosphoric acid on tantalum oxide surfaces. Langmuir 2000, 16, (7), 3257-3271.
36.Hofer, R.; Textor, M.; Spencer, N. D., Alkyl phosphate monolayers, self-assembled from aqueous solution onto metal oxide surfaces. Langmuir 2001, 17, (13), 4014-4020.
37.Lippens, B.; De Boer, J., Study of phase transformations during calcination of aluminum hydroxides by selected area electron diffraction. Acta Crystallogr. 1964, 17, (10), 1312-1321.
38.Martin, R., The chemistry of aluminum as related to biology and medicine. Clin. Chem. 1986, 32, (10), 1797.
39.Colettipreviero, M. A.; Previero, A., Alumina phosphate complexes for immobilization of biomolecules. Anal. Biochem. 1989, 180, (1), 1-10.
40.Muljadi, D.; Posner, A. M.; Quirk, J. P., The mechanism of phosphate adsorption by kaolinite, gibbsite, and pseudoboehmite. European Journal of Soil Science 1966, 17, (2), 238-247.
41.Rajan, S., Adsorption of selenite, phosphate and sulphate on hydrous alumina. European Journal of Soil Science 1979, 30, (4), 709-718.
42.Mutin, P.; Guerrero, G.; Vioux, A., Hybrid materials from organophosphorus coupling molecules. J. Mater. Chem. 2005, 15, (35-36), 3761-3768.
43.Huang, X.; Foster, G. D.; Honeychuck, R. V.; Schreifels, J. A., The Maximum of Phosphate Adsorption at pH 4.0: Why It Appears on Aluminum Oxides but Not on Iron Oxides. Langmuir 2009, 25, (8), 4450-4461.
44.Nemeth, Z.; Gancs, L.; Gemes, G.; Kolics, A., pH dependence of phosphate sorption on aluminum. Corros. Sci. 1998, 40, (12), 2023-2027.
45.Brunauer, S.; Emmett, P.; Teller, E., Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 1938, 60, (2), 309-319.
46.Jaroniec, M., Physical adsorption on heterogeneous solids. Adv. Colloid Interface Sci. 1983, 18, (3-4), 149-225.
47.Langmuir, I., The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 1918, 40, (9), 1361-1403.
48.Hill, T. L., Adsorption from a one-dimensional lattice gas and the Brunauer-Emmett-Teller equation. Proc. Natl. Acad. Sci. U. S. A. 1996, 93, (25), 14328-14332.
49.Shin, E. W.; Han, J. S.; Jang, M.; Min, S. H.; Park, J. K.; Rowell, R. M., Phosphate adsorption on aluminum-impregnated mesoporous silicates: Surface structure and behavior of adsorbents. Environmental Science & Technology 2004, 38, (3), 912-917.
50.Wolschin, F.; Weckwerth, W., Combining metal oxide affinity chromatography(MOAC) and selective mass spectrometry for robust identification of in vivo protein phosphorylation sites. Plant Methods 2005, 1, (1), 9.
51.Liu, J. C.; Tsai, P. J.; Lee, Y. C.; Chen, Y. C., Affinity capture of uropathogenic Escherichia coli using pigeon ovalbumin-bound Fe3O4@Al2O3 magnetic nanoparticles. Anal. Chem. 2008, 80, (14), 5425-5432.
52.Yang, C. C.; Lin, M. F.; Chang, C. C., Purification of anti-cobrotoxin antibody by affinity chromatography. Toxicon 1977, 15, (1), 51-62.
53.Hutchens, T. W.; Yip, T. T., New desorption strategies for the mass-spectrometric analysis of macromolecules. Rapid Commun. Mass Spectrom. 1993, 7, (7), 576-580.
54.Papac, D. I.; Hoyes, J.; Tomer, K. B., Direct analysis of affinity-bound analytes by MALDI/TOF MS. Anal. Chem. 1994, 66, (17), 2609-2613.
55.Brockman, A. H.; Orlando, R., Probe immobilized affinity-chromatography mass-spectrometry. Anal. Chem. 1995, 67, (24), 4581-4585.
56.Davies, H.; Lomas, L.; Austen, B., Profiling of amyloid beta peptide variants using SELDI Protein Chip arrays. Biotechniques 1999, 27, (6), 1258-1261.
57.Jeong, U.; Teng, X. W.; Wang, Y.; Yang, H.; Xia, Y. N., Superparamagnetic colloids: Controlled synthesis and niche applications. Adv. Mater. 2007, 19, (1), 33-60.
58.Tartaj, P.; Morales, M.; Gonzalez-Carreno, T.; Veintemillas-Verdaguer, S.; Serna, C., Advances in magnetic nanoparticles for biotechnology applications. J. Magn. Magn. Mater. 2005, 290, 28-34.
59.afa ik, I.; afa ikova, M., Magnetic nanoparticles and biosciences. Monatshefte fur Chemie/Chemical Monthly 2002, 133, (6), 737-759.
60.Oberteuffer, J. A., High gradient magnetic separation. IEEE Trans. Magn. 1973, Mag-9, (3), 303-306.
61.Kelland, D., High gradient magnetic separation applied to mineral beneficiation. IEEE Trans. Magn. 1973, 9, (3), 307-310.
62.Olsvik, O.; Popovic, T.; Skjerve, E.; Cudjoe, K. S.; Hornes, E.; Ugelstad, J.; Uhlen, M., Magnetic separation techniques in diagnostic microbiology. Clin. Microbiol. Rev. 1994, 7, (1), 43-54.
63.Lund, A.; Hellemann, A.; Vartdal, F., Rapid isolation of K88+ Escherichia coli by using immunomagnetic particles. J. Clin. Microbiol. 1988, 26, (12), 2572.
64.Sun, X.; Cui, W.; Haller, C.; Chaikof, E., Site-specific multivalent carbohydrate labeling of quantum dots and magnetic beads. ChemBioChem 2004, 5, (11), 1593-1596.
65.Tanaka, T.; Sakai, R.; Kobayashi, R.; Hatakeyama, K.; Matsunaga, T., Contributions of Phosphate to DNA Adsorption/Desorption Behaviors on Aminosilane-Modified Magnetic Nanoparticles. Langmuir 2009, 25, (5), 2956-2961.
66.Chang, S.; Zheng, N.; Chen, C.; Chen, C.; Chen, Y.; Wang, C., Analysis of peptides and proteins affinity-bound to iron oxide nanoparticles by MALDI MS. J. Am. Soc. Mass. Spectrom. 2007, 18, (5), 910-918.
67.Lee, J.; Yang, J.; Seo, S.; Ko, H.; Suh, J.; Huh, Y.; Haam, S., Smart nanoprobes for ultrasensitive detection of breast cancer via magnetic resonance imaging. Nanotechnology 2008, 19, 485101.
68.Zhang, R.; Wu, C.; Wang, X.; Sun, Q.; Chen, B.; Li, X.; Gutmann, S.; Lv, G., Enhancement effect of nano Fe3O4 to the drug accumulation of doxorubicin in cancer cells. Materials Science and Engineering: C 2009, 29, (5), 1697-1701.
69.Grant, I. R.; Ball, H. J.; Rowe, M. T., Isolation of Mycobacterium paratuberculosis from milk by immunomagnetic separation. Appl. Environ. Microbiol. 1998, 64, (9), 3153-3158.
70.Pyle, B. H.; Broadaway, S. C.; McFeters, G. A., Sensitive detection of Escherichia coli O157 : H7 in food and water by immunomagnetic separation and solid-phase laser cytometry. Appl. Environ. Microbiol. 1999, 65, (5), 1966-1972.
71.Gu, H. W.; Ho, P. L.; Tsang, K. W. T.; Wang, L.; Xu, B., Using biofunctional magnetic nanoparticles to capture vancomycin-resistant enterococci and other gram-positive bacteria at ultralow concentration. J. Am. Chem. Soc. 2003, 125, (51), 15702-15703.
72.Ho, K. C.; Tsai, P. J.; Lin, Y. S.; Chen, Y. C., Using biofunctionalized nanoparticles to probe pathogenic bacteria. Anal. Chem. 2004, 76, (24), 7162-7168.
73.Lin, Y. S.; Tsai, P. J.; Weng, M. F.; Chen, Y. C., Affinity capture using vancomycin-bound magnetic nanoparticles for the MALDI-MS analysis of bacteria. Anal. Chem. 2005, 77, (6), 1753-1760.
74.Karlsson, P.; Palmqvist, A.; Holmberg, K., Adsorption of sodium dodecyl sulfate and sodium dodecyl phosphate on aluminum, studied by QCM-D, XPS, and AAS. Langmuir 2008, 24, (23), 13414-13419.
75.Gargano, J.; Ngo, T.; Kim, J.; Acheson, D.; Lees, W., Multivalent inhibition of AB5 toxins. J. Am. Chem. Soc 2001, 123, (51), 12909-12910.
76.Sharon, N., Bacterial lectins, cell-cell recognition and infectious disease. FEBS Lett. 1987, 217, (2), 145-157.
|