跳到主要內容

臺灣博碩士論文加值系統

(44.201.99.222) 您好!臺灣時間:2022/12/04 00:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳宏達
研究生(外文):Chen, Hong-Dar
論文名稱:一個多階衝擊器內的微粒反彈及溼度的影響研究
論文名稱(外文):A study of particle bounce and the influence of the humidity in a cascade impactor
指導教授:蔡春進蔡春進引用關係
學位類別:碩士
校院名稱:國立交通大學
系所名稱:環境工程系所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:73
中文關鍵詞:微粒彈跳Nafion 乾燥器奈米微粒多階衝擊器相對溼度
外文關鍵詞:particle bounceNafion dryerparticle bouncecascade impactorrelative humidity
相關次數:
  • 被引用被引用:0
  • 點閱點閱:245
  • 評分評分:
  • 下載下載:36
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要的目的在於探討相對溼度對MOUDI (micro-orifice uniform deposit impactor)多階衝擊器內微粒彈跳造成的微粒濃度分佈影響,而MOUDI入口的溼度控制的方式是以一個Nafion 乾燥器來達成的。以塗敷矽油鋁箔為衝擊板基質的MOUDI為參考標準,若相對溼度低至15%左右,未塗敷基質的MOUDI測得的奈米微粒濃度約高估兩倍左右;相對溼度50%時則會高估一倍以上;但相對溼度提升至77%以上時,奈米微粒幾無高估情形發生。然而在以上三種溼度下,本研究發現未塗敷矽油的MOUDI的細微粒粒徑分佈與塗敷矽油鋁箔的MOUDI並無顯著的差異。若塗敷的鋁箔換成未塗敷的鐵氟龍濾紙時,本研究也發現在不同溼度下使用鐵氟龍濾紙的MOUDI的細微粒粒徑分佈,與塗敷矽油鋁箔的MOUDI並無顯著的差異。在相對溼度25%左右時奈米微粒會高估50%;若將相對溼度提升至100%左右後,未塗敷的鐵弗龍與已塗敷的鋁箔所收集的濃度差異在14%內,大幅改善了微粒彈跳對奈米微粒濃度的影響。
This study aims at investigating the effect of the relative humidity (RH) on particle bounce occurred in the MOUDI (micro-orifice uniform deposit impactor) which influences particle mass distributions. A Nafion dryer was used to control the relative humidity at the inlet of the MOUDI. Using the MOUDI which used coated aluminum (AL) foils as the impaction substrates as a reference standard, it was found that the PM0.1 (or nanoparticle) concentrations measured by the MOUDI which used uncoated AL substrates were overestimated. The nanoparticle concentration was overestimated two times and one time, respectively, when the RH was 15 % and 50 %. When the RH was increased to 77 %, the nanoparticle concentration difference was reduced to below 10 % or the effect of particle bounce was largely eliminated. However, there were no significant differences between the mass distributions of the MOUDI using uncoated AL substrates with those of the MOUDI using coated AL substrates. Using uncoated Teflon filters as the substrates, the measured mass distributions were not significantly different from those of the MOUDI using coated AL substrates either. The nanoparticle concentration was overestimated by 50 % when the RH was about 25 %; the overestimation was reduced below 14 % when the RH was increased to about 100 %. The effect of particle bounce on nanoparticle concentration is reduced substantially using Teflon filters as the substrates of the MOUDI.
摘要 i
Abstract ii
誌謝 iii
目錄 iv
表目錄 v
圖目錄 vii
第一章 前言 1
1.1 緣起與背景說明 1
1.2 研究目的 2
第二章 文獻回顧 4
2.1 基質對微粒彈跳之影響 4
2.2 溼度對微粒彈跳之影響 9
第三章 研究方法 14
3.1 實驗儀器 14
3.2 MOUDI中不同收集板材質的彈跳情形比對 23
3.3 控制溼度時MOUDI內的微粒彈跳研究 23
第四章 結果與討論 29
4.1 MOUDI的QA/QC 29
4.2 MOUDI的收集基質在未塗敷與已塗敷情況下的比較測試結果 33
4.3 MOUDI中不同溼度對微粒的彈跳研究 50
第五章 結論與建議 65
參考文獻 67
附錄 71
Cheng, Y. S. and Yeh, H. C., (1979). Particle bounce in cascade impactors. Environ. Sci. Technol., 13:1392-1396.
Chow, J. C. and Watson, J. G.., (2007). Review of measurement methods and compositions for ultrafine particles. Aerosol Air Qual. Res., 7:121-173.
Chung, A., Herner, J. D. and Kleeman, M. J., (2001). Detection of alkaline ultrafine atmospheric particles at Bakersfield, California. Environ. Sci. Technol., 35:2184-2190.
Donaldson, K., Brown, D., Clouter, A., Duffin, R., MacNee, W., Renwick, L., Tran, L. and Stone, V., (2002). The pulmonary toxicology of ultrafine particles, in 13th International Congress of the International-Society-for-Aerosols-in-Medicine (ISAM), Interlaken, Switzerland, 213-220.
Fang, C. P., McMurry, P. H., Marple, V. A. and Rubow, K. L., (1991). Effect of flow-induced relative-humidity changes on size cuts for sulfuric-acid droplets in the microorifice uniform deposit impactor (MOUDI). Aerosol Sci. Technol., 14:266-277.
Fine, P. M., Chakrabarti, B., Krudysz, M., Schauer, J. J. and Sioutas, C., (2004). Diurnal variations of individual organic compound constituents of ultrafine and accumulation mode particulate matter in the Los Angeles basin. Environ. Sci. Technol., 38:1296-1304.
Fujitani, Y., Hasegawa, S., Fushimi, A., Kondo, Y., Tanabe, K., Kobayashi, S. and Kobayashi, T., (2006). Collection characteristics of low-pressure impactors with various impaction substrate materials. Atmos. Environ., 40:3221-3229.
Geller, M. D., Kim, S., Misra, C., Sioutas, C., Olson, B. A. and Marple, V. A., (2002). A methodology for measuring size-dependent chemical composition of ultrafine particles. Aerosol Sci. Technol., 36:748-762.
Huang, X. F., Yu, J., Z., He, L. Y., and Hu, M., (2006).Size distribution characteristics of elemental carbon emitted from Chinese vehicles: Results of a tunnel study and atmospheric implications. Environ. Sci. Technol., 40:5355-5360.
Hanel, G., (1976). The properties of atmospheric aerosol particles as functions of relative humidity at thermodynamic equilibrium with surrounding moist air. Geophys. Res., 19:73-188.
Herner, J. D., Aw, J., Gao, O., Chang, D. P. and Kleeman, M. J., (2005a). Size and composition distribution of airborne particulate matter in northern California: I-particulate mass, carbon, and water-soluble ions. J. Air Waste Manage. Assoc., 55:30-51.
Herner, J. D., Ying, Q., Aw, J., Gao, O., Chang, D. P. Y. and Kleemani, M. J., (2006). Dominant mechanisms that shape the airborne particle size and composition distribution in central California. Aerosol Sci. Technol., 40:827-844.
Hughes, L. S., Cass, G. R., Gone, J., Ames, M. and Olmez, I., (1998). Physical and chemical characterization of atmospheric ultrafine particles in the Los Angeles area. Environ. Sci. Technol., 32:1153-1161.
Khlystov, A., Stanier, C., and Pandis, S. N., (2004). An algorithm for combining electrical mobility and aerodynamic size distributions data when measuring ambient aerosol. Aerosol Sci. Technol., 38(S1):229-238.
Kim, S., Shen, S., Sioutas, C., Zhu, Y. F. and Hinds, W. C., (2002). Size distribution and diurnal and seasonal trends of ultrafine particles in source and receptor sites of the Los Angeles basin. J. Air Waste Manage. Assoc., 52:297-307.
Lawson, D.R., (1980). Impaction surface coatings intercomparison and measurements with cascade impactors. Atmos. Environ., 14:195-200.
Lin, C. C., Chen, S. J., Huang, K. L., Hwang, W. I., Chang-Chien, G. P. and Lin, W. Y., (2005). Characteristics of metals in nano/ultrafine/fine/coarse particles collected beside a heavily trafficked road. Environ. Sci. Technol., 39:8113-8122.
Marple, V. A., Rubow, K. L., Behm, S. M., (1991). A micro-orifice uniform deposit impactor (MOUDI)-description, calibration, and use. Aerosol Sci. Technol., 14: 434-446.
Martuzevicius, D., Grinshpun, S. A., Reponen, T., Gorny, R. L., Shukla, R., Lockey, J., Hu, S. H., McDonald, R., Biswas, P., Kliucininkas, L. and LeMasters, G., (2004). Spatial and temporal variations of PM2.5 concentration and composition throughout an urban area with high freeway density - the Greater Cincinnati study. Atmos. Enviro., 38:1091-1105.
Miguel, A. H., Eiguren-Fernandez, A., Jaques, P. A., Froines, J. R., Grant, B. L., Mayo, P. R. and Sioutas, C., (2004). Seasonal variation of the particle size distribution of polycyclic aromatic hydrocarbons and of major aerosol species in Claremont, California. Atmos. Environ., 38:3241-3251.
Oberdörster, G., Oberdorster, E., Oberdorster, J., (2005). Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspectives, 113(7):823-839.
Pak, S. S., Lin, B. Y. H., Rubow, K. L., (1992). Effect of coating thickness on particle bounce in inertial impactor. Aerosol Sci. Technol., 16:141-150.
Park, K., Cao, F., Kittelson, D. B. and McMurry, P. H., (2003). Relationship between particle mass and mobility for diesel exhaust particles. Environ. Sci. Technol., 37:577-583.
Rader, D. J., and McMurry, P. H., (1986). Application of the tandem differential mobility analyzer to studies of droplet growth or evaporation. J. Aerosol Sci. 17(5):771-787.
Sardar, S. B., Fine, P. M., Mayo, P. R., and Sioutas, C., (2005). Size-fractionated measurements of ambient ultrafine particle formation during diesel exhaust dilution. Environ. Sci. Tecchnol., 39:932-944.
Shen, S., Jaques, P. A., Zhu, Y. F., Geller, M. D. and Sioutas, C., (2002). Evaluation of the SMPS-APS system as a continuous monitor for measuring PM2.5, PM10 and coarse (PM2.5-10) concentrations. Atmos. Environ., 36:3939-3950.
Spencer, M.T., and Prather, K. A., (2007). Measurements of the density of atmospheric aerosols. Environ. Sci. Technol., 41:1303-1309.
Stanier, C. O., Khlystov, A., Chan, W. R., Mulia, M., and Pandis, S. N., (2004). A method for the in situ measurement of fine aerosol water content of ambient aerosol: The dry-ambient aerosol size spectromenter (DAASS), Aerosol Sci. Technol., 38(S1):215-228.
Stein, S. W., Turpin, B. J., Cai, X. P., Huang, C. P. F. and McMurry, P. H., (1994). Measurements of relative humidity-dependent bounce and density for atmospheric particles using the dma-impactor technique. Atmos. Environ., 28:1739-1746.
Turner, J. R. and Hering, S. V., (1987). Greased and oiled substrates as bounce-free impaction surfaces. J. Aerosol Sci., 18:215-224.
Vanderpool, R. W., Lundgren, D. A., Marple, V. A. and Rubow, K. L., (1987). Cocalibration of 4 large-particle impactors. Aerosol Sci. Technol., 7:177-185.
Vasiliou, J. G., Sorensen, D. and McMurry, P. H., (1999). Sampling at controlled relative humidity with a cascade impactor. Atmos. Environ.,33:1049-1056.
Wang, H.C., John, W., (1987). Comparative bounce properties of particle material. Aerosol Sci. Technol., 7:285:299.
Winkler, P., (1974). Relative humidity and the adhesion of atmospheric particles to the plates of impactors. Aerosol Sci., 5:235-240.
許逸群,陳志傑,蔡俊鴻,2004,空氣污染物自動連續測定儀各偵測原理之準確性評估,EPA-154920057。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top