(44.192.10.166) 您好!臺灣時間:2021/03/05 09:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蔡培元
研究生(外文):Tsai, Pei-Yuan
論文名稱:利用生物程序去除廢氣中的丙二醇甲醚醋酸酯
論文名稱(外文):Removal of Propylene Glycol Monomethyl Ether Acetate by Biofiltration Process
指導教授:曾慶平
指導教授(外文):Tseng, Ching-Ping
學位類別:碩士
校院名稱:國立交通大學
系所名稱:分子醫學與生物工程研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:83
中文關鍵詞:生物洗滌塔生物濾床平板式生物洗滌塔丙二醇甲醚醋酸酯
外文關鍵詞:BioscrubberBiofilterPlate membrane bioscrubberPGMEA
相關次數:
  • 被引用被引用:1
  • 點閱點閱:168
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究目的是要找出適用於常見之生物反應器的最佳化操作模式,因此測試生物濾床、生物洗滌塔和平板式生物洗滌塔對PGMEA的去除效果。當PGMEA的進流濃度在100~300ppm,滯留時間為20秒時,觀察到生物濾床和生物洗滌塔分別有98%和93%的平均移除效能,移除負荷分別為 212 g/m3/hr and 258 g/m3/hr。平板式洗滌塔方面,當滯留時間為20秒,進流濃度在100~300ppm時,其平均移除率可以達到93%,移除負荷為150 g/m3/hr。
在生物洗滌塔和平板式生物洗滌塔方面,探討不同初始植種量對去除PGMEA之影響,結果顯示,當初始菌株植種量為109 CFU/mL時,對生物洗滌塔的影響較為顯著,使得反應器貫穿後即可達到90%以上的去除效果,但對平板式生物洗滌塔的影響較不明顯。當添加不同的濾料至生物濾床和生物洗滌塔時,發現添加額外的濾料至生物洗滌塔,可以縮短生物洗滌塔達到90%以上去除率所需的時間,但是對於生物濾床的影響則不顯著。對不同液氣比之研究方面,發現生物洗滌塔之灑水量為800 mL/min時,去除PGMEA的能力與灑水量為1900 mL/min相當,平均去除率皆可高達97%以上;平板式生物洗滌塔每分鐘灑水量為1900 mL時,平均去除率為99%,即使灑水量縮減為800 mL/min,待反應器運作五天左右,其去除率仍可達到98%以上,顯示兩者皆能有效且穩定地去除PGMEA。以不同氮源培養V1菌株之實驗結果顯示,以(NH4)2SO4作為培養基的氮源令V1菌株生長較為迅速,與其他培養基配方相比快約一倍的速率,可以大幅縮短反應器固定化時間,減少被汙染的機會。
本研究結果所得之最佳化操作參數,有助於實場規模反應器的建造,以提高整體運作效率並縮短固定化時間,達到最有效的運作方式。
This research is aimed to establish an effective biofiltration process which applys to remove the water-soluble organic waste gases emission from semiconductors and photonics industry. The target pollutant is focus on propylene glycol monomethyl ether acetate (PGMEA), which is harmful for human body, especially for liver and kidney.
The objective of this study is to estimate the removal efficiency in different conditions by three kinds of biofiltration processes. The data showed that it could remove 100-300 ppm PGMEA for 98% removal efficiency (RE) in biofilter system, 93% in bioscrubber system with retention time (RT) in 20 seconds, and 93% RE in plate membrane bioscrubber system with RT in 30 seconds. The elimination capacity achieved 212, 258 and 150 g-PGMEA/m3/hr for biofilter, bioscrubber and plate membrane bioscrubber, respectively. In addition, to study the effect of amount of seeding in bioscrubber and plate membrane bioscrubber. It showed that high amount of seeding (over 109 CFU/ml) was helpful for high RE (up to 98%) and stable for operation. Finally, we estimated the addition of extra packing materials in biofilter and bioscrubber. The data showed that the bioscrubber with extra packing materials could achieve RE 90% in short time, while there was no difference in biofilter.
Therefore, the optimal operation parameters for removal of PGMEA were obtained, and it could establish field-scale bioreactors for application in industrial field.
中文摘要 i
英文摘要 ii
誌謝 iii
目錄 iv
表目錄 ix
圖目錄 x
符號說明 xii
一、 前言 1
1.1. 研究背景及動機 1
1.2. 研究目的 1
二、 文獻回顧 4
2.1. 揮發性有機化合物排放來源 4
2.2. 丙二醇甲醚醋酸酯的來源與特性 4
2.3. 丙二醇甲醚醋酸酯對人體的危害 4
2.4. 揮發性有機化合物常用的去除方式 4
2.4.1. 焚化法(Incineration) 4
2.4.2. 吸附法與吸收法(Adsorption and absorption) 5
2.4.3. 進階氧化程序(Advanced oxidation processes) 5
2.5. 生物處理法 (Biological treatment) 6
2.6. 生物處理法之類型 6
2.6.1. 生物濾床 6
2.6.2. 生物滴濾床 7
2.6.3. 生物洗滌塔 7
2.7. 影響生物反應器的因子 7
2.7.1. 揮發性有機化合物之類型 7
2.7.2. VOCs的濃度 8
2.7.3. 進氣的流量 8
2.7.4. 使用之微生物種類 8
2.7.5. 營養源 8
2.7.6. 溫度與pH值 9
三、 材料與方法 10
3.1. 實驗藥品 10
3.2. 儀器設備 10
3.3. 菌株來源 11
3.4. 反應器架設 11
3.4.1. 曝氣系統 11
3.4.2. 反應器本體 11
3.5. 菌數分析 12
3.6. 化學需氧量分析 12
3.7. 移除負荷分析(Elimination capacity) 12
3.8. 管柱實驗-生物濾床 13
3.9. 管柱實驗-生物洗滌塔 13
3.10. 空白吸附實驗-生物濾床 13
3.11. 空白吸附實驗-生物洗滌塔 13
3.12. PGMEA氣體濃度分析 14
3.13. PGMEA氣體濃度之檢量線製作 14
3.14. PGMEA液體濃度之檢量線製作 14
3.15. 實驗操作 15
3.15.1. 生物濾床去除PGMEA實驗 15
3.15.2. 生物洗滌塔去除PGMEA實驗 15
3.15.3. 平板生物洗滌塔去除PGMEA實驗 15
3.15.4. 不同溫度對V1菌株生長速率之影響 16
3.15.5. 突變株篩選 16
3.15.6. 不同的初始菌株植種量對PGMEA去除效率之影響 16
3.15.7. 不同的固定化載體對PGMEA去除效率之影響 16
3.15.8. 不同液氣比對PGMEA去除效率之影響 16
3.15.9. 不同氮源對V1生長速率之影響 17
四、 實驗結果與討論 18
4.1. 生物濾床實驗 18
4.1.1. 滯留時間之影響 18
4.1.2. 進流濃度之影響 18
4.1.3. 移除負荷 19
4.2. 生物洗滌塔實驗 19
4.2.1. 滯留時間之影響 19
4.2.2. 進流濃度之影響 21
4.2.3. 移除負荷 21
4.3. 平板式生物洗滌塔實驗 21
4.3.1. 進流負荷對去除PGMEA效能之影響 21
4.3.2. 移除負荷 22
4.4. 不同溫度對V1菌株生長速率之影響 23
4.5. 突變株篩選 23
4.6. 不同的初始菌株植種量對PGMEA去除效率之影響 23
4.6.1. 生物洗滌塔 23
4.6.2. 平板式生物洗滌塔 24
4.7. 不同固定化載體對PGMEA去除效率之影響 24
4.7.1. 生物濾床 24
4.7.2. 生物洗滌塔 24
4.8. 不同液氣比對PGMEA去除效率之影響 25
4.8.1. 生物洗滌塔 25
4.8.2. 平板式生物洗滌塔 25
4.9. 不同氮源對V1生長速率之影響 26
五、 結論 27
5.1. 以生物濾床處理PGMEA 27
5.2. 以生物洗滌塔處理PGMEA 27
5.3. 以平板式生物洗滌塔處理PGMEA 27
5.4. 菌株植種量與固定化濾料之影響 27
5.5. 液氣比及氮源之影響 28
5.6. 整體優勢 28
5.7. 未來展望 28
六、 參考文獻 29
1. 行政院環境保護署,「半導體製造業空氣污染管制及排放標準」,環署空字第0910069403J號令修正發布第一條條文,中華民國91年。
2. 行政院環境保護署,「光電材料及元件製造業空氣污染管制及排放標準」,環署空字第0950000717號令,中華民國95年。
3. 行政院環境保護署,「電子產業及特定行業空氣污染改善輔導示範推廣及管制標準研訂專案工作計畫」,EPA-90-FA12-03-A024,中華民國90年。
4. 行政院勞工委員會,「勞工作業環境測定實施辦法」,台九十一勞安三字第0910055101號令修正(修正6.7.9條),中華民國91年。
5. 行政院勞工委員會,「勞工作業環境空氣中有害物容許濃度標準」,勞安三字第0920073294號令第3次修正,中華民國92年。
6. Wu, Chien-Hou, Feng, Chien-Tai, Lo, Yu-Shiu, Lin, Tsai-Yin. Jiunn-Guang Lo. Determination of volatile organic compounds in workplace air by multisorbent adsorption/thermal desorption-GC/MS, Chemosphere 56: 71-80, 2004.
7. Marie-Caroline Delhomenie, Michele Heitz, Biofiltration of Air: A Review, Critical Reviews in Biotechnology, 25, 53-72, 2005.
8. 內政部營建署,建築技術規則,建築構造編第三節第十七條,中華民國六十三年。
9. Shareefdeen, Z., Herner, B., Webb, D., Polenek, S., Wilson, S. Biofiltration removes VOC Emissions from a printed circuit board manufacturing facility. AWMA 94th Annual Conference, Orlando, Florida, 24-28, 2001.
10. Drysys, H. Thermal oxidation and other VOC abatement techniques. Filtr Sep, 34: 324-325, 1997.
11. Everaert, K., Baeyens, J. Catalytic combustion of volatile organic compounds. Journal of Hazardous Materials, 109: 113-139, 2004.
12. Zhao Juan, Yang Xudong. Photocatalytic oxidation for indoor air purification: a literature review. Build Environ, 38: 645-54, 2003.
13. Carp, O., Huisman, C. L., Reller, A. Photoinduced reactivity of titanium dioxide. Progress in Solid State Chemistry, 32: 33-177, 2004.
14. Wang, S., Ang, H. M., Tade, M. O. Volatile organic compounds in indoor environment and photocatalytic oxidation: State of the art. Environment International 33: 694-705, 2007.
15. Chang, F. T., Lin, Y. C., Bal, H., Pei, B. S. Adsorption and Desorption Characteristics of Semiconductor Volatile Organic Compounds on the Thermal Swing Honeycomb Zeolite Concentrator. Air & Vaste Mtanagement Association, 53: 1384-1390, 2003.
16. Barnes, Joni M., Apel, William A., and Barrett, Karen B. Removal of Nitrogen Oxides from Gas Streams Using Biofiltration. Journal of Hazardous Materials, 41 (2-3): 315-326, 1995.
17. Craig S. Turchi, Roberto Rabago, Avtar Jassal. Destruction of Volatile Organic Compound (VOC) Emissions by Photocatalytic Oxidation (PCO): Benchscale Test Results and Cost Analysis. SEMATECH, Technology Transfer 95082935A-ENG, 1995.
18. Devinny, J. S., M. A. Deshusses, T. S. Webster. Biofiltration for Air Pollution Control. Lewis Publishers, New York, 1999.
19. Shareefdeen, Z., Herner, B., Webb, D., Wilson, S. Biofiltration eliminates nuisance chemical odors from industrial air streams. Journal of Industrial Microbiology and Biotechnology, 30: 168-174, 2003.
20. Shareefdeen, Z., and Singh, A. Biotechnology for odor and air pollution control, Springer-Verlag Berlin Heidelberg, Part 1, 31-60, 2005.
21. Delhom?聲ie and M. Heitz, Biofiltration of air: a review, Critical Reviews in Biotechnology 25: 53-72, 2005.
22. Elias, A., Barona, A., Arreguy, A. Rios, J., Aranguiz, I. and Pe?狒s, J. Evaluation of a packing material for the biodegradation of H2S and product analysis. Process Biochemistry, 37(8): 813-820, 2002.
23. Alonso, C., Suidan, M. T., Kim, B. R., Kim, B. J. Dynamical Mathematical Model for the Biodegradation of VOCs in a Biofilter: Biomass Accumulation Study. Environmental Science & Technology, 32: 3118-3123, 1998.
24. Chou, M. S., Chang, Y. F., and Perng, H. T. Treatment of Propylene Glycol Monomethyl Ether Acetate in Air Streams by a Biofilter Packed with Fern Chips. Air & Waste Management Association, 58: 1590-1597, 2008.
25. Shareefdeen, Z., Herner, B., Webb, D., Polenek, S., and Wilson, S. Removing Vole Organic Compound (VOC) Emissions from a Printed Circuit Board Manufacturing Facility Using Pilot- and Commercial-Scale Biofdters. Environmental Progress, 21(3): 196-201, 2002.
26. Chou, M. S., Wu, S. L. Bioconversion of Dimethylformamide in Biofilters. Journal of the Air & Waste Management Association, 48: 306-316, 1998.
27. Deshusses, M. A. Transient Behaviour of Biofilters: Start-up, Carbon Balances, and Interactions between Pollutants. Journal of Environmental Engineering, 123: 563-568, 1997.
28. Shareefdeen, Z., Baltzis, B. C., Oh, Y., Bartha, R. Biofiltration of Methanol Vapor. Biotechnology and Bioengineering, 41: 512-524, 1993.
29. Carleton, A. J. and Valentin, F. H. H. Absorption. In: Odour Control-a Concise Guide (Valentin, F. H. H. and North, A. A., Eds.), Hertfordshire, Warren Spring Laboratory, 77-84. 1980.
30. Cox, H. H. J., and Deshusses, M. A. Chemical removal of excess biomass in clogged biotrickling filters by hypochlorite treatment. Proc. Annual Meeting and Exhibition of the Air and Waste Management Association. AWMA, Pittsburgh, PA. Orlando, Florida, June 24-28, 337-349, 2001.
31. Togna, A. P., and Singh, M. A Comparative Study of Biofilter and Biotrickling Filter Performance for Isopentane Removal. Air and Waste Management Association Conference & Exhibition, 87th, Annual Meeting & Exhibition,1994.
32. Rho, D. La bio ?聯uration de l'air, biofiltres et biolaveurs: un univers ? la rencontre de la microbiologie et de l'ing? nierie. Vecteur Environnement, 33(1): 22-31, 2000.
33. Mesa, M. M., Mac?朦s, M., and Cantero, D. Biological iron oxidation by Acidithiobacillus ferrooxidans. Chemical and Biochemical Engineering Quarterly, 16(2): 69-73, 2002.
34. Wu, G., Dupuy, A., Leroux, A., Brzezinski, R., and Heitz, M. Peatbased toluene biofiltration: a new approach to the control of nutrients and pH. Environmental Technology, 20(4): 367-376, 1999.
35. Jorio, H., Bibeau, L., Viel, G., Heitz, M. Effects of gas flow rate and inlet concentration on xylene vapors biofiltration performance. Chemical Engineering Journal, 76: 209-221, 2000.
36. Kennes, C., and Thalasso, F. Waste gas biotreatment technology. Journal of Chemical Technology & Biotechnology, 72(4): 303–319, 1998.
37. Smet, E., Chasaya, G., van Langenhove, H., and Verstraete,W. The effect of inoculation and the type of carrier material used on the biofiltration of methyl sulphides. Applied Microbiology & Biotechnology, 45(1-2): 293–298, 1996.
38. Ottengraf, S. P. P. Exhaust gas purification. In: Biotechnology, a Comprehensive Treatise in 8 Volumes. Rehm, H.-J., and Reed, G., Eds., Verlag Chemie. Weinheim, 8: 426-452, 1986.
39. Krishnayya, Addanki V., Agar, John G., and Wong Tai T. Design and performance evaluation of vapor-phase biofilters. Bioreactor and Ex Situ Biological Treatment Tech, 5th Int. In Situ & On-Site Bioremediation Symposium, 111-116, 1999.
40. Smet, E., van Langenhove, H., and Verstraete, W. Long-term stability of a biofilter treating dimethyl sulphide. Applied Microbiology & Biotechnology, 46(2): 191-196, 1996.
41. Smet, E., van Langenhove, H., and Philips, G. Dolomite limits acidification of a biofilter degrading dimethyl sulphide. Biodegradation, 10(6): 399–404, 1999.
42. Devinny, J. S., and Hodge, D. S. Formation of acidic and toxic intermediates in overloaded ethanol biofilters. Journal of the Air & Waste Management Association, 45(2): 125-131, 1995.
43. Christen, P., Domenech, F., Michelena, G., Auria, R., and Revah, S. Biofiltration of volatile ethanol using sugar cane bagasse inoculated with Candida utilis. Journal of Hazardous Materials, 89(2-3): 253-265, 2002.
44. Webster, T. S., and Devinny, J. S. Biofiltration, in Encyclopedia of Environmental Analysis and Remediation, 8: 653-665, 1998.
45. Hirai, M., Ohtake, M. and Shoda, M. Removal Kinetic of Hydrogen Sulphide, Methanethiol and Dimethyl Sulphide by Peat Biofilters. Journal of Fermentation and Bioengineering, 70: 334- 339, 1990
46. 行政院環境保護署,「排放管道中氣態有機化合物檢測方法-採樣袋採樣/氣相層析火焰離子化偵測法」,環署檢字第0970064899B號,中華民國97年。
47. Yang, C., Suidan, M. T., Zhu, X., Kim, B. J. Biomass accumulation patterns for removing volatile organic compounds in rotating drum biofilters. Water science and technology, 48(8): 89-96, 2003.
48. Yang, C., Chen, H., Zeng, G., Zhu, X., Suidan, M. T. Performance of rotating drum biofilter for volatile organic compound removal at high organic loading rates. Journal of environmental sciences (China), 20(3): 285-290, 2008.
49. Metcalf and Eddy. Wastewater Engineering: Treatment, Disposal and Reuse. Fourth Edition, McGraw-Hill Book Co., New York, 2003.
50. Jean, Jiin-Shuh, Lee, Ming-Kuo, Wang, Shih-Ming. Pabitra Chattopadhyay, Jyoti Prakash Maity. Effects of inorganic nutrient levels on the biodegradation of benzene, toluene, and xylene (BTX) by Pseudomonas spp. in a laboratory porous media sand aquifer model. Bioresource Technology, 99: 7807-7815, 2008.
51. Sakuma, T., Hattori, T., and Deshusses, M. A. Comparison of different packing materials for the biofiltration of air toxics, Journal of the Air & Waste Management Association. 56 (11): 1567-1575, 2006.
52. Gabriel, D., Deshusses, M. A . Performance of a Full-Scale Biotrickling Filter Treating H2S at a Gas Contact Time of 1.6 to 2.2 Seconds. Environmental Progress, 22 (2): 111-118, 2003.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 陳吉仲、張靜貞、李恆綺、顏宏德,2005,「台灣稻米政策調整對稻米市場經濟影響之評估」,農業經濟叢刊,p.163-197。
2. 陳唐平、楊世華、潘德芳,2001,「台灣鳳梨農場技術效率之研究」,中華農業研究,50卷3期,p. 88-97。
3. 陸雲,2007,「提升臺灣稻米競爭力之制度面分析-契作關係與配套措施」,農業與資源經濟, p.1-24。
4. 翁家禧、曾憲郎、楊承儒,2008,「現階段臺灣稻米產業市場競爭策略之研究」,人文資源研究學報,p.19-40。
5. 徐世勳、張靜貞、李篤華,1995,「臺灣地區稻米公私有庫存之分析」,農業經濟叢刊,1卷2期,p.217-254。
6. 林燦煌、胡金勝,2005,「台灣切花物流產業經營之關鍵成功因素與策略」,農業經營管理年刊,第11期,p. 35-62。
7. 李宗儒,2000,「以資料包絡分析法衡量台灣地區魚市場經營之相對效率」,農林學報,49卷3期,p. 53-63。
8. 李元和,2004,「臺灣稻米產銷政策之檢討與基本改革措施效益之分析」,農業經濟叢刊,p.79~111。
9. 呂秀英,2004,「酪農經營效益分析」,農業經營管理年刊,第10期,p. 1-38。
10. 王長瑩,2005,「臺灣稻米產銷現況與趨勢」,農業世界,第264期,p.12-18。
11. 簡元育(1996)。漫談網路發展沿革。倚天雜誌, 32, 47-49。
12. 楊素華、陳憶婷、簡昕慧、張詩意、楊筑閔(2001)。光纖通訊技術發展現況。科學發展月刊, 29(12), 879-883。
13. 林玉惠、萬鍾汶、陸大榮(2009)。製造業轉型為服務導向企業之研究:以服務科學的觀點。科技管理學刊, 14(2), 59-96。
14. 朱斌妤、黃仟文、翁少白(2008)。以科技接受模式探討即時交通資訊系統之使用意願。電子商務學報, 10(1), 173~200。
15. 陳建斌,2006,「強化優質臺灣米產銷體系成果」,農委會,農政與農情,第168期。
 
系統版面圖檔 系統版面圖檔