(3.238.7.202) 您好!臺灣時間:2021/02/25 10:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:何依嚀
研究生(外文):He, Yi-Ning
論文名稱:氮化鎵奈米柱製程與雷射特性之研究
論文名稱(外文):Fabrication and lasing characteristics of GaN nanopillars
指導教授:郭浩中郭浩中引用關係盧廷昌盧廷昌引用關係
指導教授(外文):Kuo, Hao-chungLu, Tien-chang
學位類別:碩士
校院名稱:國立交通大學
系所名稱:光電工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:英文
論文頁數:68
中文關鍵詞:氮化鎵奈米柱雷射
外文關鍵詞:GaNNanopillars Laser
相關次數:
  • 被引用被引用:0
  • 點閱點閱:261
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:46
  • 收藏至我的研究室書目清單書目收藏:0
本論文中,我們利用快速熱退火( rapid thermal annealing, RTA) 將鎳聚成奈米小球,再使用電漿離子耦合反應系統(ICP-RIE)將氮化鎵蝕刻成柱狀,將小球洗掉後,成長一層氮化鎵在奈米柱的表面。我們使用刀鋒量測來得知雷射光點大小,以便估算雷射能量密度。在特性分析中, 包含了結構與光學特性上的相關研究。在發光特性方面,所利用的是脈衝光激發螢光光譜((Microphotoluminescence, μ-PL),以及變角度和低溫光譜等進行樣品的光學與電特性分析。
藉由變功率脈衝雷射激發去探討室溫時氮化鎵奈米柱的雷射特性,比起未包覆一層氮化鎵的奈米柱,會有更低的閾值功率密度,和較高的自發放射因子(β value)。氮化鎵奈米柱的雷射波長會隨著光點範圍增大而有所紅移,且閾值功率密度和模態間距隨之下降。變角度實驗結果顯示做成奈米柱後,重新包覆過後的斜面結構使樣品的出光散射現象,存在方向性(10˚, -15˚)。另外由低溫量測中,我們可以得知奈米柱的特徵溫度約153K。由於氮化鎵雷射具有許多優越的光學特性,我們相信此結構可以應用在可見光及藍紫光雷射等高功率、大範圍及多用途之光電元件中。

In this study, we studied GaN nanopillars structure fabricated by combined two methods top-approch and bottom-approch. The sample of GaN nanopillars etched down by ICP-RIE with Ni nano mask ,then regrowth GaN passivation layer in the sidewalls. The spotsize dependent photoluminescence (PL), and angle-resolved PL and low temperature were performed to investigate the optical properties of the GaN nanopillars.
This research intends to investigate the lasing characteristics of GaN nanopillars under optical pumping. GaN nanopillars has lower threshold power density and higher β value than etched pillars without passivation. The spotsize dependence of the lasing PL spectrum has been observed. As excitation spotsize increasing, the central position of lasing peak wavelength was gradual red-shift, threshold power density decreased and the number of lasing multi-peak modes dreased. We suggest that the peak shift effect of lasing peak was attributed to the change of material gain spectrum under different pumping condition, not related to the pumping power intensity under change of spot size. The angle-resolved PL results show the degree of emission anlges corresponding to the normal direction ( 10˚, -15˚ ) respectively.
Moreover, it was observed that the increase in temperature (from 77K to 322K) leads to an increase in threshold excitation energy. It is due to the increase of non-radiated recombination and decrease of radiated recombination. The characteristic temperature T0, was estimated to be 153 K in the temperature range of 77K to 322K.

Content
摘要……………………………………………………………………………………i
Abstract..........................................................................................................................ii
致謝…………………………………………………………………………………...iv
Content....................................................................................................................v
List of Tables...............................................................................................................vii
List of Figures............................................................................................................viii

Chapter 1 Introduction
1.1 Development of III-nitrides materials………………………………………….....1
1.2 Characteristic of Gallium Nitride………………………………………….……...2
1.3 Reference………………………………………..………………………………...6
Chapter 2 Motivation of GaN nanostructure
2.1 Fabrication of nanostructure materials………………………………………...8
2.2 Methods of fabrication
2.2.1 Chemical-beam epitaxy of GaN nanorods…………………………………10
2.2.2 Focused ion beam etching…………………………………………………11
2.2.3 Inductively coupled plasma reactive ion etching (ICP-RIE) ………13
2.3 Motivation……………………………………………………..….……….16
2.4 Reference………………...………………………………………………………21
Chapter 3 Experimental principles and systems
3.1 Gaussian beams……………………..……………………………………………27
3.2 Knife Edge……………………………………………………………...............28
3.3 Microphotoluminescence spectroscopy(μ-PL) ……………………………........31
3.4 Pumping power density and spotsize calculation..…………………………..…32
3.5 Scanning electron microscope (SEM) …………………………………………35
3.6 Transmission electron microscope (TEM) ………………………………36
3.7 Charge coupled device (CCD) camera………..………………………………..37
3.8 Reference…………………………………………………………………………43
Chapter 4 Fabrication and Characteristics of Optical Pumped Nitride-Based nanopillars
4.1 Fabrication of hexagonal GaN nanopillars…………………………………….45
4.2 Characteristics of Optically Pumped Nitride-Based nanopillars
4.2.1 Optical pumping of GaN nanopillars at room temperautre………………...47
4.2.2 Lasing characteristics under different pump spotsize……………………49
4.2.3 Angle resolved PL…………………………………………………………51
4.3 Temperature dependent threshold and characteristics temperature………………53
4.4 Reference…………………………………………………………………………55
Chapter 5 Conclusion…………………………………………………………..67


[1] S. Nakamura, T. Mukai, and M. Senoh, Appl. Phys. Lett., 67, 1687 (1994)
[2] S. Nakamura, M. Senoh, N. Iwasa, and S. Nagahama, Jpn. J. Appl. Phys., 34, L797 (1995)
[3] G. Y. Xu, A. Salvador, W. Kim, Z. Fan, C. Lu, H. Tang, H. Markoc, G. Smith, M. Estes, B. Goldberg, W. Yank, and S. Krishnankutty, Appl. Phys. Lett., 71, 2154 (1997)
[4] T. G. Zhu, D. J. H. Lambert, B. S. Shelton, M. N. Wong, U. Chowdhury, H. K. Kwon, and R. D. Dupuis, Electron Lett., 36, 1971 (2000)
[5] G. T. Dang, A. P. Zhang, F. Ren, X. A. Cao, S. J. Pearton, H. Cho, J. Han, J. I. Chyi, C. M. Lee, C. C. Chuo, S. N. G. Chu, and R. G. Wilson, IEEE Trans. Electron Devices, 47, 692 (2000)
[6] B. S. Shelton, D. J. H. Lambert, H. J. Jang, M. M. Wong, U. Chowdhury, Z. T. Gang, H. K. Kwon, Z. Liliental-Weber, M. Benarama, M. Feng, and R. D. Dupuis, IEEE Trans. Electron Devices, 48, 490 (2001)
[7] A. P. Zhang, J. Han, F. Ren, K. E. Waldrio, C. R. Abernathy, B. Luo, G. Dang, J. W. Johnson, K. P. Lee, and S. J. Pearton, Electronchem. Solid-State Lett., 4, G39 (2001)
[8] T. Matsuoka, H. Okamoto, M. Nakao, H. Harima, and E. Kurimoto, Appl. Phys. Lett., 81, 1246 (2002)
[9] H. Morkoc, Nitride Semiconductors and devices, (Springer-Verlag, Berlin, 1999)
[10] C.-H. Lee, J. Yoo, Y. J. Hong, J. Cho, Y.-J. Kim, S.-R. Jeon, J. H. Baek, and
G.-C. Yi ”GaN/ In1−xGaxN/GaN/ZnO nanoarchitecture light emitting diode
microarrays, ” Appl. Phys. Lett. 94, 213101. (2009)
[11] Yuen-Yee Wong, Edward Yi Chang, Tsung-Hsi Yang, Jet-Rung Chang,Jui-Tai Ku, Mantu K. Hudait, Wu-Ching Chou, Micheal Chen, and Kung-Liang Lina “The Roles of Threading Dislocations on Electrical Properties of AlGaN/GaN Heterostructure Grown by MBE” Journal of The Electrochemical Society, 157, 7 (2010)
[1] U. Woggon, Optical Properties of Semiconductor Quantum Dots (Springer, Berlin,1997)
[2] J. K. Sheu, Y. K. Su, G. C. Chi, P. L. Koh, M. J. Jou, C. M. Chang, C. C. Liu, and W. C. Hung, Appl. Phys. Lett., 74, 2340 (1999)
[3] M. A. Reed and W. P. Kirk, Nanostructure Physics and Fabrication _Academic,Boston, (1992)
[4] M. B. Stern, H. G. Craighead, P. F. Liao, and P. M. Mankiewich, Appl. Phys. Lett. 45, 410 (1984).
[5] S. Y. Chou, P. R. Krauss, and P. J. Renstrom, Science 272, 85(1996).
[6] J. Liang, H. Chik, A. Yin, and J. Xu, J. Appl. Phys. 91, 2544 (2002).
[7] M. Park, C. Harrison, P. Chaikin, R. A. Register, and D. H. Adamson, Science 276, 1401 (1997)
[8] Duan and C. M. Lieber, J. Am. Chem. Soc. 122, 188 (2000).
[9] C. C. Chen and C. C. Yeh, Adv. Mater. _Weinheim, Ger._ 12, 738 (2000).
[10] C. H. Liang, L. C. Chen, J. S. Hwang, K. H. Chen, Y. T. Hung, and Y. F. Chen, Appl. Phys. Lett. 81, 22 (2002).
[11] M. He, I. Minus, P. Zhou, S. N. Mohammed, R. Jacobs, W. L. Sarney, L. Salamanca-Riba, and R. D. Vispute, Appl. Phys. Lett. 77, 3731 (2000).
[12] M. Yoshizawa, A. Kikuchi, M. Mori, N. Fujita, and K. Kishino, Jpn. J.Appl. Phys., Part 2 36, L459 (1997).
[13] E. Calleja, M. A. Sánchez-García, F. J. Sánchez, F. Calle, F. B. Naranjo, E.Munoz, U. Jahn, and K. Ploog, Phys. Rev. B 62, 16826 (2000).
[14] H. M. Kim, D. S. Kim, D. Y. Kim, T. W. Wkang, Y. H. Cho, and K. S.Chung, Appl. Phys. Lett. 81, 2193 (2002).
[15] K. Kawasaki, I. Nakamatsu, H. Hirayama, K. Tsutsui, and Y. Aoyagi, J. Cryst. Growth 243, 129 (2002).
[16] P. Deb, H. Kim, V. Rawat, M. Oliver, S. Kim, M. Marshall, E. Stach, and T. Sands, Nano Lett. 5, 1847 (2005).
[17] Kuball, F. H. Morrisey, M. Benyoucef, I. Harrison, D. Korakakis, and C. T. Foxon, Phys. Status Solidi A 176, 355 (1999).
[18] C. C. Yu, C. F. Chu, J. Y. Tsai, H. W. Huang, T. H. Hsueh, C. F. Lin, and S. C. Wang, Jpn. J. Appl. Phys., Part 2 41, L910 (2002).
[19] I. M. Tiginyanu, V. V. Ursaki, V. V. Zalamai, S. Langa, S. Hubbard, D. Pavlidis, and H. Föll, Appl. Phys. Lett. 83, 1551 (2003).
[20] T. H. Hsueh, H. W. Huang, C. C. Kao, Y. H. Chang, M. C. Ou-Yang, H. C. Kuo, and S. C. Wang, Jpn. J. Appl. Phys., Part 1 44, 2661 (2005).
[21] L. Chen, A. Yin, J. S. Im, A. V. Nurmikko, J. M. Xu, and J. Han, Phys. Status Solidi A 188, 135 (2001).
[22] Y. D. Wang, S. J. Chua, S. Tripathy, M. S. Sander, P. Chen, and C. G. Fonstad, Appl. Phys. Lett. 86, 071017 (2005).
[23] He, L. Chen, Y. K. Song, A. V. Nurmikko, S. R. Jeon, Z. Ren, M.Gherasimova, and J. Han, Phys. Status Solidi C 7, 2740 (2005)
[24] E. D. Harberer et al., Mater. Res. Soc. Symp. Proc. 639, G11.21.1 (2001). 34S. X. Jin, J. Li, J. Z. Li, J. Y. Lin, and H. X. Jiang, Appl. Phys. Lett. 76,631 (2000)
[25] H. W. Choi, C. W. Jeon, M. D. Dawson, P. R. Edwards, and R. W. Martin,IEEE Photonics Technol. Lett. 15, 510 (2003).
[26] A. V. Maslov and C. Z. Ning, Appl. Phys. Lett. 83, 1237 (2003)
[27] J. D. Joannopoulos, R. A. Meade, and J. N. Winn, Photonic Crystals, Molding the flow of Light _Princton University Press,Princeton, NJ, (1995).
[28] E. Yablonowitch, Phys. Rev. Lett. 58, 2059 (1987).
[29] M. Kuball, F. H. Morrissey, M. Benyoucef, I. Harrison, D. Korakakis, and C. T. Foxon , phys. stat. sol. (a) 176, 355 (1999)
[30] S. Nakamura, M. Senoh, N. Iwasa and S. Nagahama: Jpn. J. Appl. Phys.34 (1995) L797.
[31] S. Nakamura, T. Mokia and M. Senoh: Appl. Phys. Lett. 64 (1994) 1689.
[32] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T.Matsushita, Y. Sugimoto and H. Kiyodo: Appl. Phys. Lett. 70 (1996) 868.
[33] M. T. Bj˝ork, B. J. Ohisson, T. Sass, A. I. Persson, C. Thelander, M.H. Magnusson, K. Deppert, L. R. Wallenberg and L. Samuelson: Appl. Phys. Lett. 80 (2002) 1058.
[34] M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith and C. M. Lieber: Nature 415 (2002) 617.
[35] W. Han, S. Fan, Q. Li and Y. Hu: Science 277 (1997) 1287.
[36] G. S. Cheng, L. D. Zhang, Y. Zhu, G. T. Fei, L. Li, C. M. Mo and Y. Q.Mao: Appl. Phys. Lett. 75 (1999) 2455.
[37] C. C. Tang, S. S. Fan, M. L. de la Chapelle and P. Li: Chem. Phys. Lett.333 (2001) 12.
[38] X. Duan and C. Lieber: J. Am. Chem. Soc. 122 (2000) 188.
[39] H. Peng, X. Zhou, N. Wang, Y. Zheng, L. Liao, W. Shi, C. Lee and S.Lee: Chem. Phys. Lett. 327 (2000) 263.
[40] W. Q Han and A. Zettl: Appl. Phys. Lett. 80 (2002) 303.
[41] C. C. Chuo, C. M. Lee, T. E. Nee and J. I. Chyi: Appl. Phys. Lett. 76 (2000) 3902.
[42] W. H. Lee, K. S. Kim, G. M. Yang, C. H. Hong, K. Y. Lim, E. K. Suh, H. J. Lee, H. K. Cho and J. Y. Lee: J. Korean Phys. Soc. 39 (2001) 136.
[43] Y. S. Lin, K. J. Ma, Y. Y. Chung, C. W. Liu, S. W. Feng, Y. C. Cheng, C. C. Yang, H. W. Chuang, C. T. Kuo, J. S. Tsang, T. E. Weirich and C.Hsu: Appl. Phys. Lett. 80 (2002) 2571.
[44] C. Youtesy, L. T. Romano and I. Adesida: Appl. Phys. Lett. 73 (1998) 797.
[45] C. Youtesy, L. T. Romano, R. J. Molnar and I. Adesida: Appl. Phys. Lett.74 (1999) 3537.
[46] P. Visconti, K. M. Jones, M. A. Reshchikov, R. Cingolani, R. J. Molnar and H. Morkoc: Appl. Phys. Lett. 77 (2000) 3532.
[47] C.C. Yu, C.F. Chu, J.Y. Tsai, H.W. Huang, T.H. Hsueh, C.F. Lin,S.C. Wang, Jpn. J. Appl. Phys. 41 (2002) L910.
[1] ”Fundamentals of Photonics 2ed” B.E.A Saleh,M.C. Teich (2007)
[2] Yi Chiu, Jiun-Hung Pan, 15, No. 10, OPTICS EXPRESS 6373 May. (2007)
[3] John M. Khosrofian and Bruce A. Garetz,APPLIED OPTICS, 22, No. 21, Nov. (1983)
[1] C.-H. Lee, J. Yoo, Y. J. Hong, J. Cho, Y.-J. Kim, S.-R. Jeon, J. H. Baek, and G.-C. Yi ”GaN/ In1−xGaxN/GaN/ZnO nanoarchitecture light emitting diode microarrays, ” Appl. Phys. Lett. 94, 213101. (2009)
[2] Huang H W, Chu J T, Hsueh T H, Ou-Yang M C, Kuo H C and Wang S C ”Fabrication and photoluminescence of InGaN-based nanorods fabricated by plasma etching with nanoscale nickel metal islands,” J. Vac. Sci. Technol. B 24 1909(2006)
[3] Justin C. Johnson, Heon-Jin Choi, Kelly P. Knutsen, Richard D., Schaller, Peidong Yang, and Richard J. Saykally, ” Single gallium nitride nanowire lasers, ” Nature, Materials 1, 106 (2002)
[4] H. W. Huang, J. T. Chu, T. H. Hsueh, M. C. Ou-Yang, H. C. Kuo, and S. C. Wang “Fabrication and photoluminescence of InGaN-based nanorods fabricated by plasma etching with nanoscale nickel metal islands” J. Vac. Sci. Technol. B 24 1909(2006)
[5] Ching-Lien Hsiao,a_ Li-Wei Tu,b_ Tung-Wei Chi,c_ and Min Chen “icro-Raman spectroscopy of a single freestanding GaN nanorod
grown by molecular beam epitaxy” Appl. Phys. Lett., V. 90, 043102 (2007)
[6] S. Kako, T. Someya, and Y. Arakawa, “Observation of enhanced spontaneous emission coupling factor in nitride-based vertical-cavity surface-emitting laser,” Appl. Phys. Lett., vol. 80, pp. 722 (2002)


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
1. 李昭憲、陳美慧、梁仲正 ,2009,“高雄縣東方技術學院教職員工休閒活動參與及休閒態度關聯模式之建構分析”,嘉大體育健康休閒期刊,8月。
2. 許建民、高俊雄,2000,“以三類型阻礙模式探討都市六年級學童運動休閒阻礙參與阻礙與性別及自尊之關係” ,戶外遊憩研究,13(1),41-61。
3. 劉小曼、黃啟明、汪明傑,2007,“大專校院女性教師休閒參與現況之研究”,遠東通識學報”,1,160-172
4. 許志賢,2002,“休閒活動介入生活的認知與技巧之探討” ,國立臺灣體育學院學報,11,51-60。
5. 陳佳君,2006,“工作壓力與休閒生活的均衡-以教師生涯為例” ,諮商與輔導,252,52-56。
6. 鄭健雄、劉孟奇,2001,“遊客渡假型態與休閒消費行為之初探-以墾丁地區遊客為例”,觀光研究學報,7(2),頁93-110。
7. 劉子利,2001,“休閒教育的歷史發展”,社會教育學刊,30,177-202。
8. 吳水丕、呂佩珊(2008)。“大台北地區國小教師工作壓力與休閒參與之關係研究”。工作與休閒學刊,1(1),49-61。
9. 李素馨,1997,“都市女性休閒類型和休閒阻礙”,戶外遊憩研究,10(1):43-68。
10. 張志青、陳鎰明,2009,“彰化地區高中職教師休閒運動需求之研究” ,明道大學休閒保健期刊刊,1,105-119 頁。
11. 黃金柱、高文揚、沈永昆,2006,“國中教師休閒參與阻礙之研究--以新竹地區為例”,運動休閒餐旅研究, 1:(3), 53-70. (運動休閒餐旅研究)
12. 陳麗玉、王宗進,2004,“東海大學教職員工參與休閒運動狀況與阻礙因素之研究”, 大專體育學刊, Vol.6 No.1, 57-72. 7
13. 郭靜晃、羅聿廷,2002,“青少年休閒阻礙與休閒滿意” ,社區發展季刊,97,296-309。
14. 許義雄,1983,“休閒生活中的公害性及其防止之道” ,健康教育,第五十一期,頁10-12。
15. 許伯陽、吳崇旗,2007,“休閒定義的理論與認知研究” ,運動與遊憩研究,第1卷第3期,第1-13頁。
 
系統版面圖檔 系統版面圖檔