(3.236.175.108) 您好!臺灣時間:2021/02/28 03:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李佩君
研究生(外文):Li , Pei-Jiun
論文名稱:釀酒酵母與畢赤酵母重組木酮糖激酶的活性分析
論文名稱(外文):Activity analysis of the recombinant xylulokinase from Saccharomyces cerevisiae and Pichia stipitis
指導教授:彭慧玲彭慧玲引用關係
指導教授(外文):Peng, Hwei-Ling
學位類別:碩士
校院名稱:國立交通大學
系所名稱:分子醫學與生物工程研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:英文
論文頁數:60
中文關鍵詞:木酮&#64003激&#37238
外文關鍵詞:xylulokinase
相關次數:
  • 被引用被引用:0
  • 點閱點閱:337
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:97
  • 收藏至我的研究室書目清單書目收藏:0
石油能源危機日益嚴重,積極發展再生能源尤為當務之急,其中生
質酒精之開發是相當重要的一環。酒精生產原料以纖維素、半纖維
素、等植物纖維為主,纖維素與半纖維素經過生物、物理或化學處理
後,分別降解成以葡萄糖為主的六碳糖與木糖(xylose)為主的五碳
糖,而參與木糖發酵途徑的主要酵素包括木糖醇脫氫酶(xylitol
dehydrogenase ),木糖還原酶(xylose reductase)和木酮糖激酶
(xylulokinase)。本研究自釀酒酵母(Saccharomyces cerevisiae)和畢赤酵母(Pichia stipitis)以聚合脢連鎖反應分別增幅選殖木酮糖激脢基因,在大腸桿菌中大量表現並進一步純化此重組的木酮糖激酶,期以活性比較分析作為改殖的依據,最終使木酮糖激脢活性在酒精生產發酵過程中不因溫度升高或過酸環境而失活。
首先,我們根據生物資訊工具分析釀酒酵母木酮糖激脢(Sc-XK)
胺基酸的亂度變化,再以定點突變法將第88個胺基酸由絲氨酸(serine)轉變為纈氨酸(valine)。然而,Sc-XK和Sc-XK(S88V)在非原宿主中表現不具活性,我們推測此重組蛋白可能需要經過後修飾作用或修正活性測試的方法。另一方面,在畢赤酵母的木酮糖激脢(Ps-XK)選殖基因過程,我們意外得到一突變株在胺基酸序列中第55的位置由丙胺酸(alanine)突變為穌胺酸(threonine)。進一步比較Ps-XK和Ps-XK(A55T)重組蛋白代謝木酮糖的活性顯示Ps-XK (A55T)於25℃、pH 7.8的活性比Ps-XK提高三倍,有趣的是,此單一氨基酸的改變不僅使Ps-XK最佳活性的溫度升為42℃也影響了其最適反應之pH值。
The development of biomass ethanol as a renewable energy is currently a very important issue. The starting materials in the alcohol production process include cellulose and hemicelluloses from plant fibers. After the conversion via biodegradation, chemical or physical treatments, cellulose
could be converted to six carbon sugars, mainly glucose, and
hemicelluloses transformed to five-carbon sugars, mainly xylose. Xylitol dehydrogenase (XDH), xylose reductase (XR) and xylulokinase (XK) are three major enzymes involved in xylose fermentation pathway.
In the study, we intend to clone the XK encoding gene using PCR from Saccharomyces cerevisiae and Pichia stipitis, and heterologously express the genes in Escherichia coli, and purify the recombinant proteins. After
the activities comparatively analyzed, a recombinant XK that can tolerate high temperatures and acidic environments will be generated accordingly for practical use in the fermentation process.
Based on the entropy analysis(http://sdse.life.nctu.edu.tw/index.cgi) of S. cerevisiae XK (Sc-XK), site-directed mutagenesis was firstly employed
to generate a change from Ser to Val (S88V). However, Sc-XK and Sc-XK (S88V) expressed in E. coli appeared no enzymatic activity. If a post-transcriptional modification is required for Sc-XK activity remains to be investigated.
On the other hand, a mutant with an amino acid change from Ala to Thr was obtained during the PCR-cloning of XK from P. stipitis (Ps-XK) and named Ps-XK (A55T). Interestingly, activity analysis revealed Ps-XK (A55T) had a 3-fold higher specific activity than Ps-XK at 25℃, pH 7.8. Moreover, single amino acid change of XK affected not only its suitable temperature, which increased to 42℃, but also caused the pH shift.
Abstract in Chinese------------------------------------i
Abstract-----------------------------------------------ii
Acknowledge -------------------------------------------iii
Contents-----------------------------------------------v
Table contents-----------------------------------------vi
Figure contents----------------------------------------vii
Abbreviations------------------------------------------ix
Introduction-------------------------------------------1
Materials and methods----------------------------------12
Results -----------------------------------------------19
Discussion---------------------------------------------23
References --------------------------------------------26
Table -------------------------------------------------33
Figure ------------------------------------------------40
Appendix-----------------------------------------------56
Amore R, W.M., Hollenberg CP (1989). The fermentation of xylose—an
analysis of the expression of Bacillus and Actinoplanes xylose
isomerase genes in yeast. Appl Microbiol Biotechnol 30:351–357.
Bertilsson, M., Andersson, J. & Liden, G. (2008). Modeling simultaneous
glucose and xylose uptake in Saccharomyces cerevisiae from
kinetics and gene expression of sugar transporters. Bioprocess
Biosyst Eng, Vol. 31, No. 4, pp. 369-77.
Beyer, A., Hollunder, J., Nasheuer, H.P. & Wilhelm, T. (2004).
Post-transcriptional expression regulation in the yeast
Saccharomyces cerevisiae on a genomic scale. Mol Cell
Proteomics, Vol. 3, No. 11, pp. 1083-92.
Bolen PL, R.K., Freer SN (1986). Affinity purifications of aldose
reductase and xylitol dehydrogenase from the xylose-fermenting
yeast Pachysolen tannophilus. Appl Environ Microbiol
52:660–664.
Bruinenberg PM, d.B.P., van Dijken JP, Scheffers WA (1983). The role of
redox balances in the anaerobic fermentation of xylose by yeasts.
Eur J Appl Microbiol Biotechnol 18:287–292.
Bruinenberg PM, d.B.P., van Dijken JP, Scheffers WA (1984).
NADH-linked aldose reductase: the key to anaerobic fermentation
of xylose by yeasts. Appl Microbiol Biotechnol 19:256–260.
Chan, C.H., Liang, H.K., Hsiao, N.W., Ko, M.T., Lyu, P.C. & Hwang, J.K.
(2004). Relationship between local structural entropy and protein
thermostability. Proteins, Vol. 57, No. 4, pp. 684-91.
Chandrakant P, B.V. (1998). Simultaneous bioconversion of cellulose and
hemicellulose to ethanol. Crit Rev Biotechnol 18:295–331.
Chu, B.C. & Lee, H. (2007). Genetic improvement of Saccharomyces
cerevisiae for xylose fermentation. Biotechnol Adv, Vol. 25, No. 5,
pp. 425-41.
Debus D, M.H., Shulze D, Dellweg H (1983). Fermentation of xylose
with the yeast Pachysolen tannophilus. Eur J Appl Microbiol
Biotechnol 17:287–291.
Deng XX, H.N. (1990). Xylulokinase activity in various yeasts including
Saccharomyces cerevisiae containing the cloned xylulokinase gene.
Appl Biochem Biotechnol 24–25:193–199.
Di Luccio, E., Petschacher, B., Voegtli, J., Chou, H.T., Stahlberg, H.,
27
Nidetzky, B. & Wilson, D.K. (2007). Structural and kinetic studies
of induced fit in xylulose kinase from Escherichia coli. J Mol Biol,
Vol. 365, No. 3, pp. 783-98.
Dien, B.S., Cotta, M.A. & Jeffries, T.W. (2003). Bacteria engineered for
fuel ethanol production: current status. Appl Microbiol Biotechnol,
Vol. 63, No. 3, pp. 258-66.
Dmytruk, O.V., Dmytruk, K.V., Abbas, C.A., Voronovsky, A.Y. & Sibirny,
A.A. (2008). Engineering of xylose reductase and overexpression
of xylitol dehydrogenase and xylulokinase improves xylose
alcoholic fermentation in the thermotolerant yeast Hansenula
polymorpha. Microb Cell Fact, Vol. 7, pp. 21.
Doelle MB, M.R., Doelle HW (1989). Production of ethanol from corn
using inoculum cascading of Zymomonas mobilis. Process
Biochem 24:137–140.
Eliasson, A., Boles, E., Johansson, B., Osterberg, M., Thevelein, J.M.,
Spencer-Martins, I., Juhnke, H. & Hahn-Hagerdal, B. (2000).
Xylulose fermentation by mutant and wild-type strains of
Zygosaccharomyces and Saccharomyces cerevisiae. Appl
Microbiol Biotechnol, Vol. 53, No. 4, pp. 376-82.
Eliasson A, H.J.-H., Pedler S, Hahn-Hägerdal B (2001). The xylose
reductase/xylitol dehydrogenase/xylulokinase ratio affects product
formation in recombinant xylose-utilising Saccharomyces
cerevisiae. Enzyme Microb Technol 29:288–297.
Gárdonyi M, H.-H.B. (2003). The Streptomyces rubiginosus xylose
isomerase is misfolded when expressed in Saccharomyces
cerevisiae. Enzyme Microb Technol 32:252–259.
Graves, T., Narendranath, N.V., Dawson, K. & Power, R. (2007).
Interaction effects of lactic acid and acetic acid at different
temperatures on ethanol production by Saccharomyces cerevisiae
in corn mash. Appl Microbiol Biotechnol, Vol. 73, No. 5, pp.
1190-6.
Ho, N.W., Chen, Z. & Brainard, A.P. (1998). Genetically engineered
Saccharomyces yeast capable of effective cofermentation of
glucose and xylose. Appl Environ Microbiol, Vol. 64, No. 5, pp.
1852-9.
Hu, B., Wang, K., Wu, L., Yu, S.H., Antonietti, M. & Titirici, M.M.
(2010). Engineering carbon materials from the hydrothermal
carbonization process of biomass. Adv Mater, Vol. 22, No. 7, pp.
28
813-28.
Ingram, L.O., Conway, T., Clark, D.P., Sewell, G.W. & Preston, J.F.
(1987). Genetic engineering of ethanol production in Escherichia
coli. Appl Environ Microbiol, Vol. 53, No. 10, pp. 2420-5.
Jeffries, T.W. (2006). Engineering yeasts for xylose metabolism. Curr
Opin Biotechnol, Vol. 17, No. 3, pp. 320-6.
Jeppsson, M., Traff, K., Johansson, B., Hahn-Hagerdal, B. &
Gorwa-Grauslund, M.F. (2003). Effect of enhanced xylose
reductase activity on xylose consumption and product distribution
in xylose-fermenting recombinant Saccharomyces cerevisiae.
FEMS Yeast Res, Vol. 3, No. 2, pp. 167-75.
Jin, Y.S., Jones, S., Shi, N.Q. & Jeffries, T.W. (2002). Molecular cloning
of XYL3 (D-xylulokinase) from Pichia stipitis and characterization
of its physiological function. Appl Environ Microbiol, Vol. 68, No.
3, pp. 1232-9.
Jin YS, J.T. (2003). Changing flux of xylose metabolites by altering
expression of xylose reductase and xylitol dehydrogenase in
recombinant Saccharomyces cerevisiae. Appl Biochem Biotechnol
105–108:277–286.
Johansson, B., Christensson, C., Hobley, T. & Hahn-Hagerdal, B. (2001).
Xylulokinase overexpression in two strains of Saccharomyces
cerevisiae also expressing xylose reductase and xylitol
dehydrogenase and its effect on fermentation of xylose and
lignocellulosic hydrolysate. Appl Environ Microbiol, Vol. 67, No. 9,
pp. 4249-55.
Kötter P, C.M. (1993). Xylose fermentation by Saccharomyces cerevisiae.
Appl Microbiol Biotechnol 38:776–783.
Karhumaa, K., Fromanger, R., Hahn-Hagerdal, B. & Gorwa-Grauslund,
M.F. (2007). High activity of xylose reductase and xylitol
dehydrogenase improves xylose fermentation by recombinant
Saccharomyces cerevisiae. Appl Microbiol Biotechnol, Vol. 73, No.
5, pp. 1039-46.
Katahira, S., Fujita, Y., Mizuike, A., Fukuda, H. & Kondo, A. (2004).
Construction of a xylan-fermenting yeast strain through codisplay
of xylanolytic enzymes on the surface of xylose-utilizing
Saccharomyces cerevisiae cells. Appl Environ Microbiol, Vol. 70,
No. 9, pp. 5407-14.
Katahira S, I.M., Takema H, Fujita Y, Tanino T, Tanaka T, Fukuda H,
29
Kondo A (2008). Improvement of ethanol productivity during
xylose and glucose co-fermentation by xylose assimilating S.
cerevisiae via expression of glucose transporter Sut1. Enzyme
Microb Technol 2008, 43:115-119.
Kuyper M, H.H., Stave AK, Winkler AA, Jetten MSM, deLaat WTAM,
den Ridder JJJ, Op den Camp HJM, van Dijken JP,Pronk JT (2003).
High-level functional expression of a fungal xylose isomerase: the
key to efficient ethanolic fermentation of xylose by Saccharomyces
cerevisiae? FEMS Yeast Res 4:69–78.
Kuyper M, H.M., Toirkens MJ, Almering MJH, Winkler AA, van Dijken
JP, Pronk JT (2005a). Metabolic engineering of a
xylose-isomerase-expressing Saccharomyces cerevisiae strain for
rapid anaerobic xylose fermentation. FEMS Yeast Res 5:399–409.
Kuyper M, W.A., van Dijken JP, Pronk JT (2004). Minimal metabolic
engineering of Saccharomyces cerevisiae for efficient anaerobic
xylose fermentation: a proof of principle. FEMS Yeast Res
4:655–664.
Lee, H.J., Chang, H.Y., Venkatesan, N. & Peng, H.L. (2008).
Identification of amino acid residues important for the
phosphomannose isomerase activity of PslB in Pseudomonas
aeruginosa PAO1. FEBS Lett, Vol. 582, No. 23-24, pp. 3479-83.
Lee, T.H., Kim, M.D., Park, Y.C., Bae, S.M., Ryu, Y.W. & Seo, J.H.
(2003). Effects of xylulokinase activity on ethanol production from
D-xylulose by recombinant Saccharomyces cerevisiae. J Appl
Microbiol, Vol. 95, No. 4, pp. 847-52.
Lynd, L.R., Cushman, J.H., Nichols, R.J. & Wyman, C.E. (1991). Fuel
Ethanol from Cellulosic Biomass. Science, Vol. 251, No. 4999, pp.
1318-1323.
Madhavan A, T.S., Ushida K, Kanai D, Katahira S, Srivastava A, Fukuda
H, Bisaria VS, Kondo A (2008). Xylose isomerase from polycentric
fungus Orpinomyces: gene sequencing, cloning and expression in
Saccharomyces cerevisiae for bioconversion of xylose to ethanol.
Appl Microbiol Biotechnol doi:10.1007/s00253-008-1794-6.
Matsushika, A., Inoue, H., Kodaki, T. & Sawayama, S. (2009a). Ethanol
production from xylose in engineered Saccharomyces cerevisiae
strains: current state and perspectives. Appl Microbiol Biotechnol,
Vol. 84, No. 1, pp. 37-53.
Matsushika, A., Inoue, H., Murakami, K., Takimura, O. & Sawayama, S.
30
(2009b). Bioethanol production performance of five recombinant
strains of laboratory and industrial xylose-fermenting
Saccharomyces cerevisiae. Bioresour Technol, Vol. 100, No. 8, pp.
2392-8.
Matsushika, A., Inoue, H., Watanabe, S., Kodaki, T., Makino, K. &
Sawayama, S. (2009c). Efficient bioethanol production by a
recombinant flocculent Saccharomyces cerevisiae strain with a
genome-integrated NADP+-dependent xylitol dehydrogenase gene.
Appl Environ Microbiol, Vol. 75, No. 11, pp. 3818-22.
Matsushika, A. & Sawayama, S. (2008). Efficient bioethanol production
from xylose by recombinant saccharomyces cerevisiae requires
high activity of xylose reductase and moderate xylulokinase
activity. J Biosci Bioeng, Vol. 106, No. 3, pp. 306-9.
Millichip RJ, D.H. (1989). Large-scale ethanol production from Milo
(Sorghum) using Zymomonas mobilis. Process Biochem
24:141–145.
Moes CJ, P.I., van Zyl WH (1996). Cloning and expression of the
Clostridium thermosulfurogenes D-xylose isomerase gene (xylA)
in Saccharomyces cerevisiae. Biotechnol Lett 18:269–274.
Ni, H., Laplaza, J.M. & Jeffries, T.W. (2007). Transposon mutagenesis to
improve the growth of recombinant Saccharomyces cerevisiae on
D-xylose. Appl Environ Microbiol, Vol. 73, No. 7, pp. 2061-6.
Ranjbar, B. & Gill, P. (2009). Circular dichroism techniques:
biomolecular and nanostructural analyses- a review. Chem Biol
Drug Des, Vol. 74, No. 2, pp. 101-20.
Richard, P., Toivari, M.H. & Penttila, M. (2000). The role of xylulokinase
in Saccharomyces cerevisiae xylulose catabolism. FEMS Microbiol
Lett, Vol. 190, No. 1, pp. 39-43.
Rizzi M, E.P., Bui-Thanh NA, Dellweg H (1988). Xylose fermentation by
yeasts. 4. Purification and kinetic studies of xylose reductase from
Pichia stipitis. Appl Microbiol Biotechnol 29:148–154.
Rizzi M, H.K., Erlemann P, Bui-Thanh NA, Dellweg H (1989).
Purification and properties of the NAD+-xylitol-dehydrogenase
from the yeast Pichia stipitis. J Ferment Bioeng 67:20–24.
Rodriguez-Pena, J.M., Cid, V.J., Arroyo, J. & Nombela, C. (1998). The
YGR194c (XKS1) gene encodes the xylulokinase from the
budding yeast Saccharomyces cerevisiae. FEMS Microbiol Lett,
Vol. 162, No. 1, pp. 155-60.
31
Rodriguez-Pena JM, C.V., Arroyo J, Nombela C (1998). The YGR194c
(XKS1) gene encodes the xylulokinase from the budding yeast
Saccharomyces cerevisiae. FEMS Microbiol Lett 162:155–160.
Sarthy, A.V., McConaughy, B.L., Lobo, Z., Sundstrom, J.A., Furlong, C.E.
& Hall, B.D. (1987). Expression of the Escherichia coli xylose
isomerase gene in Saccharomyces cerevisiae. Appl Environ
Microbiol, Vol. 53, No. 9, pp. 1996-2000.
Shamanna, D.K. & Sanderson, K.E. (1979). Uptake and catabolism of
D-xylose in Salmonella typhimurium LT2. J Bacteriol, Vol. 139,
No. 1, pp. 64-70.
Skotnicki, M.L., Lee, K.J., Tribe, D.E. & Rogers, P.L. (1982). Genetic
alteration of Zymomonas mobilis for ethanol production. Basic Life
Sci, Vol. 19, pp. 271-90.
Tantirungkij M, N.N., Seki T, Yoshida T (1993). Construction of
xylose-assimilating Saccharomyces cerevisiae. J Ferment Bioeng
75:83–88.
Toivari, M.H., Ruohonen, L., Miasnikov, A.N., Richard, P. & Penttila, M.
(2007). Metabolic engineering of Saccharomyces cerevisiae for
conversion of D-glucose to xylitol and other five-carbon sugars and
sugar alcohols. Appl Environ Microbiol, Vol. 73, No. 17, pp.
5471-6.
Van Vleet, J.H. & Jeffries, T.W. (2009). Yeast metabolic engineering for
hemicellulosic ethanol production. Curr Opin Biotechnol, Vol. 20,
No. 3, pp. 300-6.
Verduyn, C., Van Kleef, R., Frank, J., Schreuder, H., Van Dijken, J.P. &
Scheffers, W.A. (1985). Properties of the NAD(P)H-dependent
xylose reductase from the xylose-fermenting yeast Pichia stipitis.
Biochem J, Vol. 226, No. 3, pp. 669-77.
Wahlbom, C.F., van Zyl, W.H., Jonsson, L.J., Hahn-Hagerdal, B. & Otero,
R.R. (2003). Generation of the improved recombinant
xylose-utilizing Saccharomyces cerevisiae TMB 3400 by random
mutagenesis and physiological comparison with Pichia stipitis CBS
6054. FEMS Yeast Res, Vol. 3, No. 3, pp. 319-26.
Walfridsson M, A.M., Bao X, Hahn-Hägerdal B (1997). Expression of
different levels of enzymes from the Pichia stipitis XYL1 and
XYL2 genes in Saccharomyces cerevisiae and its effects on
product formation during xylose utilisation. Appl Microbiol
Biotechnol 48:218–224.
32
Walfridsson M, B.X., Anderlund M, Lilius G, Bülow L, Hahn-Hägerdal B
(1996). Ethanolic fermentation of xylose with Saccharomyces
cerevisiae harboring the Thermus thermophilus xylA gene, which
expresses an active xylose (glucose) isomerase. Appl Environ
Microbiol 62:4648–4651.
Wang, P.Y., and H. Schneider (1980). Growth of yeasts on D-xylulose.
Can. J. Microbiol. 26:1165–1168.
Wang VW, J.T. (1990). Purification and properties of xylitol
dehydrogenase from the xylose-fermenting Candida shehatae. Appl
Biochem Biotechnol 26:197–206.
Yong-Su Jin, H.N., Jose M. Laplaza, Thomas W. Jeffries (2003). Optimal
Growth and Ethanol Production from Xylose by Recombinant
Saccharomyces cerevisiae Require Moderate D-Xylulokinase
Activity. APPLIED AND ENVIRONMENTAL MICROBIOLOGY,
Jan. 2003, p. 495–503.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
系統版面圖檔 系統版面圖檔