(3.237.178.91) 您好!臺灣時間:2021/03/02 22:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃怡菁
研究生(外文):Huang, Yi-Ching
論文名稱:應用於2D/3D切換影像之快速反應菲涅爾液晶透鏡
論文名稱(外文):Fast Response Multi-electrode Driving Fresnel Liquid LensFor Auto-stereoscopic 2D/3D Switching Display
指導教授:謝漢萍謝漢萍引用關係黃乙白黃乙白引用關係
指導教授(外文):Shieh, Han-PingHuang, Yi-Pai
學位類別:碩士
校院名稱:國立交通大學
系所名稱:光電工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:英文
論文頁數:62
中文關鍵詞:液晶透鏡快速反應快速切換裸眼式3維成像2維/3維顯示器
外文關鍵詞:liquid crystal lensfast responsefast switchingautostereoscopic2D/3D display
相關次數:
  • 被引用被引用:0
  • 點閱點閱:785
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:168
  • 收藏至我的研究室書目清單書目收藏:1
為了得到更自然的立體影像,近年來已有許多專家及廠商投入立體顯示器的發展。大多數立體顯示器使用固定式的光學元件,但此種顯示器僅能提供3D影像,無法提供2D影像。因此,可切換2D、3D影像顯示器的發展便顯得重要。
本論文的設計目標為低驅動電壓且能自由的快速切換於2D影像與3D影像的光學元件(多電極菲涅爾液晶透鏡,MeD-Fresnel LC lens)。在模擬中,藉由設計出其最佳結構,降低液晶層厚度達到可快速反應之Fresnel透鏡曲線。實作後,量測結果顯示在相同焦距下,MeD-Fresnel LC lens的操作電壓5伏特遠低於傳統液晶透鏡的30伏特;而MeD-Fresnel LC lens可在低於1秒的時間內快速有效聚焦,較傳統液晶透鏡的4~10秒快速地多。若在操作電壓時搭配過電壓方式(Over-Drive method),MeD-Fresnel LC lens的反應時間可大大再減低至僅0.2秒。故此MeD-Fresnel LC lens具有低驅動電壓、快速切換2D、3D影像等優點。較現行之相關技術更易於在立體顯示器上實現。

Recently, many researchers invest in developing 3D display technology to produce more natural images from displays. Since most of display applications use the fixed optical components to display 3D images, the 2D images cannot be provided by the same displays. Thus, a 2D/3D switchable display is needed.
 In this thesis, we designed an optical component which was driven by low operating voltage and can switch between 2D and 3D modes within a fast rate. In simulation, an optimized structure was designed to fit the Fresnel lens-like distribution to reduce the cell gap and achieve a fast switching rate. In experiment, the measurement result indicated that the Fresnel lens-like distribution and a fast switching rate (less than 1s) without using over-drive method were both achieved. Besides, with over-drive method, the switching time could be reduced to 0.2s, which was much shorter than the conventional structures (~ 4~10s). Moreover, the operating voltage (~5volts) was much lower than the conventional structures (~30volts).
 In conclusion, the 3D display with the proposed structure not only has effective focusing ability and low operating voltage, but fast switching rate.

Chapter 1 1
1.1 Preface 1
1.2 Principle of 3D image 2
1.3 3D display technologies 4
1.3.1 Stereoscopic displays 5
1.3.2 Auto-stereoscopic displays 5
1.3.3 Multiplexed 2D type display 5
1.3.4 2D/3D switching methods 9
1.4 Introduction to liquid crystal 13
1.5 Liquid crystal lens (LC lens) 15
1.6 LC lens with 2D/3D switching 18
1.6.1 Active LC lenticular lens 19
1.6.2 Polarization active micro-lens 20
1.6.3 Multi-electrode driven liquid crystal lens (MeD-LC Lens) 21
1.7 Motivation and objective 22
1.8 Organization 22
Chapter 2 23
2.1 Introduction 23
2.2 Fabrication process 23
2.3 Measurement system 29
Chapter 3 32
3.1 Introduction to MeD-Fresnel LC lens 32
3.2 Design of MeD-Fresnel LC lens 33
3.2.1 Fresnel lens 35
3.2.2 Simulation steps 35
3.2.3 Simulation result 36
3.3 Discussion 40
3.4 Summary 42
Chapter 4 43
4.1 Introduction 43
4.2 Measurement results 43
4.2.1 Reconstruction of the MeD-Fresnel LC lens 44
4.2.2 Operating voltage and response time 45
4.2.3 Crosstalk phenomenon 50
4.3 Summary 52
Chapter 5 54
5.1 Conclusions 54
5.2 Future work 55
5.2.1 Simple circuit fabrication 55
5.2.2 Full resolution 3D image 56
Reference 60

[1] J. Mansson, “Stereovision: A model of human stereopsis,” Lund Univ. CongnitiveScience, Tech. Rep., 1998.
[2] E. Edirisinghe, et al., “Stereo image, an emerging technology,” SSGRR, L’Aquila,Italy, 2000.
[3] N. Holliman, “3D Display System,” 2005.
[4] L. Hill, et al., “Invited paper: 3-D Liguid Crystal Displays and Their Applications,” IEEE 06’, Vol. 94, No. 3
[5] J. S. Kollin, et al., ”Real-Time Display of 3-D Computed Holograms by Scanning the Image of an Acoustic-Optic Modulator,” SPIE 90’, Vol. 1212, pp.174.
[6] “Laser Based 3D Volumetric Display System,” US Patent No. 5,854,613, 1998.
[7] K. Toyooka, et al., SID’01, pp.174.
[8] T. Sasagawa, et al., ”Dual Directional Backlight for Stereoscopic LCD”, SID’03, pp.399.
[9] Y. M. Chu et al., JSID 05’, No.13, pp.875.
[10] K. W. Chien, et al., Appl. Opt. 06’, No.45, pp.3106.
[11] L. Lipton, et al., SPIE 02’, No.4660, pp.229.
[12] G. Woodgate, et al., “Flat panel autostereoscopic displays-characterization and enhancement,” SPIE 00’, Stereoscopic Displays and Virtual Reality Systems VII, Vol. 3957, pp.153-164.
[13] D. Takemori, et al., SID’95, pp.55.
[14] H. Morishima, et al., “Rear cross lenticular 3D display without eyeglasses,” SPIE 98’, Stereoscopic Displays and Virtual Reality Systems VII, Vol.3295, pp.193-202.
[15] C.V. Berkel, et al., “Characteisation and optimization of 3D-LCD module design,” SPIE 97’, Vol.3012, pp.179-187.
[16] J. Young, et al., “Three-dimensional image methods based on multiview images,” JDT 05’, Vol. 1, pp.125-140.
[17] H. Isono, et al. Japanese Pat. Appln.JP03-119889, 1991.
[18] M.G.H Hiddink, et al., “Locally switchable 3D displays”, SID 06’, pp.1142-1145.
[19] H.K. Hong, et al., “Autostereoscopic 2D/3D switching display using electric-field-driven LC lens (ELC Lens)”, SID 08’, pp.348-351.
[20] G.J. Woodgate, et al., “A new architecture for high resolution autostereoscopic 2D/3D displays using free-standing liquid crystal microlenses”, SID 05’, pp.378-381.
[21] G.J. Woodgate, et al., “Key design issues for autostereoscopic 2D/3D displays”, Euro. Display 05’, pp.1-4.
[22] S.J. Battersby, “Auto-stereoscopic Display Apparatus,” US6069650, 2000.
[23] G.J. Woodgate, et al., “High Efficiency Reconfigurable 2D/3D Autostereoscopic Display”, SID 03’, Vol.34, pp.394-397.
[24] W.L. IJzerman, et al., “Design of 2D/3D switchable displays”, SID 05’, pp.98-101.
[25] S.T. Kowel, et al., “Focusing by electrical modulation of refraction in a liquid crystal cell,” Applied Optics 84’, Vol.23, No.2, pp.278-289.
[26] P. Yeh, et al., Optics of Liquid Crystal Displays, Chapter 4, J. Wiley and Sons, New York, 1999.
[27] GRINTECH, http://www.grintech.de.
[28] E. Hecht, Optics (Forth Edition), Addison Wesley, 2002.
[29] Y.P. Huang, et al., “High Resolution Autostereoscopic 3D Display with Scanning Multi-Electrode Driving Liquid Crystal (MeD-LC) Lens,” SID 09’, Vol.38, pp.336-339.
[30] D.K. Yang, et al., Fundamentals of Liquid Crystal Devices, John Wiley & Sons, 2006.
[31] R. Leutz, et al., Nonimaging Fresnel Lenses: design and performance of solar concentrators, Springer, pp.35-73, 2001.
[32] A. Davis, et al., “Optical Design using Fresnel Lenses--Basic Principles and some Practical Examples,” Optic & Photonic 07’, No. 4, pp.52-55.
[33] Y.H. LIN, et al., “Tunable-Focus Cylindrical Liquid Crystal Lenses”, JJAP 05’, Vol. 44, No. 1, pp.243-244.
[34] H.K. Hong, et al., “Electric-field-driven LC lens for 3D/2D autostereoscopic display”, JSID 09’, pp.399-406.
[35] S.I. Uehara, et al., “31.1: Reduction and Measurement of 3D Moir? Caused by Lenticular Sheet and Backlight”, SID 09’, pp.432-435.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔