(3.238.7.202) 您好!臺灣時間:2021/02/26 15:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:盧昱昕
研究生(外文):Lu, Yu-Hsin
論文名稱:利用主動層優化降低氮化鎵發光二極體效率下降特性之研究
論文名稱(外文):Reduction of efficiency droop behavior in InGaN/GaN light emitting diodes by optimization of active region
指導教授:郭浩中郭浩中引用關係盧廷昌盧廷昌引用關係
指導教授(外文):Kuo, Hao-ChungLu, Tien-Chang
學位類別:碩士
校院名稱:國立交通大學
系所名稱:光電工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:60
中文關鍵詞:發光二極體氮化鎵效率下降
外文關鍵詞:light emitting diodesGaNefficiency droop
相關次數:
  • 被引用被引用:0
  • 點閱點閱:227
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:40
  • 收藏至我的研究室書目清單書目收藏:3
本論文中,我們利用改善主動層品質及優化量子井結構等方式,試圖提高氮化鎵發光二極體於高電流時的發光效率.我們將低溫成長之氮化鎵薄膜置於n-GaN及主動層間,並將此樣品與一般所使用的InGaN/GaN prestrain layer及未做任何結構之樣品作比較。並更進一步探討在高載子濃度下的LED發光效率.並用漸變式量子井結構進一步改善效率隨載子濃度遞減之情況。我們利用光激發螢光(Photoluminescence, PL)、電激發螢光(Electroluminescence, EL)、以及Advanced Physical Models of Semiconductor Devices (APSYS)模擬軟體等進行樣品的光學與電特性分析。
在本論文中,藉由變強度之光激發螢光實驗我們可以得知有插入prestrain layer 之樣品,當載子濃度提高時,其波長藍移量較小,亦即quantum confined Stark effect (QCSE)較小,因此我們可以得知使用低溫成長之氮化鎵薄膜的確是放了主動層內部之應力,並藉由室低溫變強度光激發螢光去定義出三塊樣品之內部量子效率,且有應力釋放之樣品期內部量子效率有明顯提高,並且在高載子濃度時,使用低溫成長之氮化鎵薄膜樣品之效率遞減情況最為輕微,從半高寬與載子濃度的相關圖及CL得表面影像中可以得知低溫成長之氮化鎵薄膜有效降低了主動層內部銦含量分布不均勻之情況,故可以減少載子被非輻射復合中心捕捉之機率
根據以上的實驗結果,使用低溫成長之氮化鎵薄膜及漸變厚度量子井結構的確能有效提升發光二極體之特性.分別在電流密度為22 A/cm2 及244 A/cm2 時提升效率36%及71%,並且效率遞減的情況從 22 A/cm2 到244 A/cm2 之間效率僅下降17%,優於傳統結構(54%),

Direct wide-bandgap gallium nitride (GaN) and other III-nitride-based semiconductors have attracted much attention for potential applications such as blue, green, and ultraviolet (UV) light-emitting diodes (LEDs) and blue laser diodes (LDs). Although InGaN-based LEDs have many excellent properties, the efficiency droop will occur under high current injection, resulting in the application of lighting was limited. In order to reduce the efficiency droop behavior in InGaN/GaN light emitting diodes, several semiconductor technologies have been used, such as non-polar material, AlInGaN barrier layer, thick DH active region or thick QW, barrier doping etc..
In this study, we tried to reduce the efficiency droop behavior in InGaN-based by using low temperature GaN (LT-GaN) pre-strained layer and graded quantum well (GQW) in which the well-thickness increases along [0001] direction. To better understand the influence of LT-GaN pre-strained layer and GQW on efficiency droop, a lot of measurement techniques were performed to investigate the optical and electrical properties of the grown specimens, including photoluminescence (PL), cathodoluminescence (CL), electroluminescence (EL), L-I-V curve and Advanced Physical Models of Semiconductor Devices (APSYS). Form power-dependent PL spectrum, the emission peak wavelength of the specimen with LT-GaN pre-strained layer and GQW exhibited relatively slight blue shift, which could be related to smaller quantum confined Stark effect (QCSE). Besides, the CL images shown that the specimen has more uniform emission area and less dark spots, resulting in the enhancement in emission efficiency. APSYS simulation analyzed that specimen with LT-GaN pre-strained layer and GQW revealed superior hole distribution as well as radiative recombination distribution. Additionally, according to the analysis of electroluminescence spectrum, specimen with LT-GaN pre-strained layer and GQW reveals additional emission peak from the following narrower wells within GQWs. These results are in good agreement with the result obtained from APSYS simulation.
Based on the results mentioned above, a high-efficiency InGaN-based LED with LT-GaN pre-strained layer and GQW has been fabricated, which demonstrated an improvement in output power of 36% at current density of 22 A/cm2 and 71% at current density of 244 A/cm2. Besides, the efficiency droop was alleviated to be about 17% from maximum at current density of 22 A/cm2 to 244 A/cm2, which is much smaller than 54% of conventional LED.

摘要  i
Abstract  iii
致謝  v
Content  vi
List of Tables  viii
List of Figures  ix

Chapter 1 Introduction
1.1 Wide bandgap III-N materials.........................1
1.2GaN-based LEDs........................................2
1.3Motivation............................................4
Chapter 2 Properties of Ⅲ-Nitride semiconductor
2.1 Quantum confinement effect in semiconductor nanostructure............................................8
2.2 The electric field and localization effect in quantum well structure...........................................9
2.3 The basic concept of inserting prestrain layer......11
2.4 The basic concept of efficiency droop...............11
Chapter 3 Experimental instrument and setup
3.1 Photoluminescence (PL) .............................14
3.2 IQE measurement system..............................16
3.3 Electroluminescence (EL)............................16
Chapter 4 Optical and electrical properties of InGaN/GaN multiple quantum wells with and without prestrain layer
4.1 Introduction........................................20
4.2 Sample structure and Fabrication....................21
4.3 CL image measurement and discussion.................22
4.4 Power dependent PL measurement......................23
4.5 Temperature dependent PL measurement................27
4.6 The measurement of internal quantum efficiency of LED with different prestrain layer..........................28
4.7 Current dependent intensity and efficiency discussion..............................................31
Chapter 5 Analysis of electroluminescence and efficiency droop in graded quantum well structure
5.1 Introduction........................................39
5.2 Sample structure and Fabrication....................39
5.3 APSYS simulation of electron and hole concentration distribution............................................40
5.4 Current dependent electroluminescence measurement and analysis................................................42
5.5 Analysis of injection carrier density dependence EL efficiency and efficiency
Droop...................................................44
Chapter 6 Conclusion ...................................53
Reference...............................................55

[1] S. Nakamura, M. Senoh, N. Isawa, and S. Nagahama, Japan Journal of Applied
Physics 34,L797 (1995)
[2] S. Nakamura, T. Mukai, and M. Senoh, Applied Physics Letter 64, 1687 (1994)
[3] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y.
Sugimoto, and H. Kiyoju, Applied Physics Letter 70, 868 (1997)
[4] S. Nakamura, Science 281, 956 (1998)
[5] Y.Arakawa, IEEE Journal of Selected Topics in Quantum Electronics 8, 823 (2002)
[6] H. Morkoc, Nitride Semiconductors and Devices (Springer Verlag, Heidelberg), 1999
[7] S. N. Mohammad, and H. Morkoc, Progress in Quantum Electronics 20, 361, (1996)
[8] F. Bernardini and V. Fiorentini, Physica Status Solidi B 216, 391 (1999)
[9] A. Hangleiter, J. S. Im, H. Kollmer, S. Heppel, J. Off, and F. Scholz, MRS Internet Journal of Nitride Semiconductor Research 3, 15 (1998)
[10] H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, Applied Physics Letter 48, 353(1986)
[11] S. Nakamura, Japan Journal of Applied Physics 30, L1705 (1991)
[12] S. Nakamura, T. Mukai, M, Senoh, S. Nagahama, and N. Iwasa, Journal of Applied Physics 74, 3911 (1993)
[13] H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, Applied Physics Letter 48, 353 (1986)
[14] H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, Japan Journal of Applied Physics 28,L2112 (1989)
[15] S. Nakamura, S. Iwasa, M. Senoh, US patent 5306662
[16] K. J. Vampola, M. Iza, S. Keller, S. P. DenBaars, and S. Nakamura, Appl. Phys, Lett. 94, 061116 (2009)
[17] Y. C. Shen, G. O. Muller, S. Watanabe, N. F. Gardner, A. Munkholm, and M. R. Krames, Appl. Phys. Lett. 91, 141101 (2007)
[18] Y. Yang, X. A. Cao, and C. Yan, IEEE Transactions On Electron Devices 55, 1771 (2008).
[19] B. Monemar and B. E. Sernelius, Appl. Phys. Lett. 91, 181103 2007 .
[20] F. Bernardini, V. Fiorentini, D. Vanderbilt, Phys. Rev. B56 (1997) R10024.
[21] O. Ambacher, B. Foutz, J. Smart, J.R. Shealy, N.G.Weimann, K. Chu, M. Murphy, A.J. Sierakowski, W.J. Schaff, L.F. Eastman, R. Dimitrov, A. Mitchell, M. Stutzmann, J. Appl. Phys. 87 (2000) 334.
[22] M. Leroux, N. Grandjean, M. La. ugt, J. Massies, B. Gil, P. Lef!ebvre, P. Bigenwald, Phys. Rev. B 58 (1998) R13371.
[23] S.F. Chichibu, A.C. Abare, M.P. Mack, M.S. Minsky, T. Deguchi, D. Cohen, P. Kozodoy, S.B. Fleischer, S. Keller, J.S. Speck, J.E. Bowers, E. Hu, U.K. Mishra, L.A. Coldren, S.P. DenBaars, K. Wada, T. Sota, S. Nakamura, Mater. Sci. Eng. B 59 (1999) 298.
[24] N.A. Shapiro, Y. Kim, H. Feick, E.R. Weber, P. Perlin, J.W. Yang, I. Kasaki, H. Amano, Phys. Rev. B 62 (2000) R16318.
[25] P. Lef!ebvre, A. Morel, M. Gallart, T. Taliercio, J. All!egre, B. Gil, H. Mathieu, B. Damilano, N. Grandjean, J. Massies, Appl. Phys. Lett. 78 (2001) 1252.
[26] B. Gil, O. Briot, R.-L. Aulombard, Phys. Rev. B 52 (1995)
[27] H. Lahr!eche, M. Leroux, M. La. ugt, M. Vaille, B. Beaumont, P. Gibart, J. Appl. Phys. 87 (2000) 577.
[28] M. Leroux, H. Lahr!eche, F. Semond, M. La. ugt, E. Feltin, N. Schnell, B. Beaumont, P. Gibart, J. Massies, Mater. Sci.
[29] S. Chichibu, T. Azuhata, T. Sota, and S. Nakamura, Appl. Phys. Lett. 69, 4188 (1996)
[30] I. Ho and G. B. Stringfellow, Appl. Phys. Lett. 69, 2701 (1996)
[31] P. Waltereit et al., J. Cryst. Growth 437, 227 (2001).
[32] S. F. Chichibu, T. Onuma, T. Aoyama, K. Nakajima, P. Ahmet, T. Chikyow, T. Sota, S. P. DenBaars, S. Nakamura, T. Kitamura, Y. Ishida and H. Okumura : J. Vac. Sci. & Technol. B 21, 1856 (2003)
[33] C. H Jang, J. K Sheu, C. M. Tsai, S. J Chang, Member, IEEE. 46, (2010)
[34] M. H. Kim, M. F. Schubert, Q. Dai, J. K. Kim, E. F. Schubert, J. Piprek, Y. Park, Appl. Phys, Lett. 91, 183507 (2007).
[35] K. J. Vampola, M. Iza, S. Keller, S. P. DenBaars, and S. Nakamura, Appl. Phys, Lett. 94, 061116 (2009)
[36] K. Ding, Y. P. Zeng, X. C .Wei, Z. C. Li, J. X. Wang, H. X. Lu, P. P. Cong, X. Y. Yi, G. H.Wang, J. M. Li, Appl Phys B, 97, 465–468 (2009).
[37] C. H. Wang, J. R. Chen, C. H. Chiu, H. C. Kuo, Y. L. Li, T. C. Lu, and S. C. Wang, IEEE Photon. Technol. Lett. 22, 236 (2010).
[38] A. David and M. J. Grundmann, Appl. Phys, Lett. 96, 103504 (2010).
[39] B. Monemar and B. E. Sernelius, Appl. Phys. Lett. 91, 181103 (2007).
[40] M. F. Schubert, J. Xu, J. K. Kim, E. F. Schubert, M. H. Kim, S. Yoon, S. M. Lee, C. Sone, T. Sakong, and Y. Park, Appl. Phys. Lett. 93, 041102 (2008).
[41] Y. K. Kuo, J. Y. Chang, M. C. Tsai, and S. H. Yen, Appl. Phys. Lett. 95, 011116 (2009).
[42] R. A. Arif, Y. K. Ee, and N. Tansu, Appl. Phys. Lett. 91, 091110 (2007).
[43] S. C. Ling, T. C. Lu, S. P. Chang, J. R. Chen, H. C. Kuo, and S. C. Wang, Appl. Phys. Lett. 96, 231101 (2010).
[44] J. Xie, X. Ni, Q. Fan, R. Shimada, Ü. Özgür, and H. Morkoç, Appl. Phys. Lett. 93, 121107 (2008).
[45] I. V. Rozhansky and D. A. Zakheim, Phys. Status Solidi A 204, 227 (2007)
[46] M. H. Kim, M. F. Schubert, Q. Dai, J. K. Kim, E. F. Schubert, J. Piprek, and Y.
[47] F. Bernardini, V. Fiorentini, and D. Vanderbilt, Phys. Rev. B 56, R10024 (1997)
[48] T. Takeuchi, S. Sota, M. Katsuragawa, M. Komori, H. Takeuchi, H.Amano, and I. Akasaki, Jpn. J. Appl. Phys., Part 2 36, L382 (1997)
[49] Y. H. Cho, G. H. Gainer, A. J. Fischer, J. J. Song, S. Keller, U. K. Mishra, and S. P. Denbaars, ““S-shaped” temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells,” Appl. Phys. Lett., vol. 73, no. 10, p. 1370, Sep. 1998.
[50] C. A. Tan, R. F. Karlicek, Jr., M. Schurman, A. Osinsky, V. Merai, Y. Li, I. Eliashevich, M. G. Brown, J. Nering, I. Fergerson, and R. Stall, “Phase separation in InGaN/GaN multiple quantum wells and its relation to brightness of blue and green LEDs,” J. Cryst. Growth, vol. 195, p. 397, Dec. 1998.
[51] IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 46, NO. 3, MARCH 2010Cheng-Huang Kuo, Y. K. Fu, G. C. Chi, and Shoou-Jinn Chang, Member, IEEE
[52] M. F. Schubert, J. Xu, J. K. Kim, E. F. Schubert, M. H. Kim, S. Yoon, S. M. Lee, C. Sone, T. Sakong, and Y. Park, Appl. Phys. Lett. 93, 041102 (2008).
[53] Y. K. Kuo, J. Y. Chang, M. C. Tsai, and S. H. Yen, Appl. Phys. Lett. 95, 011116 (2009).
[54] R. A. Arif, Y. K. Ee, and N. Tansu, Appl. Phys. Lett. 91, 091110 (2007).
[55] S. C. Ling, T. C. Lu, S. P. Chang, J. R. Chen, H. C. Kuo, and S. C. Wang, Appl. Phys. Lett. 96, 231101 (2010).
[56] J. Xie, X. Ni, Q. Fan, R. Shimada, Ü. Özgür, and H. Morkoç, Appl. Phys. Lett. 93, 121107 (2008).
[57] X. Ni, Q. Fan, R. Shimada, Ü. Özgür, and H. Morkoç, Appl. Phys. Lett. 93, 171113 (2008).
[58] I. Vurgaftman and J. R. Meyer, J. Appl. Phys. 94, 3675 (2003).
[59] A. David, M. J. Grundmann, J. F. Kaeding, N. F. Gardner, T. G. Mihopoulos, and M. R. Krames, Appl. Phys. Lett. 92, 053502 (2008).

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔