跳到主要內容

臺灣博碩士論文加值系統

(44.200.169.3) 您好!臺灣時間:2022/12/01 01:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:邱清華
研究生(外文):Chiu, Ching-Hua
論文名稱:次世代高效率氮化鎵發光二極體之奈米製程與元件特性之研究
論文名稱(外文):Study of Nanofabrication Techniques and Device Characteristics of High Efficiency GaN-based Light Emitting Diodes for Next-generation Solid State Lighting
指導教授:郭浩中郭浩中引用關係余沛慈余沛慈引用關係
指導教授(外文):Kuo, Hao-ChungYu, Peichen
學位類別:博士
校院名稱:國立交通大學
系所名稱:光電工程系所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:98
語文別:英文
論文頁數:129
中文關鍵詞:氮化鎵發光二極體內部量子效率光萃取效率奈米柱
外文關鍵詞:GaN light emitting diodesinternal quantum efficiencylight extraction efficiencynanorod
相關次數:
  • 被引用被引用:0
  • 點閱點閱:302
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:3
近年來,三五族半導體尤其是氮化鎵材料系列由於發光波長涵蓋了短波長的紫外光波段和大部分的可見光,其相關的光電元件如發光二極體、雷射和光偵測器等元件被大量的研究,同時這些光電元件被大量的應用在新一代光儲存、平面顯示、生物檢測和照明等光電產品中,也由於新的應用產品刺激下,氮化鎵材料的研究越來越受到大家的重視。
本論文主要在於開發製作氮化鎵奈米結構並應用奈米結構於氮化鎵發光二極體元件上,同時研究奈米發光元件及結構之製作、材料特性、及光電特性。主要分為四個部分,第一部份為開發一個新穎性的奈米結構製作技術,用以製作氮化鎵奈米柱結構。利用調變製程參數得到不同形狀的奈米結構,針對不同深度、不同直徑大小的奈米助陣列探討其發光特性、抗反射特性,同時利用valence force field (VFF)模型瞭解氮化鎵材料在應用釋放過程中對材料特性的影響為何。第二部分為應用奈米結構在氮化鎵發光二極體上,利用表面蝕刻技術,製作高深寬比的氮化鎵奈米結構提升元件出光效率。在考量到蝕刻對元件可能的電性影響後,我們嘗試了化學合成的方式,在元件表面上化學合成氧化鋅奈米柱結構降低表面全反射以提升元件萃取效率。最後我們結合了再磊晶的技術,在SiO2奈米柱結構上進行再磊晶同時改善元件內部量子效率和光萃取效率。
在本論文的後半部,我們針對氮化鎵發光二極體的內部量子效率進行研究,採用了圖案化基板的方式提升元件的內部量子效率。在第三部分,我們改善了傳統光學方法量測內部量子效率的方法,首先調變激發雷射的光波長,接著利用一連串的變溫和變功率光學方法定義並量測元件內部量子效率,同時分析了在光學量測過程中內部載子發光機制等特性。在本論文的最後一部分,延續內部量子效率的研究議題,我們建立了一套可控制環境溫度的電注入量測設備,這將幫助我們進行一系列不同溫度和電流注入下的效率量測,不僅可幫助我們更瞭解內部量子效率的變化情形,更可對高電流注入下效率急降的有更深入的瞭解。同時,利用APSYS模擬軟體模擬低溫下元件的行為,對次世代高效率元件的設計和製作有絕對的幫助。

Recently, Nitride (III) light-emitting diodes (LEDs) with emission wavelength ranging from ultraviolet to the short-wavelength part of the visible spectrum have been intensely developed in the past 10 years. Due to the rapid developing in efficiency improvement, applying the opto-electronic device such as LED, laser and photo-detectors into our life becomes possible. Besides, because of the next generation application in optical storage, flat display, bio-detection and general lighting, the research about GaN lighting devices attracted more and more attentions.
In this study, we mainly focus on developing GaN nano structures and applying these nano structures on GaN LED. The device fabrication process, efficiency improvement, material and opto-electronic characteristics of the nano-structured GaN-based LEDs will be also discussed. The entire dissertation could be divided into four parts. The first is developing a novel GaN nano structure fabrication process. By well control the metal depositing thickness, annealing temperature, etching conditions, we could achieve different length and diameter GaN nanorod arrays. The emission and anti0refelction characteristics of the fabricated nanorod structures will be discussed. Besides, we applied the valence force field model to help us to realize the influence of strain relaxation within GaN multiple quantum wells (MQWs).
The second part of this dissertation is applying these nano structures on the surface of GaN-based LEDs to improve the lighting efficiency. We first utilizing etching method assisted by spinning nano spheres on device surface serving as masks to form high-aspect-ratio GaN nanorods. However, considered the possible deterioration of reduced current spreading paths, we then adopted a bottom-up method to synthesize ZnO nanorod on the surface to suppress the total internal reflection and improve the light extraction efficiency. The third method we used to improve the device performance is combing the overgrowth technique on nano-patterned sapphire substrate to improve the internal quantum efficiency (IQE) and light extraction efficiency simultaneously.
At the later half of this dissertation, we focused on the studying of the IQE performance of GaN-based LEDs. We grow our LED structure on the patterned sapphire substrate (PSS) and an increment in IQE is expected. In the third part of this study, we modified the traditional method for IQE measurement. We firstly modify the excitation laser wavelength and a serious of power and temperature dependent study was performed to define the IQE of LED device. The internal carrier lighting mechanism was also studied. The last part of this dissertation is based on the third part but a electrical injection setup was established. This instrument enabled us doing a serious of temperature and injection current dependent measurement. It not only helped us understand more about the IQE, but also well for discovering the origins of efficiency droop phenomenon. Besides, simulation software of APSYS was also performed to simulate the device performance under different temperature. The output of this dissertation provided a great help on realizing the solid state lighting in next generation.

Abstract (in Chinese)…………………………………………………………………………...i
Abstract (in English)………………………………………………………………………...iii
Acknowledgement……………………………………………………………………………..v
Content………………………………………………………………………………….......vii
List of Figures ..………………………………………………………………………….…ix
Chapter 1 Introduction.......................................................................................1
1-1 Wide bandgap III-N materials…....…………………………..………………...1
1-2 GaN-based LEDs…………………..…………………………………..1
1-3 GaN Nano-structures…………………………………………………………2
1-4 Overview of this thesis…………………………………………………………..3
Reference
Chapter 2 Optical Properties and Strain Analysis of InGaN/GaN Nanorods........................................................................................9
2-1 Fabrication Process.……………………………………………………………10
2-2 Height-dependent Antireflection Properties………………….......12
2-3 Size-dependent Optical Characteristics and Strain Relaxation Analysis……15
Reference
Chapter 3 High Efficiency Nano-structured GaN-based LEDs…………....38
3-1 High-aspect-ratio GaN Nanorod Vertical-LED……...…………………………38
3-1.1 Fabrication of high-aspect-ratio GaN nanorod vertical-LEDs………......40
3-1.2 Characteristics of high-aspect-ratio GaN nanorod vertical-LEDs…........40
3-2 Integrating ZnO Nanorod Arrays on GaN-Based Vertical-LEDs………...........42
3-2.1 Synthesize of ZnO nanorod array..............................................................42
3-2.2 Characteristics of integrating ZnO nanorod vertical-LEDs......................43
3-3 GaN-based LEDs Regrowth on Nano-Patterned Sapphire Substrate…….……44
3-3.1 Fabrication process of SiO2 NAPSS........................................................45
3-3.2 Characteristics of GaN-based LEDs on SiO2 NAPSS..............................45
Reference
Chapter 4 Improvement of Internal Quantum Efficiency by LED Grown on Patterned Sapphire Substrate…………...……........................…66
4.1 Theory of IQE Measurement Method………....……………....………………...66
4.2 Experiments….……...................……………......................................................69
4.3 Results and Discussion…..……………………....................................................69
Reference
Chapter 5 Electroluminescence and Efficiency Droop Analysis of LED Grown on Patterned Sapphire Substrate...................................92
5.1 Temperature Dependent EL Measurement Instrument……......……………….92
5.2 Sample Preparation………………………...…….……………………….........93
5.3 Results and Discussion........................................................................................94
5-3.1 Temperature dependent EL characteristics................................................94
5-3.2 Equivalent circuit analysis for temperature dependent EL efficiency.......98
5-3.3 Comparison of IQE Measurement by PL and EL Methods.......................99
5-3.4 APSYS simulation...................................................................................100
Reference
Chapter 6 Summary…………………………......…………………..............123
Publication List................................................................................................124

Chap 1 Reference:
1. S. Nakamura, M. Senoh, N. Isawa, and S. Nagahama, Japan Journal of Applied Physics 34, L797 (1995)
2. S. Nakamura, T. Mukai, and M. Senoh, Applied Physics Letter 64, 1687 (1994)
3. S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoju, Applied Physics Letter 70, 868 (1997)
4. S. Nakamura, Science 281, 956 (1998)
5. Y. Arakawa, IEEE Journal of Selected Topics in Quantum Electronics 8, 823 (2002)
6. H. Morkoc, Nitride Semiconductors and Devices (Springer Verlag, Heidelberg), 1999
7. S. N. Mohammad, and H. Morkoc, Progress in Quantum Electronics 20, 361, (1996)
8. F. Bernardini and V. Fiorentini, Physica Status Solidi B 216, 391 (1999)
9. A. Hangleiter, J. S. Im, H. Kollmer, S. Heppel, J. Off, and F. Scholz, MRS Internet Journal of Nitride Semiconductor Research 3, 15 (1998)
10. H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, Applied Physics Letter 48, 353 (1986)
11. S. Nakamura, Japan Journal of Applied Physics 30, L1705 (1991)
12. S. Nakamura, T. Mukai, M, Senoh, S. Nagahama, and N. Iwasa, Journal of Applied Physics 74, 3911 (1993)
13. H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, Applied Physics Letter 48, 353 (1986)
14. H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, Japan Journal of Applied Physics 28, L2112 (1989)
15. S. Nakamura, S. Iwasa, M. Senoh, US patent 5306662

Chap 2 Reference:
1 C. H. Chiu, M. H. Lo, T. C. Lu, P. Yu, H. W. Huang, H. C. Kuo, and S. C. Wang, IEEE Journal of Lightwave Technology 26, 1445 (2008).
2 W. Q. Han, S. S. Fan, Q. Q. Li, and Y. D. Hu, Science 277, 1287 (1997).
3 H. M. Kim, D. S. Kim, T. W. Kang, Y. H. Cho, and K. S. Chung, Applied Physics Letter 81 2193, (2002).
4 C. C. Yu, C. F. Chu, J. Y. Tsai, H. W. Huang, T. H. Hsueh, C. F. Lin, and S. C. Wang, Japan Journal of Applied Physics 41, L910 (2002).
5 W. Q. Han and A. Zettl, Applied Physics Letter 80, 303 (2002).
6 H. S. Chen, D. M. Yeh, Y. C. Lu, C. Y. Chen, C. F. Huang, T. Y. Tang, C. C. Yang, C. S.Wu, and C. D. Chen, Nanotechnology 17, 1454 (2006).
7 J. C. Johnson, H. J. Choi, K. P. Knutsen, R. D. Schaller, P. D. Yang, and R. J. Saykally, Nature Material 1 106 (2002).
8 S. Han, W. Jin, D. H. Zhang, T. Tang, C. Li, X. L. Liu, Z. Q. Liu, B. Lei, and C. W. Zhou, Chemical Physics Letter 389, 176 (2004).
9 H. M. Kim, Y. H. Cho, H. Lee, S. I. Kim, S. R. Ryu, D. Y. Kim, T.W. Kang, andK. S. Chung, Nano Letter 4 1059 (2004).
10 M. S. Son, S. I. Im, Y. S. Park, C. M. Park, T.W. Kang, and K. H. Yoo, Material Science and Engineering C-Biomimetic and Supramolecular System 26, 886 (2006).
11 J. D. Carey, L. L. Ong and S. R. P. Silva, Nanotechnology 14, 1223 (2003).
12 D. S. Hobbs, B. D. MacLeod, and J. R. Riccobono, Proc. of SPIE 6545 65450Y-1-14, (2007)
13 G. R. Lin, Y. C. Chang, E. S. Liu, H. C. Kuo, and H. S. Lin, Applied Physics Letter 90, 181923 (2007).
14 Y. Kanamori, K.-I. Kobayashi, H. Yugami, K. Hane, Japan Journal of Applied Physics 42, 4020 (2003)
15 Y. Zhao, J. Wang and G. Mao, Optics Letter 30, 1885 (2005)
16 S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada , T. Matsushita, H. Kiyoku, and Y. Sugimoto, Japan Journal of Applied Physics 35, L74 (1996).
17 Y. Du. S. Han, W. Jin, C. Zhou, and A. F. J. Levi, Applied Physics Letter 83, 996-998 (2003)
18 P. Yu, C. H. Chiu, Y.-R.Wu, H. H.Yen, J. R. Chen, C. C. Kao, H.-W. Yang, H. C. Kuo, T. C. Lu, W. Y. Yeh, and S. C. Wang, Applied Physics Letter 93, 081110 (2008).
19 Y.-R. Wu, M. Singh, and J. Singh, Journal of Applied. Physics 94, 5826 (2003).
20 O. Ambacher, J. Majewski, C. Miskys, A. Link, M. Hermann, M. Eickhoff, M. Stuzmann, F. Bernardini,V. Fiorentini,V. Tilak,B. Schaff, and L. F. Eastman, Condens. Material 14, 3399 (2002).

Chap 3 Reference:
1 Y. Narukawa, I. Niki, K. Izuno, M. Yamada, Y. Murazki, and T. Mukai, Japan Journal of Applied Physics 41, L371 (2002).
2 E. F. Schubert and J. K. Kim, Science 308, 1274 (2005).
3 C. Huh, K. S. Lee, E. J. Kang, and S. J. Park, Journal of Applied Physics 93, 9383 (2003).
4 H. R. Shanks, P. D. Maycock, P. H. Sidles, and G. C. Danielson, Physics Review, 130, 1743 (1963).
5 C. F. Chu, F. I. Lai, J. T. Chu, C. C. Yu, C. F. Lin, H. C. Kuo, and S. C. Wang, Journal of Applied Physics 95, 3916 (2004).
6 Y. F. Huang, S. Chattopadhyay, Y. J. Jen, C. Y. Peng, T. A. Liu, Y. K. Hsu, C. L. Pan, H. C. Lo, C. H. Hsu, Y. H. Chang, C. S. Lee, K. H. Chen, and L. C. Chen, Nature Nanotechnology 2, 770 (2007).
7 C. C. Lin, C. S. Hsiao, S. Y. Chen, and S. Y. Cheng, Journal of Electrochemical Society 151, G285 (2004).
8 S. C. Liou, C. S. Hsiao, and S. Y. Chen, Journal Crystal Growth 274, 438 (2005)
9 J. Zhong, H. Chen, G. Saraf, Y. Lu, C. K. Choi, J. J. Song, D. M. Mackie, and H. Shen, Applied Physics Letter 90, 203515 (2007).
10 Y. J. Lee, H. C. Kuo, T. C. Lu, and S. C. Wang, IEEE Journal of Quantum Electronics 42, 1196 (2006).
11 Z. H. Feng, Y. D. Qi, Z. D. Lu, and K. M. Lau, Journal of Crystal Growth 272, 327(2004).
12 D. S. Wuu, W. K. Wang, K. S. Wen, S. C. Huang, S. H. Lin, R. H. Horng, Y. S. Yu, and M. H. Pan, Journal of Electrochemical Society 153, G765 (2006).
13 T. Nagai, T. Kawashima, M. Imura, M. Iwaya, S. Kamiyama, H. Amano,and I. Akasaki, Journal of Crystal Growth 298, 288 (2007).
14 H. K. Cho, J. Y. Lee, K. S. Kim, G. M. Yang, J. H. Song, and P. W. Yu, Journal of Applied Physics 89, 2617 (2001).
15 K. Kusakabe, A. Kikuchi, and K. Kishino, Japan Journal of Applied Physics 40, L192 (2001).
16 K. Ueda, Y. Tsuchida, N. Hagura, F. Iskandar, K. Okuyama, and Y. Endo, Applied Physics Letter 92, 101101 (2008).

Chap 4 Reference:
[1] Y. J. Lee, H. C. Kuo, S. C. Wang, T. C. Hsu, M. H. Hsieh, M. J. Jou, and B. J. Lee, IEEE Photonic Technology Letter 17, 2289 (2005).
[2] T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, Applied Physics Letter 84, 855 (2004).
[3] S. Fan, P.R. Villeneuve, J.D. Joannopoulos, and E.F. Schubert, Physics Review Letter 78, 3294 (1997).
[4] T. N. Oder, K. H. Kim, J. Y. Lin, and H. X. Jiang, Applied Physics Letter 84, 466 (2004).
[5] C. C. Kao, H. C. Kuo, H. W. Huang, J. T. Chu, Y. C. Peng, Y. L. Hsieh, C. Y. Luo, S. C. Wang, C.C. Yu and C. F. Lin, IEEE Photonics Technology Letters 17, 19 (2005).
[6] Y. J. Lee, J.M.Hwang, T. C. Hsu, M. H. Hsieh, M. J. Jou, B. J. Lee, T.C. Lu, H.C. Kuo, and S.C. Wang, EEE Photonic Technology Letter 18, 724 (2006).
[7] S. Watanabe, N. Yamada, M. Nagashima, Y. Ueki, C. Sasaki, Y. Yamada, T. Taguchi, K. Tadatomo, H. Okagawa, and H. Kudo, Applied Physics Letter 83, 4906 (2003).
[8] C. Netzel, T. Wernicke, U. Zeimer, F. Brunnera, M. Weyers, M. Kneissl, Journal of Crystal Growth 310, 8 (2008)
[9] Y. J. Lee, T.C. Lu, H.C. Kuo, S.C. Wang, K. W. Ng, K. M. Lau, Z. P. Yang, Allan S.P. Chang, and S. Y. Lin, IEEE Journal of Lightwave Technology 26, 1455 (2008).
[10] Y. J. Lee, J.M. Hwang, T. C. Hsu, M. H. Hsieh, M. J. Jou, B. J. Lee, T.C. Lu, H.C. Kuo, and S.C. Wang, IEEE Photonic Technology Letter 18, 1152 (2006) .
[11] I. Ma’rtil, E. Redondo, and A. Ojeda, Journal of Applied Physics 81, 2442 (1997).
[12] X. A. Cao, E. B. Stokes, P. M. Sandvik,, S. F. LeBoeuf, J. Kretchmer, and D. Walker, IEEE Electronic Device Letter 23, 535 (2002).
[13] S. Chichibu, T. Sota, K. Wada, and S. Nakamura, Journal of Vacuum Science and Technology B 16, 2204 (1998).
[14] T. Wang, D. Nakagawa, J. Wang, T. Sugahara, and S. Sakai, Applied Physics Letter73, 3571 (2007).
[15] T. Kuroda, and A. Tackeuchi, Journal of Applied Physics 92, 3071 (2002).
[16] Y. Narukawa, S. Saijou, Y. Kawakami, S. Fujita, T. Mukai, and S. Nakamura, Applied Physics Letter 74, 558 (1999).
[17] Y. H. Cho, G. H. Gainer, A. J. Fischer, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, Applied Physics Letter 73, 1370 (1998).
[18] C. C. Yu, C. F. Chu, J. Y. Tsai, C. F. Lin and S. C. Wang, Journal of Applied Physics 92, 1881 (2002)

Chap 5 Reference:
[1] Hori, D. Yasunaga, A. Satake, and K. Fujiwara, Applied Physics Letter 79, 3723 (2001)
[2] C. M. Lee, C. C. Chuo, J. F. Dai, X. F. Zheng, and J. I. Chyi, Journal of Applied Physics 89, 6554 (2001)
[3] C. L. Yang, L. Ding, J. N. Wang, K. K. Fung, W. K. Ge, H. Liang, L. S. Yu, Y. D. Qi, D. L. Wang, Z. D. Lu, and K. M. Lau, Journal of Applied Physics 98, 023703 (2005)
[4] S. Grzanka, G. Franssen, G. Targowski, K. Krowicki, T. Suski, R. Czemecki, P. Perlin, and M. Leszczyski, Applied Physics Letter 90, 103507 (2007)
[5] P. Bakmiwewa, A. Hori, A. Satake, K. Fujiwara, Physica E 21, 636 (2004)
[6] H. Masui, T. Ive, M. C. Schmidt, H. Sato, H. Asamizu, S. nakamura, and S. P. Denbaars, Japan Journal of Applied Physics 47, 2112 (2008)


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊