(3.231.29.122) 您好!臺灣時間:2021/02/25 16:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:郭奕廷
研究生(外文):Kuo, I-Ting
論文名稱:磁性奈米碳管之製備以及與A549和HeLa細胞之交互作用
論文名稱(外文):Fabrication of Magnetic CNTs and Interaction with A549 and HeLa Cancer Cells
指導教授:裘性天
指導教授(外文):Chiu, Hsin-Tien
學位類別:碩士
校院名稱:國立交通大學
系所名稱:應用化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:英文
論文頁數:44
中文關鍵詞:奈米碳管癌細胞光熱細胞攝取
外文關鍵詞:Carbon nanotubecancer cellphotothermalcellualr uptake
相關次數:
  • 被引用被引用:0
  • 點閱點閱:145
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:25
  • 收藏至我的研究室書目清單書目收藏:0
奈米碳管能夠吸收近紅外光將其轉換成熱能以及具有良好的生物相容性和表面易修飾生物分子之特性,由於這些獨特的特性使得奈米碳管成為多功能性生物載體及熱殺死癌細胞的最佳選擇。若能將氧化鐵奈米粒子填入到奈米碳管中,就可以藉由磁性有效的分離出碳管。因此,在這裡我們利用化學氣相沉積法和化學共沉澱法合成出磁性奈米碳管做為生醫應用的材料。我們利用MTT分析法研究磁性奈米碳管對A549和HeLa細胞是否具有毒性。當磁性奈米碳管的濃度低於2 µg/µL時,其對A549細胞具有一個良好的生物相容性。此外,這個研究也證實了在試管內的磁性奈米碳管被波長808 nm的近紅外光連續照射會引起局部的加熱導致大量的細胞死亡。另外,我們也研究癌細胞攝取磁性奈米碳管的機制。癌細胞培養16小時之後,我們發現在沒有葉酸的培養液中癌細胞攝取磁性奈米碳管的數量多於含有葉酸的培養液並且將癌細胞與胞吞抑制劑一起培養,發現並不會影響癌細胞攝取磁性奈米碳管。因此,癌細胞攝取的機制或許不依賴胞吞作用。
Carbon nanotubes (CNTs) have strong absorbances in near-infrared (NIR) region, a great biocompatibility and the surface can be modified easily by biomolecular. These unique properties make CNTs promising candidates for multifunctional biological transporters and thermal cancer cell killers. Incorporating Fe3O4 nanoparticles into the CNTs can enhance effective CNT separation by magnetism. Therefore, here we report the synthesis of magnetic carbon nanotubes (MCNTs) by using chemical vapor deposition (CVD) and chemical coprecipitation for biomedical applications. We investigated the cytotoxic effects of MCNTs using A549 and HeLa cancer cells with MTT [(3-(4,5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide] assay. We found that MCNTs, below 2 µg/µL, have a very good biocompatibility for A549 cells. Furthermore, this work demonstrates that continuous 808 nm NIR radiations triggered extensive cell death in the presence of MCNTs because of the excessive local heating in vitro. In addition, we also studied cellular uptake of MCNTs mechanism. It was found that the cellular uptake was much higher in cells exposed to MCNT in an FA-free culture medium than those in a culture medium with FA after incubation 16 h. We found that incubation with endocytosis inhibitor agent did not influence cellular uptake of MCNTs. It is clear that the uptake mechanism is likely to be an endocytosis-independent pathway.
Contents I
Abstract III
摘要 IV
Acknowledgments V
List of Tables VII
List of Figures VIII
Chapter 1 Introduction 1
1.1 Template assisted synthesis 1
1.2 New forms of carbon 1
1.3 Carbon nanotube 2
1.3.1 Type of nanotubes 2
1.3.2 Carbon nanotube synthesis 3
1.4 Magnetic materials 8
1.5 Magnetic properties 9
1.5.1 Diamagnetism 9
1.5.2 Paramagnetism 10
1.5.3 Ferromagnetism 11
1.5.4 Antiferromagnetism 12
1.5.5 Ferrimagnetism 12
1.5.6 Superparamagnetism 13
1.5.7 Hysteresis curve 15
1.6 Folic acid 16
1.7 CNT in biomedical application 17
1.8 Cellular uptake of CNT 17
1.9 Photothermal therapy 18
1.10 Motivation of this thesis 19
Chapter 2 Experimental 20
2.1 Materials 20
2.2 Instrument 22
2.3 Preparation of MCNTs composites 23
2.3.1 Template assisted synthesis of CNTs 23
2.3.2 Fe3O4 solution preparation 23
2.3.3 Synthesis of MCNTs 23
2.4 Ex vitro measurement of heating of a MCNT solution by NIR radiation 25
2.5 Cell culture 25
2.6 FR+ Cells and FR- Cells 25
2.7 Uptake of MCNTs by cells 26
2.8 Laser radiation 26
2.9 Optical microscopy 26
2.10 Determination of cell cytotoxicity 26
Chapter 3 Result and Discussion 28
3.1 Morphology analysis by SEM and TEM 28
3.2 Raman analysis of MCNT 31
3.3 Magnetic properties of MCNT analysized by SQUID 32
3.4 Zeta potential of MCNT analysis 32
3.5 Heating of MCNT solution by NIR radiation 33
3.6 Cytotoxicty of MCNT 34
3.7 Thermal destruction of cancer cells in vitro by MCNTs 36
3.8 Cell uptake of MCNTs with and without FA medium 38
Chapter 4 Conclusion 41
References 42


1. C. R. Martin, Chem. Mater., 1996, 8, 1739.
2. F. Li, J. B. Wiley, J. Mater. Chem., 2008, 18, 3977.
3. L. S. Wang, C. Y. Lee, H. T. Chiu, Chem. Comm., 2003, 1964.
4. J. M. Moon and A. Wei, J. Phys. Chem. B, 2005, 109, 23336.
5. J. Li, M. Moskovits, T. L. Haslett, Chem. Mater., 1998, 10, 1963.
6. G. Cao, D. Liu, Adv. Colloid Interface Sci., 2008, 136, 45.
7. J. D. Klein, R. D. Herrick, D. Palmer, M. J. Sailor, J. Chem. Mater., 1993, 5, 902.
8. M. Wilson, K. Kannangar, B. Raguse, G. Smith, M. Simmons, Nanotechnology: Basic Science and Emerging Technologies, UNSW Press, 2002.
9. H. W. Kroto, J. R. Heath, S. C. O’Brien, R. F. Curl, R. E. Smally, Nature, 1985, 318, 162.
10. W. Krästschmer, L. D. Lamb, K. Fortiropoulos, D. R. Huffman, Nature, 1990, 347, 354.
11. S. Iijima, Nature, 1991, 354, 56.
12. A. A. Busnaina, Nanomanufacturing Handbook, CRC Press, 2007.
13. N. W. S. Kam, T. C. Jessop, P. A. Wender, H. Dai, J. Am. Chem. Soc., 2004, 126, 8650.
14. N. W. S. Kam, M. O’Connell, J. A. Wisdom, H. Dai, PNAS, 2005, 102, 11600.
15. X. Yang, Z. Zhang, Z. Liu, Y. Ma, R. Yang, Y. Chen, J. Nanopart. Res., 2008, 10, 815.
16. R. H. Baughman and A. A. Zakhidov, Science, 1999, 284, 1340.
17. R. J. Chen, S. Bangsaruntip, K. A. Drouvalakis, N. W. Kam, M. Shim, Y. Li, W. Kim, P. J. Utz, and H. Dai, PNAS, 2003, 100, 4984.
18. J. J. Gooding, R. Wibowo, J. Liu, W. Yang, D. Losic, S. Orbons, F. J. Mearns, J. G. Shapter, and D. B. Hibbert, J. Am. Chem. Soc., 2003, 125, 9006.
19. F. Zhou, D. Xing, Z. Ou, B. Wu, D. E. Resasco, W. R. Chen, J. Biomed. Opt., 2009, 14, 021009.
20. H. K. Moon, S. H. Lee, H. C. Choi, ACS Nano, 2009, 3, 3707.
21. S.-Y. Wang, K.-C. Ho, S.-L. Kuo, N.-L. Wu, J. Electrochem. Soc., 2006, 153, A75.
22. N. A. Frey, S. Peng, K. Cheng, S. Sun, Chem. Soc. Rev., 2009, 38, 2532.
23. H. B. Fredj, S. Helali, C. Esseghaier, L. Vonna, L. Vidal, A. Abdelghani, Talanta, 2008, 75, 740.
24. J. Kim, Y. Piao, T. Hyeon, Chem. Soc. Rev., 2009, 38, 372.
25. F.-Y. Cheng, C.-H. Su, Y.-S. Yang, C.-S. Yeh, C.-Y. Tsai, C.-L. Wu, M.-T. Wu, D.-B. Shieh, Biomaterials, 2005, 26, 729.
26. G. M. Lanza, P. Winter, S. Caruthers, A. Schmeider, K.Crowder, A. Morawski, H. Zhang, M. J. Scott, S. A. Wickline, Curr. Pharm. Biotechnol., 2004, 5, 495.
27. D. E. Speliotis, J. Magn. Magn. Mater., 1999, 193, 29.
28. O. Bomatı´-Miguel, M. P. Morales, P. Tartaj, J. Ruiz-Cabello, P. Bonville, M. Santos, X. Zhao, S. Veintemillas-Verdaguer, Biomaterials, 2005, 26, 5695.
29. C. Gao, W. Li, H. Morimoto, Y. Nagaoka, T. Maekawa, J. Phys. Chem. B, 2006, 110, 7213.
30. A. Leonhardt, S. Hampel, C. Müller, I. Mönch, R. Koseva, M. Ritschel, D. Elefant, K. Biederman, B. Büchner, Chem. Vap. Deposition, 2006, 12, 380.
31. S. Hampel, A. Leonhardt, D. Selbmann, K. Biederman, D. Elefant, C. Müller, T. Gemming, B. Büchner, Carbon, 2006, 44, 2316.
32. J. Zhang, J. Du, D. Ma, G. Xi, X. Hu, Y. Qian, Solid State Commun., 2007, 144, 168.
33. X. H. Wang, H. Orikasa, N. Inokuma, Q. H. Yang, P. X. Hou, H. Oshima, K. Itoh, T. Kyotani, J. Mater. Chem., 2007, 17, 986.
34. G. Korneva, H. Ye, Y. Gogotsi, D. Halverson, G. Friedman, J. C. Bradley, K. G. Kornev, Nano Lett., 2005, 5, 879.
35. William D. Callister, Jr., Materials Science and Engineering an Introduction Sixth Edition, U.S.A Wiley., 2003.
36. http://en.wikipedia.org/wiki/Ferromagnetism, from Wikipedia, the Free Encyclopedia, Ferromagnetism, Retrieved Mar. 27, 2010.
37. G. L. Hornyak, J. J. Moore, H. F. Tibbals, J. Dutta, Fundamentals of Nanotechnology, CRC Press, 2009.
38. S. L. Kim, H. J. Jeong, E. M. Kim, C. M. Lee, T. H. Kwon, M. H. Sohn, J. Korean Med. Sci., 2007, 22, 405.
39. Y. Lu, P. S. Low, Adv. Drug Deliv. Rev., 2002, 54, 675.
40. S. D. Conner, S. L. Schmid, Nature, 2003, 422, 37.
41. V. Raffaa, G. Ciofania, S. Nitodasb, T. Karachaliosb, D. D’Alessandrod, M. Masinie, A. Cuschieria, Carbon, 2008, 46, 1600.
42. K. Kostarelos, L. Lacerda, G. Pastorin, W. Wu, S. Wieckowsli, J. Luangsivilay, S. Godefroy, D. Pantarotto, J.-P. Briand, S. Muller, M. Prato, A. Bianco, Nature Nanotechnology, 2007, 2, 108.
43. A. S. Deckers, B. Gouget, M. M. L’Hermite, N. H. Boime, C. Reynaud, M. Carrière, Toxicology, 2008, 253, 137.
44. J. Kim, Y. Piao, T. Hyeon, Chem. Soc. Rev., 2009, 38, 372.
45. P. K. Jain, I. H. El-Sayed, and M. A. El-Sayed, Nanotoday, 2007, 2, 18.
46. J.-Y. Lee, B.-C. Kang, D.-Y. Jung, J.-H. Booa, J. Vac. Sci. Technol. B, 2007, 25, 1516.
47. Z. Sun, Z. Liu, Y. Wang, B. Han, J. Du, J. Zhang, J. Mater. Chem., 2005, 15, 4497.
48. X. Zhang, X. Wang, Q. Lu, C. Fu, Carbon, 2008, 46, 453.
49. 李偉銘,葉晨聖,國立成功大學化學研究所碩士論文,2008, 27頁。
50. J. H. Choi, F. T. Nguyen, P. W. Barone, D. A. Heller, A. E. Moll, D. Patel, S. A. Boppart, M. S. Strano, Nano Lett., 2007, 7, 861.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔