|
Amore R, W.M., Hollenberg CP (1989). The fermentation of xylose—an analysis of the expression of Bacillus and Actinoplanes xylose isomerase genes in yeast. Appl Microbiol Biotechnol 30:351–357. Bertilsson, M., Andersson, J. & Liden, G. (2008). Modeling simultaneous glucose and xylose uptake in Saccharomyces cerevisiae from kinetics and gene expression of sugar transporters. Bioprocess Biosyst Eng, Vol. 31, No. 4, pp. 369-77. Beyer, A., Hollunder, J., Nasheuer, H.P. & Wilhelm, T. (2004). Post-transcriptional expression regulation in the yeast Saccharomyces cerevisiae on a genomic scale. Mol Cell Proteomics, Vol. 3, No. 11, pp. 1083-92. Bolen PL, R.K., Freer SN (1986). Affinity purifications of aldose reductase and xylitol dehydrogenase from the xylose-fermenting yeast Pachysolen tannophilus. Appl Environ Microbiol 52:660–664. Bruinenberg PM, d.B.P., van Dijken JP, Scheffers WA (1983). The role of redox balances in the anaerobic fermentation of xylose by yeasts. Eur J Appl Microbiol Biotechnol 18:287–292. Bruinenberg PM, d.B.P., van Dijken JP, Scheffers WA (1984). NADH-linked aldose reductase: the key to anaerobic fermentation of xylose by yeasts. Appl Microbiol Biotechnol 19:256–260. Chan, C.H., Liang, H.K., Hsiao, N.W., Ko, M.T., Lyu, P.C. & Hwang, J.K. (2004). Relationship between local structural entropy and protein thermostability. Proteins, Vol. 57, No. 4, pp. 684-91. Chandrakant P, B.V. (1998). Simultaneous bioconversion of cellulose and hemicellulose to ethanol. Crit Rev Biotechnol 18:295–331. Chu, B.C. & Lee, H. (2007). Genetic improvement of Saccharomyces cerevisiae for xylose fermentation. Biotechnol Adv, Vol. 25, No. 5, pp. 425-41. Debus D, M.H., Shulze D, Dellweg H (1983). Fermentation of xylose with the yeast Pachysolen tannophilus. Eur J Appl Microbiol Biotechnol 17:287–291. Deng XX, H.N. (1990). Xylulokinase activity in various yeasts including Saccharomyces cerevisiae containing the cloned xylulokinase gene. Appl Biochem Biotechnol 24–25:193–199. Di Luccio, E., Petschacher, B., Voegtli, J., Chou, H.T., Stahlberg, H., 27 Nidetzky, B. & Wilson, D.K. (2007). Structural and kinetic studies of induced fit in xylulose kinase from Escherichia coli. J Mol Biol, Vol. 365, No. 3, pp. 783-98. Dien, B.S., Cotta, M.A. & Jeffries, T.W. (2003). Bacteria engineered for fuel ethanol production: current status. Appl Microbiol Biotechnol, Vol. 63, No. 3, pp. 258-66. Dmytruk, O.V., Dmytruk, K.V., Abbas, C.A., Voronovsky, A.Y. & Sibirny, A.A. (2008). Engineering of xylose reductase and overexpression of xylitol dehydrogenase and xylulokinase improves xylose alcoholic fermentation in the thermotolerant yeast Hansenula polymorpha. Microb Cell Fact, Vol. 7, pp. 21. Doelle MB, M.R., Doelle HW (1989). Production of ethanol from corn using inoculum cascading of Zymomonas mobilis. Process Biochem 24:137–140. Eliasson, A., Boles, E., Johansson, B., Osterberg, M., Thevelein, J.M., Spencer-Martins, I., Juhnke, H. & Hahn-Hagerdal, B. (2000). Xylulose fermentation by mutant and wild-type strains of Zygosaccharomyces and Saccharomyces cerevisiae. Appl Microbiol Biotechnol, Vol. 53, No. 4, pp. 376-82. Eliasson A, H.J.-H., Pedler S, Hahn-Hägerdal B (2001). The xylose reductase/xylitol dehydrogenase/xylulokinase ratio affects product formation in recombinant xylose-utilising Saccharomyces cerevisiae. Enzyme Microb Technol 29:288–297. Gárdonyi M, H.-H.B. (2003). The Streptomyces rubiginosus xylose isomerase is misfolded when expressed in Saccharomyces cerevisiae. Enzyme Microb Technol 32:252–259. Graves, T., Narendranath, N.V., Dawson, K. & Power, R. (2007). Interaction effects of lactic acid and acetic acid at different temperatures on ethanol production by Saccharomyces cerevisiae in corn mash. Appl Microbiol Biotechnol, Vol. 73, No. 5, pp. 1190-6. Ho, N.W., Chen, Z. & Brainard, A.P. (1998). Genetically engineered Saccharomyces yeast capable of effective cofermentation of glucose and xylose. Appl Environ Microbiol, Vol. 64, No. 5, pp. 1852-9. Hu, B., Wang, K., Wu, L., Yu, S.H., Antonietti, M. & Titirici, M.M. (2010). Engineering carbon materials from the hydrothermal carbonization process of biomass. Adv Mater, Vol. 22, No. 7, pp. 28 813-28. Ingram, L.O., Conway, T., Clark, D.P., Sewell, G.W. & Preston, J.F. (1987). Genetic engineering of ethanol production in Escherichia coli. Appl Environ Microbiol, Vol. 53, No. 10, pp. 2420-5. Jeffries, T.W. (2006). Engineering yeasts for xylose metabolism. Curr Opin Biotechnol, Vol. 17, No. 3, pp. 320-6. Jeppsson, M., Traff, K., Johansson, B., Hahn-Hagerdal, B. & Gorwa-Grauslund, M.F. (2003). Effect of enhanced xylose reductase activity on xylose consumption and product distribution in xylose-fermenting recombinant Saccharomyces cerevisiae. FEMS Yeast Res, Vol. 3, No. 2, pp. 167-75. Jin, Y.S., Jones, S., Shi, N.Q. & Jeffries, T.W. (2002). Molecular cloning of XYL3 (D-xylulokinase) from Pichia stipitis and characterization of its physiological function. Appl Environ Microbiol, Vol. 68, No. 3, pp. 1232-9. Jin YS, J.T. (2003). Changing flux of xylose metabolites by altering expression of xylose reductase and xylitol dehydrogenase in recombinant Saccharomyces cerevisiae. Appl Biochem Biotechnol 105–108:277–286. Johansson, B., Christensson, C., Hobley, T. & Hahn-Hagerdal, B. (2001). Xylulokinase overexpression in two strains of Saccharomyces cerevisiae also expressing xylose reductase and xylitol dehydrogenase and its effect on fermentation of xylose and lignocellulosic hydrolysate. Appl Environ Microbiol, Vol. 67, No. 9, pp. 4249-55. Kötter P, C.M. (1993). Xylose fermentation by Saccharomyces cerevisiae. Appl Microbiol Biotechnol 38:776–783. Karhumaa, K., Fromanger, R., Hahn-Hagerdal, B. & Gorwa-Grauslund, M.F. (2007). High activity of xylose reductase and xylitol dehydrogenase improves xylose fermentation by recombinant Saccharomyces cerevisiae. Appl Microbiol Biotechnol, Vol. 73, No. 5, pp. 1039-46. Katahira, S., Fujita, Y., Mizuike, A., Fukuda, H. & Kondo, A. (2004). Construction of a xylan-fermenting yeast strain through codisplay of xylanolytic enzymes on the surface of xylose-utilizing Saccharomyces cerevisiae cells. Appl Environ Microbiol, Vol. 70, No. 9, pp. 5407-14. Katahira S, I.M., Takema H, Fujita Y, Tanino T, Tanaka T, Fukuda H, 29 Kondo A (2008). Improvement of ethanol productivity during xylose and glucose co-fermentation by xylose assimilating S. cerevisiae via expression of glucose transporter Sut1. Enzyme Microb Technol 2008, 43:115-119. Kuyper M, H.H., Stave AK, Winkler AA, Jetten MSM, deLaat WTAM, den Ridder JJJ, Op den Camp HJM, van Dijken JP,Pronk JT (2003). High-level functional expression of a fungal xylose isomerase: the key to efficient ethanolic fermentation of xylose by Saccharomyces cerevisiae? FEMS Yeast Res 4:69–78. Kuyper M, H.M., Toirkens MJ, Almering MJH, Winkler AA, van Dijken JP, Pronk JT (2005a). Metabolic engineering of a xylose-isomerase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation. FEMS Yeast Res 5:399–409. Kuyper M, W.A., van Dijken JP, Pronk JT (2004). Minimal metabolic engineering of Saccharomyces cerevisiae for efficient anaerobic xylose fermentation: a proof of principle. FEMS Yeast Res 4:655–664. Lee, H.J., Chang, H.Y., Venkatesan, N. & Peng, H.L. (2008). Identification of amino acid residues important for the phosphomannose isomerase activity of PslB in Pseudomonas aeruginosa PAO1. FEBS Lett, Vol. 582, No. 23-24, pp. 3479-83. Lee, T.H., Kim, M.D., Park, Y.C., Bae, S.M., Ryu, Y.W. & Seo, J.H. (2003). Effects of xylulokinase activity on ethanol production from D-xylulose by recombinant Saccharomyces cerevisiae. J Appl Microbiol, Vol. 95, No. 4, pp. 847-52. Lynd, L.R., Cushman, J.H., Nichols, R.J. & Wyman, C.E. (1991). Fuel Ethanol from Cellulosic Biomass. Science, Vol. 251, No. 4999, pp. 1318-1323. Madhavan A, T.S., Ushida K, Kanai D, Katahira S, Srivastava A, Fukuda H, Bisaria VS, Kondo A (2008). Xylose isomerase from polycentric fungus Orpinomyces: gene sequencing, cloning and expression in Saccharomyces cerevisiae for bioconversion of xylose to ethanol. Appl Microbiol Biotechnol doi:10.1007/s00253-008-1794-6. Matsushika, A., Inoue, H., Kodaki, T. & Sawayama, S. (2009a). Ethanol production from xylose in engineered Saccharomyces cerevisiae strains: current state and perspectives. Appl Microbiol Biotechnol, Vol. 84, No. 1, pp. 37-53. Matsushika, A., Inoue, H., Murakami, K., Takimura, O. & Sawayama, S. 30 (2009b). Bioethanol production performance of five recombinant strains of laboratory and industrial xylose-fermenting Saccharomyces cerevisiae. Bioresour Technol, Vol. 100, No. 8, pp. 2392-8. Matsushika, A., Inoue, H., Watanabe, S., Kodaki, T., Makino, K. & Sawayama, S. (2009c). Efficient bioethanol production by a recombinant flocculent Saccharomyces cerevisiae strain with a genome-integrated NADP+-dependent xylitol dehydrogenase gene. Appl Environ Microbiol, Vol. 75, No. 11, pp. 3818-22. Matsushika, A. & Sawayama, S. (2008). Efficient bioethanol production from xylose by recombinant saccharomyces cerevisiae requires high activity of xylose reductase and moderate xylulokinase activity. J Biosci Bioeng, Vol. 106, No. 3, pp. 306-9. Millichip RJ, D.H. (1989). Large-scale ethanol production from Milo (Sorghum) using Zymomonas mobilis. Process Biochem 24:141–145. Moes CJ, P.I., van Zyl WH (1996). Cloning and expression of the Clostridium thermosulfurogenes D-xylose isomerase gene (xylA) in Saccharomyces cerevisiae. Biotechnol Lett 18:269–274. Ni, H., Laplaza, J.M. & Jeffries, T.W. (2007). Transposon mutagenesis to improve the growth of recombinant Saccharomyces cerevisiae on D-xylose. Appl Environ Microbiol, Vol. 73, No. 7, pp. 2061-6. Ranjbar, B. & Gill, P. (2009). Circular dichroism techniques: biomolecular and nanostructural analyses- a review. Chem Biol Drug Des, Vol. 74, No. 2, pp. 101-20. Richard, P., Toivari, M.H. & Penttila, M. (2000). The role of xylulokinase in Saccharomyces cerevisiae xylulose catabolism. FEMS Microbiol Lett, Vol. 190, No. 1, pp. 39-43. Rizzi M, E.P., Bui-Thanh NA, Dellweg H (1988). Xylose fermentation by yeasts. 4. Purification and kinetic studies of xylose reductase from Pichia stipitis. Appl Microbiol Biotechnol 29:148–154. Rizzi M, H.K., Erlemann P, Bui-Thanh NA, Dellweg H (1989). Purification and properties of the NAD+-xylitol-dehydrogenase from the yeast Pichia stipitis. J Ferment Bioeng 67:20–24. Rodriguez-Pena, J.M., Cid, V.J., Arroyo, J. & Nombela, C. (1998). The YGR194c (XKS1) gene encodes the xylulokinase from the budding yeast Saccharomyces cerevisiae. FEMS Microbiol Lett, Vol. 162, No. 1, pp. 155-60. 31 Rodriguez-Pena JM, C.V., Arroyo J, Nombela C (1998). The YGR194c (XKS1) gene encodes the xylulokinase from the budding yeast Saccharomyces cerevisiae. FEMS Microbiol Lett 162:155–160. Sarthy, A.V., McConaughy, B.L., Lobo, Z., Sundstrom, J.A., Furlong, C.E. & Hall, B.D. (1987). Expression of the Escherichia coli xylose isomerase gene in Saccharomyces cerevisiae. Appl Environ Microbiol, Vol. 53, No. 9, pp. 1996-2000. Shamanna, D.K. & Sanderson, K.E. (1979). Uptake and catabolism of D-xylose in Salmonella typhimurium LT2. J Bacteriol, Vol. 139, No. 1, pp. 64-70. Skotnicki, M.L., Lee, K.J., Tribe, D.E. & Rogers, P.L. (1982). Genetic alteration of Zymomonas mobilis for ethanol production. Basic Life Sci, Vol. 19, pp. 271-90. Tantirungkij M, N.N., Seki T, Yoshida T (1993). Construction of xylose-assimilating Saccharomyces cerevisiae. J Ferment Bioeng 75:83–88. Toivari, M.H., Ruohonen, L., Miasnikov, A.N., Richard, P. & Penttila, M. (2007). Metabolic engineering of Saccharomyces cerevisiae for conversion of D-glucose to xylitol and other five-carbon sugars and sugar alcohols. Appl Environ Microbiol, Vol. 73, No. 17, pp. 5471-6. Van Vleet, J.H. & Jeffries, T.W. (2009). Yeast metabolic engineering for hemicellulosic ethanol production. Curr Opin Biotechnol, Vol. 20, No. 3, pp. 300-6. Verduyn, C., Van Kleef, R., Frank, J., Schreuder, H., Van Dijken, J.P. & Scheffers, W.A. (1985). Properties of the NAD(P)H-dependent xylose reductase from the xylose-fermenting yeast Pichia stipitis. Biochem J, Vol. 226, No. 3, pp. 669-77. Wahlbom, C.F., van Zyl, W.H., Jonsson, L.J., Hahn-Hagerdal, B. & Otero, R.R. (2003). Generation of the improved recombinant xylose-utilizing Saccharomyces cerevisiae TMB 3400 by random mutagenesis and physiological comparison with Pichia stipitis CBS 6054. FEMS Yeast Res, Vol. 3, No. 3, pp. 319-26. Walfridsson M, A.M., Bao X, Hahn-Hägerdal B (1997). Expression of different levels of enzymes from the Pichia stipitis XYL1 and XYL2 genes in Saccharomyces cerevisiae and its effects on product formation during xylose utilisation. Appl Microbiol Biotechnol 48:218–224. 32 Walfridsson M, B.X., Anderlund M, Lilius G, Bülow L, Hahn-Hägerdal B (1996). Ethanolic fermentation of xylose with Saccharomyces cerevisiae harboring the Thermus thermophilus xylA gene, which expresses an active xylose (glucose) isomerase. Appl Environ Microbiol 62:4648–4651. Wang, P.Y., and H. Schneider (1980). Growth of yeasts on D-xylulose. Can. J. Microbiol. 26:1165–1168. Wang VW, J.T. (1990). Purification and properties of xylitol dehydrogenase from the xylose-fermenting Candida shehatae. Appl Biochem Biotechnol 26:197–206. Yong-Su Jin, H.N., Jose M. Laplaza, Thomas W. Jeffries (2003). Optimal Growth and Ethanol Production from Xylose by Recombinant Saccharomyces cerevisiae Require Moderate D-Xylulokinase Activity. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, Jan. 2003, p. 495–503.
|