(3.238.186.43) 您好!臺灣時間:2021/02/28 15:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蔡宗翰
研究生(外文):Tsai, Tzung-Han
論文名稱:以聚乙二醇為添加物製作高效能負型有機薄膜電晶體
論文名稱(外文):High-Performance n-channel organic thin-film transistors incorporating poly(ethylene glycol)
指導教授:陳方中陳方中引用關係
指導教授(外文):Chen, Fang-Chung
學位類別:碩士
校院名稱:國立交通大學
系所名稱:光電工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:英文
論文頁數:56
中文關鍵詞:負型有機薄膜電晶體聚乙二醇溶液製程
外文關鍵詞:PCBMPEGn-channel OTFTssolution process
相關次數:
  • 被引用被引用:0
  • 點閱點閱:133
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:12
  • 收藏至我的研究室書目清單書目收藏:0
本研究選用聚乙二醇,將其添加至負型[6,6]-phenyl C61-butyric acid methyl ester (PCBM) 有機薄膜電晶體之主動層中,研究其對元件特性之影響。由實驗結果可知添加適當比例之高分子量聚乙二醇能夠有效的提高元件效能並且表現出較好的穩定性。在本研究中,加入聚乙二醇之元件載子遷移率可由0.014 cm2/Vs 提升至0.044 cm2/Vs,而臨界電壓也可由17V縮小至-2V。在大氣環境下量測,未添加聚乙二醇之元件載子遷移率變為原本之千分之一,而添加聚乙二醇後則為十分之一。這可歸功於聚乙二醇分子與鋁電極產生化學反應,進而減少電子注入障礙。
This study investigates the effect of blending of poly(ethylene glycol) (PEG) into the active layer on the performance of n-channel organic thin-film transistors (OTFTs) based on [6,6]-phenyl C61-butyric acid methyl ester (PCBM). We found that the performance and the stability of the OTFTs could be enhanced after the addition of PEG. The mobility could be improved from 0.014 to 0.044 cm2/Vs, and the threshold voltage shifted from 17V toward to -2V. In the ambient conditions, the mobility of the pristine-PCBM device degraded by three orders. However, the one of the device prepared with PEG only decreased by one order. The enhancement could be attributed into the reduction of the electron injection barrier due to the chemical reactions between PEG molecules and Al atoms of the source/drain electrodes.
中文摘要 i
Abstract ii
謝誌 iii
Contents iv
List of Figures vi
List of Tables viii

Chapter 1 1
Introduction 1
1.1 Preface 1
1.2 Organic Thin-Film Transistors 3
1.2.1 Introduction to Organic Semiconductors 3
1.2.2 Overview of Organic Thin-Film Transistors 3
1.2.3 Overview of n-channel Organic Thin-Film Transistors 4
1.2.4 Introduction to the N-channel Material PCBM 6
1.3 Motivation 7
1.4 Thesis Organization 9
Chapter 2 10
Mechanism and Operation 10
2.1 Structures of Organic Thin Film Transistors 10
2.2 The Charge Carrier Transportation in Organic Semiconductors 11
2.2.1 Preface 11
2.2.2 Polaron and Bipolaron 12
2.2.3 Hopping Model 13
2.2.4 Multiple Trapping and Release Model (MTR) 14
2.3 The Operation of Organic Thin-Film Transistors 14
2.3.1 Energy Level Principle and Carrier Distribution 14
2.3.2 The Methods of Extracting Parameters 18
2.3.3 Contact resistance 20


Chapter 3 21
Experimental and Analysis Methods 21
3.1 Substrate Preparation 21
3.1.1 Preface 21
3.1.2 ITO Patterning Process 21
3.1.3 Cleaning of ITO/Glass Substrate 23
3.1.4 Cleaning of SiO2/Si Substrate 23
3.2 The Materials 24
3.3 Device Fabrication Process of OTFTs 25
3.3.1 Spin-Coating Polymer Dielectric Film 25
3.3.2 Spin-Coating of PCBM/PEG Blends as the Active Layer and Evaporation of Metal Electrodes 25
3.4 Measurements and Analysis of OTFTs 28
3.4.1 Electrical Characteristics 28
3.4.2 Capacitance Analysis 28
3.4.3 Surface Morphology Measurement 28
3.4.4 X-ray Photoelectron Spectroscopy Measurement 30
Chapter 4 32
Results and Discussion 32
4.1 Characteristics of Device Electrical Properties 32
4.1.1 The Effect of Molecular Weight of PEG 32
4.1.2 The Effect of PEG Concentration 35
4.1.3 The Electrical Characteristics Measured in the Atmosphere 38
4.1.4 The Effect of PEG on the Devices Fabricated on PVP/SiO2 Substrate 40
4.2 Morphological Analysis of the Active Films 43
4.3 Analysis of Device Resistances 45
4.4 The Analysis of XPS Measurements 48
Chapter 5 49
Conclusion and Future Work 49
5.1 Conclusion 49
5.2 Future Work 49
Reference 50


1. S. R. Forrest, "The path to ubiquitous and low-cost organic electronic appliances on plastic," Nature 428, 911-918 (2004).
2. F. Ebisawa, T. Kurokawa, and S. Nara, "Electrical-Properties of Polyacetylene Polysiloxane Interface," J. Appl. Phys. 54, 3255-3259 (1983).
3. G. Horowitz, X. Z. Peng, D. Fichou et al., "Role of The Semiconductor Insulator Interface In The Characteristics Of Pi-Conjugated-Oligomer-Based Thin-Film Transistors," Synth. Met. 51, 419-424 (1992).
4. C. D. Dimitrakopoulos and P. R. L. Malenfant, "Organic thin film transistors for large area electronics," Adv. Mater. 14, 99 (2002).
5. C. R. Newman, C. D. Frisbie, D.A. da S. Filho, J. L. Bredas, P. C. Ewbank, and K. R. Mann, "Introduction to Organic Thin Film Transistors and Design of n-Channel Organic Semiconductors," Chem. Mater. 16, 4436-4451 (2004).
6. A. J. Heeger, "Semiconducting and metallic polymers: the fourth generation of polymeric materials," Synth. Met. 125, 23-42 (2002).
7. A. G. MacDiarmid, "A novel role for organic polymers," Synth. Met. 125, 11-22 (2002).
8. G. Horowitz, "Organic field-effect transistors," Adv. Mater. 10, 365 (1998).
9. P.F. Baude, D.A. Ender, M.A. Haase, T.W. Kelley, D.V. Muyres, S.D. Theiss, "Pentacene-based radio-frequency identification circuitry," Appl. Phys. Lett. 82, 3964 (2002).
10. C. D. Sheraw, L. Zhou, J. R. Huang, D. J. Gundlach, T. N. Jackson, M. G. Kane, I. G. Hill, M. S. Hammond, J. Campi, B. K. Greening, J. Francl, and J. West, "Organic thin-film transistor-driven polymer-dispersed liquid crystal displays on flexible polymeric substrates," Appl. Phys. Lett. 80, 1088 (2002).
11. R. Rotzoll, S. Mohapatra, V. Olariu, R. Wenz, M. Grigas, K. Dimmler, O. Shchekin, and A. Dodabalapur, " Radio frequency rectifiers based on organic thin-film transistors," Appl. Phys. Lett. 88, 123502 (2006).
12. L. Zhou, A. Wanga, S. C. Wu, J. Sun, and T. N. Jackson, "All-organic active matrix flexible display," Appl. Phys. Lett. 88, 083502 (2006).
13. G. H. Gelinck, H. E. A. Huitema, E. van Veenendaal, E. Cantatore, L. Schrijnemakers, J. van der Putten, T. C. T. Geuns, M. Beenhakkers, J. B. Giesbers, B. H. Huisman, E. J. Meijer, E. M. Benito, F. J. Touwslager, A. W. Marsman, B. J. E. van Rens, and D. M. de Leeuw, "Flexible active-matrix displays and shift registers based on solution-processed organic transistors," Nat. Mater. 3, 106-110 (2004).
14. J. Zaumseil, and H. Sirringhaus," Electron and Ambipolar Transport in Organic Field-Effect Transistors, "Chem. Rev. 107, 1296 (2007).
15. H. Klauk, M. Halik, U. Zachieschang, G. Schmid, W. Radlik, and W. Weber, "High-mobility polymer gate dielectric pentacene thin film transistors," J. Appl. Phys. 92, 5259 (2002).
16. H. E. Katz, A. J. Lovinger, J. Johnson, C. Kloc, T. Siegrist, W. Li, Y. Y. Lin, and A. Dodabalapur, "A soluble and air-stable organic semiconductor with high electron mobility," Nature 404, 478 (2000).
17. L. L. Chua, J. Zaumseil, J. F. Chang, E. C. W. Ou, P. K. H. Ho, H. Sirringhaus, and R. H. Friend, "General observation of n-type field-effect behaviour in organic semiconductors," Nature 434, 194 (2005).
18. C. Waldauf, P. Schilinsky, M. Perisutti, J. Hauch, and C. J. Brabec, "Solution-Processed Organic n-Type Thin-Film Transistors," Adv. Mater. 15, 2084-2087 (2003).
19. T. D. Anthopoulos, C. Tanase, S. Setayesh, E. J. Meijer, J. C. Hummelen, P. W. M. Blom, and D. M. de Leeuw, "Ambipolar Organic Field-Effect Transistors Based on a Solution-Processed Methanofullerene, "Adv. Mater. Weinheim, Ger. 16, 2174 (2004).
20. M. Chikamatsu, S. Nagamatsu, Y. Yoshida, K. Saito, and K. Yase, "Solution- Processed n-type organic thin-film transistors with high field-effect mobility," Appl. Phys. Lett. 87, 203504 (2005).


21. X. Yang, J. K. J. van Duren, M. T. Rispens, J. C. Hummelen, R. A. J.. Janssen, M.A.J. Michels, J. Loos, "Crystalline organization of a methafullerene as used for plastic solar cell applications, "Adv. Mater. 16 , 802-806, (2004)
22. S. P. Tiwari, E. B. Namdas, V. Ramgopal, D. Fichou, and S. G. Mhaisalkar, "Solution-Processed n-Type Organic Field-Effect Transistors With High ON-OFF Current Ratios Based on Fullerene Derivatives," IEEE Device Lett. 28, 10 (2007).
23. P. R. L. Malenfant, C. D. Dimitrakopoulos, J. D. Gelorme, L. L. Kosbar, T. O. Graham, A. Curioni, and W. Andreoni, "N-type organic thinfilm transistor with high field-effect mobility based on a N,N8-dialkyl- 3,4,9,10-perylene tetracarboxylic diimide derivative, " Appl. Phys. Lett. 80, 2517–2519 (2002).
24. T. D. Anthopoulos, B. Singh, N. Marjanovic, N. S. Sariciftci, A. M. Ramil, H. Sitter, M. Cölle, and D. M. de Leeuw, "High performance n-channel organic field-effect transistors and ring oscillators based on C60 fullerene films, " Appl. Phys. Lett. 89, 213504 (2006).
25. Y. Wu, P. Liu, B. S. Ong, T. Srikumar, N. Zhao, G. Botton, and S. P. Zhu, "Controlled orientation of liquid-crystalline polythiophene semiconductors for high-performance organic thin-film transistors, " Appl. Phys. Lett. 86, 142102 (2005).
26. N. Stingelin-Stutzman, E. Smits, H. Wondergem, C. Tanase, P. Blom, P. Smith, and D. de Leeuw, "Organic thin-film electronics from vitreous solution-processed rubrene hypereutectics, " Nat. Mater. 4, 601–606 (2005).
27. I. Mcculloh, M. Heeney, C. Bailey, K. Genivicius, I. Macdonald, M. Shkunov, D. Sparrowe, S. Tierney, R. Wagner, W. Zhang, M. L. Chabinyc, R. J. Kline, M. D. Mcgehee, and M. F. Toney, "Liquid crystalline semiconducting polymers with high charge-carrier mobility," Nature Mater. 5, 328–333 (2006).
28. A. Afzali, C. D. Dimitrakopoulos, and T. L. Breen, "High-performance, solution-processed organic thin film transistors from a novel pentacene precursor," J. Amer. Chem. Soc. 124, 8812–8813 (2002).
29. T. D. Anthopoulos, D. M. de Leeuw, E. Cantatore, P. van’t Hof, J. Alma, and J. C. Hummelen, "Solution processible organic transistors and circuits based on C70 methanofullerene, " J. Appl. Phys. 98, 054503. (2005).
30. T. D. Anthopoulos, F. B. Kooistra, H. J. Wondergem, D. Kronholm, J. C. Hummelen, and D. M. de Leeuw, "Air-stable n-channel organic transistors based on a soluble C84 fullerene derivative, " Adv. Mater. 18, 1679–1684 (2006).
31. T. B. Singh, N. Marjanovic, P. Stadler, M. Auinger, G. J. Matt, S. Günes, N. S. Sariciftci, R. Schwödiauer, and S. Bauer, "Fabrication and characterization of solution-processed methanofullerene-based organic field-effect transistors, " J. Appl. Phys. 97, 083714 (2005).
32. T. W. Lee, Y. Byun, B. W. Koo, I. N. Kang, Y. Y. Lyu, C. H. Lee, L. Pu, and S. Y. Lee, "All-solution-processed n-type organic transistors using a spinning metal process, " Adv. Mater. 17, 2180–2184 (2005).
33. L.S. Hung, C.W. Tang, M.G. Mason, "Enhanced electron injection in organic electroluminescence devices using an Al/LiF electrode," Appl. Phys. Lett. 70, 152 (1997).
34. T. Hasegawa, S. Miura, T. Moriyama, T. Kimura, I. Takaya, Y. Osato, H. Mizutani, SID Int. Symp. Dig. Tech. Papers 35, 154 (2004).
35. F.C. Chen, L. J. Kung, T.H. Chen, and Y.S. Lin, "Copper phthalocyanine buffer layer to enhance the charge injection in organic thin-film transistors," Appl. Phys. Lett. 90, 073504 (2007).
36. J. H. Seo, A. Gutacker, B. Walker, S. Cho, A. Garcia, R. Yang, T. Q. Nguyen, A. J. Heeger, and G. C. Bazen, "Improved Injection N-Type Organic Transistors with Conjugated Poly electrolytes," J. Am. Chem. Soc. 131, 18220-18221 (2009).
37. C. W. Chu, C. F. Sung, Y. Z. Lee, and K. Cheng, "Improved performance in n-channel organic thin film transistors by nanoscale interface modification," Org. Electro. 9, 262-266 (2008).
38. L. L. Chua, P. K. H. Ho, H. Sirringhaus, and R. H. Friend, "Observation of Field-Effect Transistor Behavior at Self-Organized Interfaces," Adv. Mater. 16, 1609-1615 (2004).
39. A. C. Arias, F. Endicott and R. A. Street, "Surface-Induced Self-Encapsulation of Polymer Thin-Film Transistors," Adv. Mater. 18, 2900–2904 (2006).
40. A. Salleo, A. C. Arias, "Solution Based Self-Assembly of an Array of Polymeric Thin-Film Transistors," Adv. Mater. 19, 3540-3543 (2007).
41. C. Müller, S. Goffri, D. W. Breiby, J. W. Andreasen, H. D. Chanzy, R. A. J. Janssen, M. M. Nielsen, C. P. Radano, H. Sirringhaus, P. Smith, and N. S. Stutzmann, "Tough, Semiconducting Polyethylene-poly(3-hexylthiophene) Diblock Copolymers," Adv. Funct. Mater. 17, 2674–2679 (2007).
42. L. Qiu, J. A. Lim, X. Wang, W. H. Lee, M. Hwang, and K. Cho, " Versatile Use of Vertical-Phase-Separation-Induced Bilayer Structures in Organic Thin-Film Transistors," Adv. Mater. 20, 1141–1145 (2008).
43. S. Y. Heriot and R. A. L. Jones, " An interfacial instability in a transient wetting layer leads to lateral phase separation in thin spin-cast polymer-blend films," Nat. Mater. 4, 782-786 (2005).
44. F. C. Chen, and S. C. Chieh, "Nanoscale functional interlayers formed through spontaneous vertical separation in polymer photovoltaic devices," J. Mater. Chem. 19, 6865-6869 (2009).
45. Morrison, Organic Chemistry, sixth edition, 502 (1992).
46. P. G. Lecomber and W. E. Spear, "Electronic Transport In Amorphous Silicon Films," Phys. Rev. Lett. 25, 509 (1970).
47. P. V. Necliudov, M. S. Shur, D. J. Gundlach, and T. N. Jackson, "Contact resistance extraction in pentacene thin film transistors," Solid-State Electro. 47, 259-262 (2003).


48. K. Noch, A. Elschner, J. Schwartz, A. Kahn, "Organic molecular films on gold versus conducting polymer: Influence of injection barrier height and morphology on current-voltage characteristics," Appl. Phys. Lett. 82, 2281 (2003).
49. Y. Y. Lin, D. J. Gundlach, S. F. Nelson, and T. N. Jackson, "Stacked Pentacene Layer Organic Thin-Film Transistors with Improved Characteristics,"IEEE Elect. Device Let. 18, 606 (1997).
50. J. Takeda, M. Yamagishi, Y. Tominari, R. Hirahara, Y. Nakazaw, T. Nishikawa, T. Kawase, T. Shimoda, and S. Ogawa, "Very high-mobility organic single-crystal transistors with in-crystal conduction channels," Appl. Phys. Lett. 90, 102120 (2007).
51. Y. D. Park, J. A. Lim, Y. Jang, M. Hwang, H. S. Lee, D. H. Lee, H. J. Lee, J. B. Baek, and Kilwon Cho, "Enhancement of the field-effect mobility of poly(3-hexylthiophene)/functionalized carbon nanotube hybrid transistors," Org. Electronics, 9, 317-322 (2008).
52. S. Cho, J. H. Seo, K. Lee, and A. J. Heeger, "Enhanced Performance of Fullerene n-Channel Field-Effect Transistors with Titanium Sub-Oxide Injection Layer," Adv. Funct. Mater. 19, 1459-1464 (2009).
53. W. Ma, C. Yang, X. Gong, K. Lee, and A. J. Heeger, "Thermally Stable, Efficient Polymer Solar Cells with Nanoscale Control of the Interpenetrating Network Morphology," Adv. Funct. Mater. 15, 1617-1622 (2005).
54. G. Horowitz and P. Delannoy, "An analytical model for organic‐based thin‐film transistors," J. App. Phys. 70, 469-475 (1991).
55. 陳金鑫 and 黃孝文, 有機電激發光材料與元件 (五南圖書, 2005).
56. E. V. Hauff, J. Parisi, and V. Dyakonov, "Invesigation of electron injection in a methanofullerene thin film transistor," J. Appl. Phys. 100, 073713 (2006).


57. D. Boudinet, G. L. Blevennec, C. Serbutoviez, J. M. Verilhac, H. Yam, and G. Horowitz, "Contact resistance and threshold voltage extraction in n-channel organic thin film transistor on plastic substrates," J. Appl. Phys. 105, 084510 (2009).
58. T. F. Guo, F. S. Yang, Z. J.Tsai, T. C. Wen, S. N. Hsieh, Y. S. Fu, and C. T. Chung, "Organic oxide/Al composite cathode in effect polymer light-emittng diodes," Appl. Phys. Lett. 88, 113501 (2006).

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔