跳到主要內容

臺灣博碩士論文加值系統

(44.201.99.222) 您好!臺灣時間:2022/12/04 01:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:粘文評
研究生(外文):Nien, Wen-Ping
論文名稱:臨場蒸氣產生技術(ISSG)應用於鎢奈米點非揮發性記憶體之研究
論文名稱(外文):Study of In-Situ Steam Generation (ISSG) for Tungsten Nanocrystal Non-Volatile Memory
指導教授:潘扶民
指導教授(外文):Pan, Fu-Ming
學位類別:碩士
校院名稱:國立交通大學
系所名稱:工學院碩士在職專班半導體材料與製程設備組
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:英文
論文頁數:79
中文關鍵詞:臨場蒸氣產生技術(ISSG)鎢奈米點非揮發性記憶體
外文關鍵詞:In-Situ Steam GenerationTungsten NanocrystalNonvolatile Memory
相關次數:
  • 被引用被引用:0
  • 點閱點閱:5070
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近幾年,具有奈米點(nanocrystals)儲存單元的非揮發性記憶體元件被廣泛的提出來克服傳統浮動閘極記憶體在操作上及可靠度上的問題 。良好的記憶體元件需要具備有低功率耗電、操作速度快、及良好的元件耐力、保存時間長等特性。在眾多奈米點記憶體元件中,金屬奈米點因具有更高的能態密度、強通道耦合能力、可調變金屬功函數以及不易受載子侷限效應所引起的能階擾動 等優點,所以金屬奈米點的記憶體受到廣泛的研究而有機會成為新一代記憶體元件結構 。而鎢金屬因具有許多優點,如較大的功函數(4.6eV)、極高的熔點 (3411°C)、不易和氧化層產生反應、及在現今超大型積體電路技術廣泛應用等,已被大量使用在奈米點非揮發性記憶體的元件製作上。
大多數製作奈米點的方法都需要長時間的高温熱氧化時間,這會大大影響現階段半導體的熱預算及造成摻雜再分佈。 在本論文中,一種新穎的溼式快速熱氧化製程叫作臨場蒸氣產生技術(ISSG),被應用來降低熱預算及抑制摻雜再分佈。另外,臨場蒸氣產生技術(ISSG)氧化過程中會導入少許氫氣參與反應,已有許多文獻證實氫氣的增加可以幫助產生更多的氧自由基(O*),增加臨場蒸氣產生技術(ISSG)的氧化速率,而且氧自由基(O*)對氧化層的缺陷有修補作用,以臨場蒸氣產生技術(ISSG)所製作的氧化層比傳統的爐管方式有較好的氧化層品質及可靠度。
本論文即是以臨場蒸氣產生技術(ISSG)氧化方法來製作鎢金屬奈米點, 並研究臨場蒸氣產生技術(ISSG)氧化的温度、時間及氫氣含量對鎢奈米點的形成的影響,並探討此奈米記憶體元件之物性與電性特性。

In recent years, nonvolatile memory with nanocrystals cell have been widely studied to overcome difficulties occurring to of operation and reliability of conventional floating gate memory. Desirable electrical characteristics of memory devices include the following criteria : low power consumption, high-speed operation, good endurance, and long retention time. Nonvolatile memory devices, using metal nanocrystals cells have received extensive search because of many advantages, such as a high density of states around the Fermi level, stronger coupling with the conduction channel, a wide range of available work functions and a smaller energy perturbation due to carrier confinement, and become a potential candidate for future flash memory devices. Because tungsten has many attractive material properties, such as a high work function (4.6eV), an ultra high melting point(3411°C), being chemically stable with silicon oxide and being compatible with VLSI technology nowadays, it is widely used for the fabrication of the metal nanocrystals in nanocrystal nonvolatile memory devices.
Most methods applied for the nanocrystals fabrication need thermal treatments at high temperatures and a long duration which cause high energy consumptions and impurity redistribution. In this thesis, a new rapid thermal wet oxidation technology called “In-Situ Steam Generation (ISSG)”, is adopted for the tungsten nanocrystal fabrication to reduce the thermal budget and prevent impurity redistribution. In addition, during the ISSG oxidation process, hydrogen is introduced into the reaction chamber, thereby increasing the concentration of oxygen radicals. Oxygen radicals present in the ISSG process can reduce intrinsic defects in the oxide layer. ISSG oxides have much better reliability than conventional furnace oxides.
We fabricated tungsten nanocrystals under various ISSG process conditions, including the oxidation temperature, the process time and the hydrogen concentration, and studied material and electrical characteristics of the tungsten nanocrystal nonvolatile memory devices.

Abstract (Chinese)..........................................................................................III
Abstract (English)..........................................................................................V
Acknowledgment (Chinese) ..........................................................................VII
Contents...........................................................................................................VIII
Table Captions................................................................................................XI
Figure Captions...............................................................................................XII

Chapter1 Introduction......................................................................................1
1.1 Overview of Nonvolatile Memory Device....................................................1
1.1.1 SONOS Nonvolatile Memory Device..................................................4
1.1.2 Nanocrystal Nonvolatile Memory Device............................................6
1.2 Motivation.....................................................................................................9
1.3 Organization of this Thesis...........................................................................10

Chapter 2 Basic Principle of Nonvolatile Memory Device............................12
2.1 Introduction...................................................................................................12
2.2 Basic Program and Erase Mechanisms.........................................................13
2.2.1 Energy Band Diagram of Program and Erase Operation.....................13
2.2.2 Carrier Injection Mechanisms..............................................................16
2.3 Reliability Test..............................................................................................22
2.3.1 Retention..............................................................................................23
2.3.2 Endurance............................................................................................23
2.4 Basic Physical Characteristics of Nanocrystal NVMs..................................26
2.4.1 Quantum Confinement Effect............................................................26
2.4.2 Coulomb Blockade Effect..................................................................26

Chapter 3 Experimental...................................................................................28
3.1 Motivation.....................................................................................................28
3.2 Experimental Procedures..............................................................................29
3.3 Experimental Conditions..............................................................................31
3.4 Experimental Tools.......................................................................................34
3.4.1 RCA Clean.........................................................................................34
3.4.2 Polycide LPCVD system....................................................................35
3.4.3 In-Situ Steam Generation (ISSG).......................................................37
3.5 Analytical Techniques...................................................................................38

Charter 4 Results and Discussion....................................................................40
4.1 Effect of various ISSG Oxidation Temperatures..........................................40
4.1.1 Material Characteristics Analyses......................................................40
4.1.2 Electrical Characteristics Analyses....................................................47
4.1.3 Summary I..........................................................................................52
4.2 Effect of various ISSG Oxidation Time........................................................53
4.2.1 Material Characteristics Analyses......................................................53
4.2.2 Electrical Characteristics Analyses....................................................55
4.2.3 Summary II.........................................................................................59
4.3 Effect of various ISSG Oxidation Hydrogen Concentrations.......................60
4.3.1 Material Characteristics Analyses......................................................60
4.3.2 Electrical Characteristics Analyses....................................................63
4.3.3 Summary III.......................................................................................65
Charter 5 Conclusions and Future Work.......................................................67
5.1 Conclusions...................................................................................................67
5.2 Suggestion and Future work..........................................................................68
Reference.............................................................................................................70

Chapter 1
[1.1] P. Pavan, R. Bez, P. Olivo, and E. Zanoni, “Flash memory cells – an Overview”, in proceedings of the IEEE, vol. 8, pp. 1248(1997)
[1.2] A. K. Sharma, “Semiconductor memories”, IEEE press, New Jersey, 1997.
[1.3] S.M Sze, Physics of Semiconductor Devices, Wiley, New York, pp. 504(1981)
[1.4] M. H. White, Y. Yang, A. Purwar, and M. L. French, “A low voltage SONOS nonvolatile semiconductor memory technology”, IEEE Int’l Nonvolatile Memory Technology Conference, pp. 52 (1996)
[1.5] M. H. White, D. A. Adams, and J. Bu, “On the go with SONOS”, IEEE Circuits & Devices Magazine, vol. 16, pp. 22-31. (2000)
[1.6] H. E. Maes, J. Witters, and G. Groeseneken. Proc. 17 European Solid State Devices, Res. Conf. Bologna, pp. 157 (1987)
[1.7] S. Tiwari, F. Rana, “ Volatile and non-volatile memories in silicon with nano-crystal storage”, IEEE Int. Electron Devices Meeting Tech. Dig., pp. 521-524(1995)
[1.8] J. J. Welser, S. Tiwari, S. Rishton, K. Y. Lee and Y. Lee, “Room temperature operation of a quantum-dot flash memory”, IEEE Electron Device Letters., vol. 18, pp. 278-280(1997)
[1.9] Y. C. King, T. j. King, C. Hu, “MOS memory using germanium Nanocrystals formed by thermal oxidation of Si1-xGex”, IEEE Int. Electron Devices Meeting Tech. Dig., pp. 115-118(1998)
[1.10] T. Y. Chan, K. K. Young and C. Hu, “A true single-transistor oxide-nitride-oxide EEPROM device”, IEEE Electron Device Letters, vol. 8, pp. 93-95,1987.
[1.11] M. K. Cho and D. M. Kim, “ High performance SONOS memory cells free of drain turn-on and over-erase : compatibility issue with current flash technology”, IEEE Electron Device Letters, pp. 399-401, no. 8, 2000.
[1.12] I. Fijiwara, H. Aozasa, K. Nomoto, S. Tanaka and T. Kobayashi,"High speed program/erase sub 100nm MONOS memory cell”, Proc. 18th Non-Volatile Semiconductor Memory Workshop, pp. 75, 2001.
[1.13] H. Reisinger, M. Franosch, B. Hasler and T. Bohm, Symp. on VLSI Tech. Dig., 9A-2, 113 (1997).
[1.14] Y. Yang, A. Purwar and M. H. White,“Reliability considerations in scaled SONOS nonvolatile memory devices”, Solid-State Electronics,vol. 43, pp. 2025-2032,1999.
[1.15] S. Tiwari, F. Rana, “ Volatile and non-volatile memories in silicon with nano-crystal storage”, IEEE Int. Electron Devices Meeting Tech. Dig., pp. 521-524(1995)
[1.16] C. Lee, Z. Liu and E. C. Kan, “Investigation on process dependence of self-assembled metal nanocrystals”, Mater. Res. Symp. Proc. 737,F8.18.1 (2003).
[1.17] C. Lee, A. Gorur-Seetharam and E. C. Kan,“Operational and reliability comparison of discrete-storage nonvolatile memories : advantages of single-and-double layer metal nanocrystals”, IEDM Tech. Dig., 557(2003)
[1.18] Zengtao Liu, Chungho Lee, Venkat Narayanan, Gen Pei and Edwin Chihchuan Kan, “Metal Nanocrystal Memories- Part I : Device Design And Fabrication”, IEEE Tran. on Electron Devices, vol. 49, no. 9, September, 2002.
[1.19] Zengtao Liu, Chungho Lee, Venkat Narayanan, Gen Pei, and Edwin Chihchuan Kan, “Metal Nanocrystal Memories- Part II : Electrical Characteristics”, IEEE Tran. on Electron Devices, vol. 49, no. 9, September, 2002.
[1.20] M. Takata, S. Kondoh, T. Sakaguchi, H. Choi, J-C. Shim, H. Kurino and M. Koyanagi, “New non-volatile memory with extremely high density metal nano-dots”, IEDM Tech. Dig., pp.553 (2003)
[1.21] P. H. Yeh, L. J. Chen, P. T. Liu, D. Y. Wang, T. C. Chang,“ Metal Nanocrystals as charge storage nodes for nonvolatile memory devices”,Electrochimica Acta 52, pp. 2920-2926 (2007)
[1.22] S. p. Murarka, “Silicides for VLSI applications”, Academic Press, INC.,London, pp. 3-4 (1983)

Chapter 2
[2.1] Chih-Yuan, Chin-Chieh Yeh, “ Advanced Nano-Volatile Memory Devices With Nano-Technology”, Invited Talk for 15th International Conference on Ion Implantation Technology, 2004.
[2.2] P. Pavan, R. Bez, P. Olivo, and E. Zanoni, “Flash memory cells-An overview”, Proceedings of The IEEE, vol. 85, pp. 1248-1271 (1997)
[2.3] M. Woods, “Nonvolatile Semiconductor Memories : Technologies,Design, and Application”, C. Hu, Ed. New York : IEEE Press,
[2.4] Min She, “Semiconductor Flash Memory Scaling”, University of California, Berkeley, Doctor of Philosophy, pp. 26-27, 2003.
[2.5] J. Bu, M. H. White, “ Design considerations in scaled SONOS Nonvolatile memory devices”, Solid State Electronics, vol. 45, no. 1, pp. 113, 2001.
[2.6] M. L. French, M. H. White, “Scaling of multi-dielectric nonvolatile SONOS memory structures”, Solid-State Electronics, pp. 113, 1995.
[2.7] M. L. French, C. Y. Chen, H. Sathianathan, M. H. White, “Design and scaling of a SONOS multi-dielectric device for nonvolatile memory applications”, IEEE Trans. Comp. Pack and Manu Tech part A, vol. 17, pp. 390-397, 1994.
[2.8] Y. S. Hisamune, K. Kanamori, T. Kubota, Y. Suzuki, M. Tsukiji, E. Hasegawa, A. Ishitani, and T. Okazawa, “ A high capacitive-coupling Ratio (HiCR) cell for 3V-only 64Mb and future flash memories”,IEDM Tech. Dig., pp. 19-22, 1993.
[2.9] Z. Liu, C. Lee, V. Narayanan, G. Pei, and E. C. Kan, IEEE Transactions of Electron Devices., 49, 1606 (2002)
[2.10] J. Moll, “ Physics of Semiconductors”, McGraw-Hill, New York, 1964.
[2.11] M. Lezlinger and E. H. Snow, “ Fowler-Nordheim tunneling into thermally grown SiO2”, J. Appl. Phys., vol. 40, pp. 278-283, 1969.
[2.12] C. Sevensson and I. Lundstrom, “ Trap-assisted charge injection in MNOS structure”, J. Appl. Phys., vol. 44, pp. 4657-4663, 1973.
[2.13] P. E. Cottrell, R. R. Troutman, and T. H. Ning, “ Hot-electron emission in n-channel IGFET’s “, IEEE J. Solid-State Circuits, vol. 14. pp.442-455, 1979.
[2.14] I. C. Chen, C. Kaya and J. Paterson, “ Band-to band tunneling induced substrate hot-electron (BBISHE) injection : A new programming mechanism for nonvolatile memory devices”, IEDM Tech. Dig., pp. 263, 1989.
[2.15] I. C. Chen, D. J. Coleman, and C. W. Teng, “ Gate current injection initiated by electron band-to-band tunneling in MOS devices”, IEEE Electron Device Lett., vol. 10, pp. 297, 1989.
[2.16] T. Ohnakado, K. Mitsunaga, M. Nunoshita, H. Onoda, K. Sakakibara, N. Tsuji, N. Ajika, M. Hatanaka and H. Miyoshi, “Novel Electron Injection Method Using Band-to-Band Tunneling Induced Hot Electron (BBHE) for Flash Memory with a p-Channel Cell”, IEDM Tech. Dig.,pp. 279-282, 1995.
[2.17] K. T. San, C. Kaya, T. P. Ma, “Effect of erase source bias on Flash EPROM device reliability”, IEEE Trans. Elec. Dev., vol 42, pp. 150-159, January 1995.
[2.18] Steve S. Chung, Cherng-Ming Yih, Shui-Ming Cheng and Mong-Song Liang, “A New Technique for Hot Carrier Reliability Evaluations of Flash Memory Cell After Long-Term Program/Erase Cycles”, IEEE Trans. Elec. Dev., vol. 46, pp. 1883, September 1999.
[2.19] Suk-Kang Sung, Il-Han Park, Chang-Ju Lee, Yong-Kyu Lee, Jong-Duk Lee, Byung-Gook Park, ”Fabrication and Program/Erase Characteristics of 30-nm SONOS Nonvolatile Memory Devices”, IEEE Trans. Electron Devices, vol. 2, no. 4, pp. 260-262, December 2003.
[2.20] Roberto Bez, Emilio Camerlenghi, Alberto Modelli, Angelo Visconti,“Introduction to Flash Memory”, Proc. IEEE, vol. 91, no. 4, pp. 495,April 2003.
[2.21] D. Ielmini, A. Spinelli, A. Lacaita and A. Modelli, “ Statistical model of reliability and scaling projections for Flash memories”, IEDM Tech.Dig., pp. 3221-3224, 2001.
[2.22] D. Ielmini, A. S. Spinelli, A. L. Lacaita, L. Confalonieri and A. Visconti, “New technique for fast characterization of SILC distribution In Flash arrays”, Proc. IRPS., pp. 73-80, 2001.
[2.23] D. Ielmini, A. S. Spinelli, A. L. Lacaita, R. Leone and A. Visconti, ”Localization of SILC in Flash memories after program/erase cycling”,Proc. IRPS., pp. 1-6, 2002.
[2.24] Y. M. Niquet, G. Allan, C. Delerue and M. Lannoo, “ Quantum confinement in germanium nanocrystals”, Applied Physics Letters,vol. 77, pp. 1182-1184, 2000.
[2.25] T. Takagahara and K. Takeda, “ Theory of the quantum confinement effect on exactions in quantum dots of indirect-gap materials”,Phys. Rev., vol. 46, pp. 15578-15581, 1992.
[2.26] J. D. Jackson, ”Classcial Electrodynamics”, published by John Wiley & Sons, 1999.

Chapter 3
[3.1] P. H. Yen, L. J. Chen, P. T. Liu, D. Y. Wang, T. C. Chang,“Metal nanocrystals as charge storage nodes for nonvolatile memory devices”, Electrochimica Acta 52, pp. 2920-2926 (2007)
[3.2] Zengtao Liu, Chungho Lee, Venkat Narayanan, Gen Pei, and Edwin Chihchuan Kan, “Metal Nanocrystal Memories- Part I : Device Design And Fabrication”, IEEE Tran. on Electron Devices, vol. 49, no. 9, September, 2002.
[3.3] Zengtao Liu, Chungho Lee, Venkat Narayanan, Gen Pei, and Edwin Chihchuan Kan, “Metal Nanocrystal Memories- Part II : Electrical Characteristics”, IEEE Tran. on Electron Devices, vol. 49, no. 9, September, 2002.
[3.4] S. P. Murarka, “Silicides for VLSI applications”, Academic Press, INC., London, pp. 3-4 (1983)
[3.5] S. Ikeda, M. Okihara, H. Uchida, and N. Hirashita, “Cross-sectional transmission electron microscope studies on intrinsic breakdown spots of thin gate oxide”, Jpn. J. Appl. Phys., pt. 1, vol. 36, pp. 2561-2564 (1997)
[3.6] N. Kimizuka, T. Yamatomo, and T. Mogami, “A new degradation scheme for direct-tunneling ultrathin gate dielectric”, in VLSI Tech. Symp., pp.162-163,1998.
[3.7] T. Y. Luo, M. Laughery, G. A. Brown, Member, IEEE, H. N. Al-Shareef, V. H. Watt, A. Karamcheti, “Effect of H2 Content on Reliability of Ultrathin In-Situ Steam Generated (ISSG) SiO2”,IEEE Electron Device Letters, vol. 21, NO. 9, September 2000.
[3.8] G. J. Huang and L. J. Chen, J. Appt. Phys. 74(2), 15 July, 1993.
[3.9] J. K. Kim, H. J. Cheong, Y. Kim, J. Y. Yi, H. J. Bark, S. H. Bang, and J. H. Cho, “ Rapid-thermal-annealing effect on lateral charge loss in metal-oxide-semiconductor capacitors with Ge nanocrystals”, Appl. Phys. Lett. 82, 2527(2003).
[3.10] P. Normand, E. Kapetanakis, P. Dimitrakis, and D. Tsoukalas, ” Effect of annealing environment on the memory properties of thin oxides with embedded Si nanocrystals obtained by low-energy ion-beam synthesis”, Appl. Phys. Lett. 83, 168(2003)
[3.11] B. Garrido, S. Cheylan, O. Gonzalez-Varona, A. Perez-Rodriguez, and J. R. Morante, “ The effect of additional oxidation on the memory characteristics of metal-oxide-semiconductor capacitors with Si nanocrystals”, Appl. Phys. Lett. 82, 4818(2003)
[3.12] L. Perniola, B. D. Salvo, G. Ghibaudo, A. F. Para, G. Pananakakis, T. Baron, and S. Lombardo, “ Influence of dots size and dots number fluctuations on the electrical characteristics of multi-nanocrystal memory devices”, Solid-State Electronics 47, 1637(2003).
[3.13] K. C. Scheer, R. A. Rao, R. Muralidhar, S. Bagchi, and J. Conner,“Thermal oxidation of silicon nanocrystals in O2 and NO ambient”, J. Appl. Phys. 93,5637(2003).
[3.14] E. Kapetanakis, P. Normand, and D. Tsoukalas, ” Charge stroage and interface states effects in Si-nanocrystal memory obtained using low-energy Si+ implantation and annealing”, Appl. Phys. Lett. 77,3450(2000).
[3.15] C. M. Gronet et al., “Method and Apparatus for In-Situ Vapor Generation”, U. S. Patent 6,037,273, March 14, 2000.
[3.16] N. Sullivan et al., “Exploring ISSG Process Space ”,in 9th IEEE International Conference on Advanced Thermal Processing of Semiconductors RTP 2002, D. P. DeWitt, J. Gelpey, B. Lojek, Z. Nenyei, Eds., 2001.
[3.17] T. Y. Luo et al., IEEE Electron Device Lett., pp. 430, vol. 21(2000)

Chapter 4
[4.1] O. Kubaschewski and B. E. Hopkins, “Oxidation of Metals and Alloys”, (Butterworths, London, 1953)
[4.2] C. H. Chen, T. C. Chang, I. H. Liao, P. B. Xi, Joe Hsieh, Jason Chen, S. M. Sze, “Tungsten oxide/tungsten nanocrystals for nonvolatile memory devices”, Applied Physics Letters 92, 013114 (2008)

Chapter 5
[5.1] Jin-Kook Yoon, Kyung-Whan Lee, Sung-Jae Chung, In-Jin Shon, Jung-Mann Doh. And Gyeung-Ho Kim, “Growth kinetics and oxidation behavior of WSi2 coating formed by chemical vapor deposition of Si on W substrate”, Journal of Alloys and Compounds, vol. 420, pp. 199-206 (2006).


連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top