(3.231.29.122) 您好!臺灣時間:2021/02/26 00:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:何展燁
研究生(外文):Ho, Chan-Yeh
論文名稱:聚焦型之方向性表面電漿激發
論文名稱(外文):Directional Surface Plasmon Excitation via Collinearly Tight Focus
指導教授:田仲豪
指導教授(外文):Tien, Chung-Hao
學位類別:碩士
校院名稱:國立交通大學
系所名稱:光電工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:63
中文關鍵詞:表面電漿非勻質極化光近場光學徑向極化光
外文關鍵詞:surface plasmonspatially inhomogeneous polarized beamnear field opticsradial polarization
相關次數:
  • 被引用被引用:1
  • 點閱點閱:265
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:23
  • 收藏至我的研究室書目清單書目收藏:0
在此篇論文中,我們提出一種嶄新的方法去達到可控性表面電漿激發。在同軸聚焦型Kretchmann架構下,將空間非勻質入射光場以高數值孔徑物鏡聚焦於金屬薄膜表面以激發金屬表面電漿,藉由設計入光瞳處空間非勻質極化光中輻射型偏極化與角偏極化分部達到近場表面電漿波的傳播方向與激發面積的操控。
利用調變遠場入射光極化分部來調變近場表面電漿的方法,不僅可以省去許多金屬表面奈米結構的設計,更能夠藉由特殊設計的入射極化光分部,在金屬表面產生各種干涉圖案,甚至能夠同時在金屬表面激發出多道獨立傳播的表面電漿波,這是過去以往文獻中所未被提出的。此方法相信對於許多表面電漿相關領域都能夠有很大的幫助。

A novel method is proposed in which surface plasmon polaritons (SPPs) can be manipulated as a controllable SPPs’ source from far field. The capability of beam steering and shaping can be achieved by using collinear Kretchmann configuration in conjunction with spatially inhomogeneous polarized beam which consists of radial and azimuthal polarization in specific section of pupil plane.
Without the need of additional nano-sized aperture, protrusion or near-field features, we are able to modify the SPPs excitation condition via various local electric field components mediated by the far-field pupil engineering. Various interfering phenomena are observed by different plasmonic excitation formations. Furthermore, we are able to simultaneously excite multiple SP waves which has never been demonstrated before. Proposed method will certainly has a potential impact on carrying out various SPPs excitations for plasmonic devices in next generation.

Chapter 1 序論… … … … … … … … … … … …… … …1
Chapter 2 表面電漿基本理論… … …… … … … … … … …5
2-1 表面電漿子的歷史與原理… … … … … … … … … … 5
2-2 表面電漿子的激發方法… … … … … … … … … … ..16
2-3 空間非勻質極化光… … … … … … … … … … … … 23
Chapter 3 方向性表面電漿激發… … … … … … … … … …29
3-1 光學架構… … … … … … … … … … … … … … …29
3-2表面電漿物理模型… … … … … … … …… … … … …37
3-3 模擬與討論… … … … … … … … … … … … … … 42
3-4可控方向性與激發面積之表面電漿… … … … … … … ..45
Chapter 4 自相性表面電漿干涉… … … … … … … … …44
4-1基本干涉理論… … … … … … … … … … … … ...44
4-2 表面電漿干涉模型討論… … … … … … … … … … .51
4-3自相性表面電漿干涉… … … … … …… … … … … …46
Chapter 5 總結與未來展望… … …… … … … … … … …57
參考文獻… … … … … … … … … … … … .. … … ..59

[1] S. E. Miller and A. G. Chynoweth,” Optical Fiber Communications,” Academic, Chap. 1, (1979).

[2] B. Wang and G. P. Wang, “Plasmon Bragg reflectors and nanocavities on flat metallic surfaces,” Appl. Phys. Lett. Vol. 87, 013107 (2005).

[3] B. Wang and G. P. Wang, “Simulations of nanoscale interferometer and array focusing by metal heterowaveguides,” Opt. Express Vol. 13, 10558-10563 (2005).

[4] X. Fan and G. P. Wang, “Nanoscale metal waveguide arrays as Plasmon lens,” Opt. Lett. Vol. 31, 1322-1324 (2006).

[5] 張勝雄,”奈米電漿子波導原件於積體光學之應用,” 物理雙月刊, 12 (2008).

[6] B. Liedberg, C. Nylander, and I. Lundstrom,”Surface Plasmon resonance for gas detection and biosensing,” Sensors and Actuators Vol. 4, 299-304 (1982).

[7] I. W. Chung, R. Bernhardt, and J. C. Pyun,”Sequential analysis of multiple analytes using a surface Plasmon resonance bioseneor,” J. Immunol. Methods Vol. 311, 178-188 (2006).

[8] 易政男,”藉由奈米電漿子偵測信號強化之表面電漿共振與表面強化拉曼散色生物感測器,”國立中央大學光電科技研究所, 博士論文 (2005).

[9] R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Proc. Phys. Soc. London Vol. 18, 269-275 (1902).

[10] U. Fano, “The theory of anomalous diffraction gratings and quasi-stationary waves on metallic surfaces,” J. Opt. Soc. Am. Vol. 32, 213-222 (1941).

[11] R. H. Ritchie, “Plasma losses by fast electrons in thin films,” Phys. Rev. Vol. 106, 874-881 (1957).

[12] E. A. Stern and R. A. Ferrell, “Surface plasma oscillations of a degenerate electron gas,” Phys. Rev. Vol. 120, 130-136 (1960).

[13] A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection,” Zeitschrift fur Physik Vol. 216, 398-410 (1968).

[14] William L Barnes,“Surface plasmon–polariton length scales: a route to sub-wavelength optics,” J. Opt. Vol. 8, S87–S93 (2006).

[15] H. Eherenreich and H. R. Philipp, “Optical properties of Ag and Cu,” Phys. Rev. Vol. 128, 1622-1629 (1962).

[16] H. Ehrenreich, H. R. Philipp, and B. Segall, “Optical properties of Aluminum,” Phys. Rev. Vol. 132, 1918-1928 (1963).

[17] A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. Vol. 37, 5271-5283 (1998).

[18] N. M. Ashcrofy and N. D. Mermin, “Solid state physics,” Academic Press., (2001).

[19] Powell, C. J. and Swan, J. B.“Effect of oxidation on the characteristic loss spectra of aluminum and magnesium,” Phys. Rev. Vol. 118, 640-643 (1960).

[20] H. Raether, “Surface plasmons on smooth and rough surface and on gratings,”Springer-Verlag, (1988).

[21] A. Otto, “Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection ,” Z. Phys. Vol. 216, 398 (1968).

[22] E. Kreschmann and H. Raether,“Radiative decay of non-radiative surface plasmons excited by light,” Z. Naturf. A 23, 2136-2136 (1968).

[23] H. Raether, “Physics of thin film: Advances in research and development,” Academic Press. Vol. 152, (1976).

[24] M. Erdelyi and Z. Bor,”Radial and azimuthal polarizers,” J. Opt. Vol. 8, 737-742 (2006).


[25] S. C. Tidwell, D. H. Ford, and Kimura W.D.,”Transporting and focusing radially polarized laser beam,” Opt. Eng. Vol. 31, 1527-1531(1992).

[26] Q. Zhan,”Trapping metallic Rayleigh particles with radial polarization,” Opt. Express Vol. 12, 3377 (2004).

[27] L. E. Helseth,”Roles of polarization, phase and amplitude in solid immersion lens systems,” Opt. Commun. Vol. 191, 161-172 (2001).

[28] B. Jia, X. Gan, and Min Gu,”Direct measurement of a radially polarized focus evanescent field facilitated by a single LCD,” Opt. Express Vol. 13,18 (2005).

[29] G. Machavariani, Y. Lumer, I. Moshe, A.Meir, and S. Jackel,”Efficient extracavity generation of radially and azimuthally polarized beams,” Opt. Lett. Vol 32, 1468-1470 (2007).

[30] Z. Bomzon, G. Biener, V. Kleiner, and E. Hasman,”Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength grating,” Opt. Lett. Vol. 27, 285-287 (2002).

[31] S. C. Tidwell, D. H. Ford, and W. D. Kimura,”Generating radially polarized beams interferometrically,” Appl. Opt. Vol. 29, 2234-2239 (1990).

[32] R. C. Dunn,“Near-Field Scanning Optical Microscopy,” Chem. Rev. Vol. 99, 2891-2927 (1999).

[33] H. Kano, W. Knoll, “Locally excited surface-plasmon-polaritons for thickness measure of LBK films,” Opt. Commun. Vol. 153, 235–239 (1998).

[34] K.J. Moh, X. C. Yuan, J. Bu, S. W. Zhu, and Bruce Z. Gao, ”Surface plasmon resonance imaging of cell-substrate contacts with radially polarized beams,” Opt. express Vol. 16, 20734-20741 (2008).

[35] B.Vohnsen and S. I. Bozhevolnyi,”Characterization of near-field optical probes,” Appl. Opt. Vol. 38, 9 (1999).

[36] J. Cites, M. F. M. Sanghadasa, and C. C. Sung, “Analysis of photon scanning tunneling microscope images,” J. Appl. Phys. Vol. 71, 7-10 (1992).
[37] D. Van Labeke and D. Barchiesi ,“Scanning-tunneling optical microscopy: a theoretical macroscopic approach,” J. Opt. Soc. Am., Vol. 9, 732-739 (1992).

[38] D. Van Labeke and D. Barchiesi, “Probes for scanning tunneling optical microscopy:a theoretical comparison,” Opt. Soc. Am. Vol. 10, 2193-2201 (1993).

[39] J.C. Weeber , F. de Fornel, J.P. Goudonnet ,“Numerical study of the tip-sample interaction in the photon scanning tunneling microscope,” Opts. Commun.Vol. 126, 285-292 (1996).

[40] M. Tanaka and K. Tanaka,”Computer simulation for two-dimensional near field optics with use of a metal-coated dielectric probe” Opt. Soc. Am. Vol. 18, 919-925 (2001).

[41] Ilya P. Radko, Sergey I. Bozhevolnyi, and Niels Gregersen,”Transfer function and near-field detection of evanescent waves,” Appl .Opt. Vol. 45, 4054-4061 (2006).

[42] R. C. Reddick, R. J. Warmack and T. L. Ferrell,“New form of scanning optical microscopy,” Phys. Rev. Vol. 39, 767–770 (1989).

[43] E. Devaux, A. Dereux, E. Bourillot, J. C. Weeber, Y. Lacroute, and J. P. Goudonnet,”Local detection of the optical magnetic field in the near zone of dielectric samples,” Phys. Rev. Vol. 62, 10504–10514 (2000).

[44] H. Cory, A. C. Boccara, J. C. Rivoal, and A. Lahrech, “Excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip,” Opts. Commun. Vol. 18, 118-124 (1998).

[45] A. Bouhelier, F. Ignatovich, A. Bruyant, C. Huang, G. Colas des Francs, J. C. Weeber, A. Dereux, G. P. Wiederrecht, and L. Novotny,“Surface plasmon interference excited by tightly focused laser beams,” Opt. Lett. Vol. 32, 2535-2537 (2007).

[46] W. Chen and Q. Zhan,“Realization of an evanescent Bessel beam via surface plasmon interference excited by a radially polarized beam,” Opt. Lett. Vol. 34, 722-724 (2009).

[47] E. Wolf, Proc. R. Soc. London, Ser. A 253, 349 (1959).
[48] B. Richards and E. Wolf, Proc. R. Soc. London, Ser. A 253, 358 (1959).

[49] Q. Zhan,” Evanescent Bessel beam generation via surface plasmon resonance excitation by a radially polarized beam,” Opt. Lett. Vol. 31, 1726-1728 (2006).

[50] M. Xiao, R. Machorro, and J.Siqueiros,” Interference in far-field radiation of two contra-propagating surface plasmon polaritons in the Kretchmann configuration,” J. Vac. Sci. Technol. Vol. 16, 1420-1424 (1998).

[51] A. Taflove, “Application of the finite-difference time-domain method to sinusoidal steady state electromagnetic penetration problems,” IEEE Trans. Electromag. Compat. Vol. 22, 191-202 (1980).

[52] W. Chen and Q. Zhan ” Realization of an evanescent Bessel beam via surface plasmon interference excited by a radially polarized beam,” Opt. Lett. Vol. 34, 722-724 (2009).

[53] A. Bouhelier, F. Ignatovich, A. Bruyant, C. Huang, G. Colas des Francs, J.-C. Weeber, A. Dereux, G. P. Wiederrecht, and L. Novotny “Surface plasmon interference excited by tightly focused laser beams,” Opt. Lett. Vol. 32, 2535-2537 (2007).

[54] L. L. Doskolovich, E. A. Kadomina, and I. I. Kadomin, ” Nanoscale photolithography by means of surface plasmon interference,” J. Opt. A: Pure Appl. Vol. 10, 854–857 (2007).

[55] X. Luoa and T. Ishihara,” Surface plasmon resonant interference nanolithography technique,” Appl. Phys. Lett. Vol. 84, 4780 (2004).

[56] Z. W. Liu, Q. H. Wei, and X. Zhang, “Surface Plasmon Interference Nanolithography,” Nano Lett. Vol. 5, 957-961 (2005).


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔