|
1 Drinker, C. K. a. T., R. M. Does the magnetic field constitute an industrial hazard? J. Ind. Hyg. 3, 117-129 (1921). 2 Hartwig, V. et al. Biological effects and safety in magnetic resonance imaging: a review. Int J Environ Res Public Health 6, 1778-1798, doi:10.3390/ijerph6061778 (2009). 3 Snyder, D. J., Jahng, J. W., Smith, J. C. & Houpt, T. A. c-Fos induction in visceral and vestibular nuclei of the rat brain stem by a 9.4 T magnetic field. Neuroreport 11, 2681-2685 (2000). 4 Sandyk, R., Anninos, P. A., Tsagas, N. & Derpapas, K. Magnetic fields in the treatment of Parkinson's disease. Int J Neurosci 63, 141-150 (1992). 5 Leszczynski, D. Rapporteur report: cellular, animal and epidemiological studies of the effects of static magnetic fields relevant to human health. Prog Biophys Mol Biol 87, 247-253, doi:S0079-6107(04)00117-8 [pii] 10.1016/j.pbiomolbio.2004.08.014 (2005). 6 Dini, L. & Abbro, L. Bioeffects of moderate-intensity static magnetic fields on cell cultures. Micron 36, 195-217, doi:S0968-4328(05)00009-0 [pii] 10.1016/j.micron. 2004.12.009 (2005). 7 (WHO), W. H. O. Static fields. Environmental Health Criteria 232 (2006). 8 Miyakoshi, J. Effects of static magnetic fields at the cellular level. Prog Biophys Mol Biol 87, 213-223, doi:S0079-6107(04)00111-7 [pii] 10.1016/j.pbiomolbio.2004.08.008 (2005). 9 Nakahara, T., Yaguchi, H., Yoshida, M. & Miyakoshi, J. Effects of exposure of CHO-K1 cells to a 10-T static magnetic field. Radiology 224, 817-822 (2002). 10 Sakurai, T., Terashima, S. & Miyakoshi, J. Effects of strong static magnetic fields used in magnetic resonance imaging on insulin-secreting cells. Bioelectromagnetics 30, 1-8, doi:10.1002/bem.20433 (2009). 11 Hiraoka, M. et al. Induction of c-fos gene expression by exposure to a static magnetic field in HeLaS3 cells. Cancer Res 52, 6522-6524 (1992). 12 Yamaguchi, H., Hosokawa, K., Soda, A., Miyamoto, H. & Kinouchi, Y. Effects of seven months' exposure to a static 0.2 T magnetic field on growth and glycolytic activity of human gingival fibroblasts. Biochim Biophys Acta 1156, 302-306 (1993). 13 Buemi, M. et al. Cell proliferation/cell death balance in renal cell cultures after exposure to a static magnetic field. Nephron 87, 269-273 (2001). 14 Teodori, L. et al. Static magnetic fields affect calcium fluxes and inhibit stress-induced apoptosis in human glioblastoma cells. Cytometry 49, 143-149, doi:10.1002/cyto. 10172 (2002). 15 Pacini, S. et al. Effects of 0.2 T static magnetic field on human skin fibroblasts. Cancer Detect Prev 27, 327-332, doi:S0361090X03001247 [pii] (2003). 16 Pate, K., Benghuzzi, H., Tucci, M., Puckett, A. & Cason, Z. Morphological evaluation of MRC-5 fibroblasts after stimulation with static magnetic field and pulsating electromagnetic field. Biomed Sci Instrum 39, 460-465 (2003). 17 Pagliara, P., Lanubile, R., Dwikat, M., Abbro, L. & Dini, L. Differentiation of monocytic U937 cells under static magnetic field exposure. Eur J Histochem 49, 75-86 (2005). 18 Tarantino, P., Lanubile, R., Lacalandra, G., Abbro, L. & Dini, L. Post-continuous whole body exposure of rabbits to 650 MHz electromagnetic fields: effects on liver, spleen, and brain. Radiat Environ Biophys 44, 51-59, doi:10.1007/s00411-005-0274-y (2005). 19 Gamboa, O. L., Gutierrez, P. M., Alcalde, I., De la Fuente, I. & Gayoso, M. J. Absence of relevant effects of 5 mT static magnetic field on morphology, orientation and growth of a rat Schwann cell line in culture. Histol. Histopath. 22, 777-780 (2007). 20 Lai, H. & Singh, N. P. Magnetic-field-induced DNA strand breaks in brain cells of the rat. Environ Health Perspect 112, 687-694 (2004). 21 McCann, J. Cancer risk assessment of extremely low frequency electric and magnetic fields: a critical review of methodology. Environ Health Perspect 106, 701-717 (1998). 22 Sikov MR, M. D., Montgomery LD, Decker JR. Development of mice after intrauterine exposure to direct-current magnetic fields. Phillips., 462-473 (1979). 23 Konermann, G. & Monig, H. [Effect of static magnetic fields on the prenatal development of the mouse]. Radiologe 26, 490-497 (1986). 24 Murakami, J., Torii, Y. & Masuda, K. Fetal Development of Mice Following Intrauterine Exposure to a Static Magnetic-Field of 6.3-T. Magn. Reson. Imaging 10, 433-437 (1992). 25 Okazaki, R., Ootsuyama, A., Uchida, S. & Norimura, T. Effects of a 4.7 T static magnetic field on fetal development in ICR mice. J Radiat Res (Tokyo) 42, 273-283 (2001). 26 (IARC), I. A. f. R. o. C. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Non-Ionising Radiation. Part 1: Static and Extremely Low Frequency (ELF) Electric and Magnetic Fields. . IARC 80 (2002). 27 Mevissen, M., Buntenkotter, S. & Loscher, W. Effects of static and time-varying (50-Hz) magnetic fields on reproduction and fetal development in rats. Teratology 50, 229-237, doi:10.1002/tera.1420500308 (1994). 28 Suzuki, Y. et al. Induction of micronuclei in mice exposed to static magnetic fields. Mutagenesis 16, 499-501 (2001). 29 Rogers, A. et al. WormBase 2007. Nucleic Acids Res 36, D612-617, doi:gkm975 [pii] 10.1093/nar/gkm975 (2008). 30 Croll, N. A., Smith, J. M. & Zuckerman, B. M. The aging process of the nematode Caenorhabditis elegans in bacterial and axenic culture. Exp Aging Res 3, 175-189 (1977). 31 Rosen, A. D. & Lubowsky, J. Magnetic field influence on central nervous system function. Exp Neurol 95, 679-687 (1987). 32 Rosen, A. D. & Lubowsky, J. Modification of spontaneous unit discharge in the lateral geniculate body by a magnetic field. Exp Neurol 108, 261-265 (1990). 33 Trabulsi, R., Pawlowski, B. & Wieraszko, A. The influence of steady magnetic fields on the mouse hippocampal evoked potentials in vitro. Brain Res 728, 135-139, doi:0006-8993(96)00508-2 [pii] (1996). 34 Miyakawa, T. et al. Exposure of Caenorhabditis elegans to extremely low frequency high magnetic fields induces stress responses. Bioelectromagnetics 22, 333-339, doi:10.1002/bem.58 [pii] (2001). 35 Kimura, S. et al. Novel ordering of an S = 1/2 quasi-1d Ising-like antiferromagnet in magnetic field. Phys Rev Lett 100, 057202 (2008). 36 Tenforde, T. S., Gaffey, C. T., Moyer, B. R. & Budinger, T. F. Cardiovascular alterations in Macaca monkeys exposed to stationary magnetic fields: experimental observations and theoretical analysis. Bioelectromagnetics 4, 1-9 (1983). 37 Smagghe, G. et al. Stimulation of midgut stem cell proliferation and differentiation by insect hormones and peptides. Ann N Y Acad Sci 1040, 472-475, doi:1040/1/472 [pii] 10.1196/annals.1327.094 (2005). 38 Kangarlu, A. et al. Cognitive, cardiac, and physiological safety studies in ultra high field magnetic resonance imaging. Magn Reson Imaging 17, 1407-1416, doi:S0730-725X(99)00086-7 [pii] (1999). 39 High, W. B., Sikora, J., Ugurbil, K. & Garwood, M. Subchronic in vivo effects of a high static magnetic field (9.4 T) in rats. J Magn Reson Imaging 12, 122-139, doi:10.1002/1522-2586(200007)12:1<122::AID-JMRI14>3.0.CO;2-C [pii] (2000). 40 (ICNIRP), I. C. o. N.-i. R. P. Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300GHz). Health Phys 74, 494-522 (1998). 41 Chakeres, D. W. & de Vocht, F. Static magnetic field effects on human subjects related to magnetic resonance imaging systems. Prog Biophys Mol Biol 87, 255-265, doi:S0079-6107(04)00115-4 [pii] 10.1016/j.pbiomolbio.2004.08.012 (2005). 42 De Vocht, F. v. D., H.; Engels, H.; Kromhout, H. Exposure, health complaints and cognitive performance among employees of an MRI scanners manufacturing department. J. Magn. Reson. Imaging 23, 197-204 (2006). 43 Evans, J. A., Savitz, D. A., Kanal, E. & Gillen, J. Infertility and pregnancy outcome among magnetic resonance imaging workers. J Occup Med 35, 1191-1195 (1993). 44 Feychting, M. Health effects of static magnetic fields--a review of the epidemiological evidence. Prog Biophys Mol Biol 87, 241-246, doi:S0079-6107(04)00110-5 [pii] 10.1016/j.pbiomolbio.2004.08.007 (2005). 45 Franco, G., Perduri, R. & Murolo, A. [Health effects of occupational exposure to static magnetic fields used in magnetic resonance imaging: a review]. Med Lav 99, 16-28 (2008). 46 Maxwell C. K. Leung, P. L. W., Alexandre Benedetto, Catherine Au, Kirsten J. Helmcke, Michael Aschner, and Joel N. Meyer. Caenorhabditis elegans: An Emerging Model in Biomedical and Environmental Toxicology. Toxicol. Sci. 106, 5-28 (2008). 47 Hope, I. A. C. elegans. Oxford: Oxford University Press. (1999). 48 Caswell-Chen, E. P. et al. Revising the standard wisdom of C. elegans natural history: ecology of longevity. Sci Aging Knowledge Environ 2005, pe30, doi:2005/40/pe30 [pii] 10.1126/sageke.2005.40.pe30 (2005). 49 Kiontke, K. & Sudhaus, W. Ecology of Caenorhabditis species. WormBook, 1-14, doi:10.1895/wormbook.1.37.1 (2006). 50 Antoshechkin, I. & Sternberg, P. W. The versatile worm: genetic and genomic resources for Caenorhabditis elegans research. Nat Rev Genet 8, 518-532, doi:nrg2105 [pii] 10.1038/nrg2105 (2007). 51 Kaletta, T. & Hengartner, M. O. Finding function in novel targets: C. elegans as a model organism. Nat Rev Drug Discov 5, 387-398, doi:nrd2031 [pii] 10.1038/nrd2031 (2006). 52 (NRC), N. R. C. Scientific Frontiers in Developmental Toxicology and Risk Assessment. The National Academies Press, 296-308 (2000). 53 Harris, T. W. et al. WormBase: a multi-species resource for nematode biology and genomics. Nucleic Acids Res 32, D411-417, doi:10.1093/nar/gkh06632/suppl_1/D411 [pii] (2004). 54 Dupuy, D. et al. Genome-scale analysis of in vivo spatiotemporal promoter activity in Caenorhabditis elegans. Nat Biotechnol 25, 663-668, doi:nbt1305 [pii] 10.1038/ nbt1305 (2007). 55 Li, S. et al. A map of the interactome network of the metazoan C. elegans. Science 303, 540-543, doi:10.1126/science.10914031091403 [pii] (2004). 56 Li, T. et al. In vivo analysis of Caenorhabditis elegans noncoding RNA promoter motifs. BMC Mol Biol 9, 71, doi:1471-2199-9-71 [pii] 10.1186/1471-2199-9-71 (2008). 57 Zhong, W. & Sternberg, P. W. Genome-wide prediction of C. elegans genetic interactions. Science 311, 1481-1484, doi:311/5766/1481 [pii] 10.1126/science. 1123287 (2006). 58 Kim, S. K. et al. A gene expression map for Caenorhabditis elegans. Science 293, 2087-2092, doi:10.1126/science.1061603293/5537/2087 [pii] (2001). 59 Menzel, R. et al. Cytochrome P450s and short-chain dehydrogenases mediate the toxicogenomic response of PCB52 in the nematode Caenorhabditis elegans. J Mol Biol 370, 1-13, doi:S0022-2836(07)00558-X [pii] 10.1016/j.jmb.2007.04.058 (2007). 60 James, C. E. & Davey, M. W. Increased expression of ABC transport proteins is associated with ivermectin resistance in the model nematode Caenorhabditis elegans. Int J Parasitol 39, 213-220, doi:S0020-7519(08)00261-0 [pii] 10.1016/j.ijpara. 2008.06.009 (2009). 61 Van Voorhies, W. A. Production of sperm reduces nematode lifespan. Nature 360, 456-458, doi:10.1038/360456a0 (1992). 62 Kenyon, C., Chang, J., Gensch, E., Rudner, A. & Tabtiang, R. A C. elegans mutant that lives twice as long as wild type. Nature 366, 461-464, doi:10.1038/366461a0 (1993). 63 Hertweck, M., Hoppe, T. & Baumeister, R. C. elegans, a model for aging with high-throughput capacity. Exp Gerontol 38, 345-346, doi:S0531556502002085 [pii] (2003). 64 McKay, R. M., McKay, J. P., Avery, L. & Graff, J. M. C elegans: a model for exploring the genetics of fat storage. Dev Cell 4, 131-142, doi:S1534580702004112 [pii] (2003). 65 Bolanowski, M. A., Russell, R. L. & Jacobson, L. A. Quantitative measures of aging in the nematode Caenorhabditis elegans. I. Population and longitudinal studies of two behavioral parameters. Mech Ageing Dev 15, 279-295, doi:0047-6374(81)90136-6 [pii] (1981). 66 Hosono, R., Sato, Y., Aizawa, S. I. & Mitsui, Y. Age-dependent changes in mobility and separation of the nematode Caenorhabditis elegans. Exp Gerontol 15, 285-289, doi:0531-5565(80)90032-7 [pii] (1980). 67 Johnson, T. E. Aging can be genetically dissected into component processes using long-lived lines of Caenorhabditis elegans. Proc Natl Acad Sci U S A 84, 3777-3781 (1987). 68 Herndon, L. A. et al. Stochastic and genetic factors influence tissue-specific decline in ageing C. elegans. Nature 419, 808-814, doi:10.1038/nature01135nature01135 [pii] (2002). 69 Huang, C., Xiong, C. & Kornfeld, K. Measurements of age-related changes of physiological processes that predict lifespan of Caenorhabditis elegans. Proc Natl Acad Sci U S A 101, 8084-8089, doi:10.1073/pnas.04008481010400848101 [pii] (2004). 70 Chow, D. K., Glenn, C. F., Johnston, J. L., Goldberg, I. G. & Wolkow, C. A. Sarcopenia in the Caenorhabditis elegans pharynx correlates with muscle contraction rate over lifespan. Exp Gerontol 41, 252-260, doi:S0531-5565(05)00314-1 [pii] 10.1016/j.exger. 2005.12.004 (2006). 71 Klass, M. R. Aging in the nematode Caenorhabditis elegans: major biological and environmental factors influencing life span. Mech Ageing Dev 6, 413-429 (1977). 72 Hughes, S. & Sturzenbaum, S. R. Single and double metallothionein knockout in the nematode C. elegans reveals cadmium dependent and independent toxic effects on life history traits. Environ Pollut 145, 395-400, doi:S0269-7491(06)00372-1 [pii] 10.1016/j.envpol.2006.06.003 (2007). 73 Garigan, D. et al. Genetic analysis of tissue aging in Caenorhabditis elegans: a role for heat-shock factor and bacterial proliferation. Genetics 161, 1101-1112 (2002). 74 Cherkasova, V., Ayyadevara, S., Egilmez, N. & Shmookler Reis, R. Diverse Caenorhabditis elegans genes that are upregulated in dauer larvae also show elevated transcript levels in long-lived, aged, or starved adults. J Mol Biol 300, 433-448, doi:10.1006/jmbi.2000.3880S0022283600938804 [pii] (2000). 75 Lund, J. et al. Transcriptional profile of aging in C. elegans. Curr Biol 12, 1566-1573, doi:S0960982202011466 [pii] (2002). 76 Golden, T. R. & Melov, S. Microarray analysis of gene expression with age in individual nematodes. Aging Cell 3, 111-124, doi:10.1111/j.1474-9728. 2004. 00095.xACE095 [pii] (2004). 77 Davis, B. O., Jr., Anderson, G. L. & Dusenbery, D. B. Total luminescence spectroscopy of fluorescence changes during aging in Caenorhabditis elegans. Biochemistry 21, 4089-4095 (1982). 78 Hosokawa, H. et al. Rapid accumulation of fluorescent material with aging in an oxygen-sensitive mutant mev-1 of Caenorhabditis elegans. Mech Ageing Dev 74, 161-170 (1994). 79 Gerstbrein, B., Stamatas, G., Kollias, N. & Driscoll, M. In vivo spectrofluorimetry reveals endogenous biomarkers that report healthspan and dietary restriction in Caenorhabditis elegans. Aging Cell 4, 127-137, doi:ACE153 [pii] 10.1111/j.1474-9726. 2005.00153.x (2005). 80 Lakowski, B. & Hekimi, S. The genetics of caloric restriction in Caenorhabditis elegans. Proc Natl Acad Sci U S A 95, 13091-13096 (1998). 81 Brenner, S. The Genetics of Caenorhabditis elegans. Genetics 77, 71-94 (1974). 82 Cassada, R. C. a. R., R. L. The dauerlarva, a post-embryonic developmental variant of the nematode Caenorhabditis elegans. Dev. Biol. 46, 326-342 (1975). 83 Narra, V. R., Howell, R. W., Goddu, S. M. & Rao, D. V. Effects of a 1.5-Tesla static magnetic field on spermatogenesis and embryogenesis in mice. Invest Radiol 31, 586-590 (1996). 84 Tablado, L., Perez-Sanchez, F. & Soler, C. Is sperm motility maturation affected by static magnetic fields? Environ Health Perspect 104, 1212-1216 (1996). 85 Tablado, L., Perez-Sanchez, F., Nunez, J., Nunez, M. & Soler, C. Effects of exposure to static magnetic fields on the morphology and morphometry of mouse epididymal sperm. Bioelectromagnetics 19, 377-383, doi:10.1002/(SICI)1521-186X (1998) 19:6<377::AID-BEM5>3.0.CO;2-Z [pii] (1998). 86 Tablado, L., Soler, C., Nunez, M., Nunez, J. & Perez-Sanchez, F. Development of mouse testis and epididymis following intrauterine exposure to a static magnetic field. Bioelectromagnetics 21, 19-24, doi:10.1002/(SICI)1521-186X (200001) 21:1<19::AID -BEM4>3.0.CO;2-1 [pii] (2000). 87 Neurath, P. W. High gradient magnetic field inhibits embryonic development of frogs. Nature 219, 1358-1359 (1968). 88 Ueno, K., Thurumaru, H., Furuta, S., Ohyama, M. & Fujimoto, T. [Magnetic resonance spectroscopy of naso-sinus tumors]. Nippon Jibiinkoka Gakkai Kaiho 97, 430-435 (1994). 89 Mills, D. K. & Hartman, P. S. Lethal consequences of simulated solar radiation on the nematode Caenorhabditis elegans in the presence and absence of photosensitizers. Photochem Photobiol 68, 816-823 (1998). 90 Tyndall, D. A. MRI effects on craniofacial size and crown-rump length in C57BL/6J mice in 1.5T fields. Oral Surg Oral Med Oral Pathol 76, 655-660 (1993). 91 Tyndall, D. A. MRI effects on the teratogenicity of x-irradiation in the C57BL/6J mouse. Magn Reson Imaging 8, 423-433 (1990). 92 Tyndall, D. A. & Sulik, K. K. Effects of magnetic resonance imaging on eye development in the C57BL/6J mouse. Teratology 43, 263-275, doi:10.1002/tera. 1420430310 (1991). 93 Carnes, K. I. & Magin, R. L. Effects of in utero exposure to 4.7 T MR imaging conditions on fetal growth and testicular development in the mouse. Magn Reson Imaging 14, 263-274, doi:0730-725X(95)02099-F [pii] (1996). 94 Magin, R. L., Lee, J. K., Klintsova, A., Carnes, K. I. & Dunn, F. Biological effects of long-duration, high-field (4 T) MRI on growth and development in the mouse. J Magn Reson Imaging 12, 140-149, doi:10.1002/1522-2586(200007)12:1<140::AID-JMRI15 >3.0.CO;2-D [pii] (2000). 95 Boulton, S. J. et al. Combined functional genomic maps of the C. elegans DNA damage response. Science 295, 127-131, doi:10.1126/science.1065986295/5552/127 [pii] (2002). 96 Hekimi, S., Lakowski, B., Barnes, T. M. & Ewbank, J. J. Molecular genetics of life span in C. elegans: how much does it teach us? Trends Genet 14, 14-20, doi:S0168-9525(97)01299-7 [pii] 10.1016/S0168-9525(97)01299-7 (1998). 97 Rose, J. K., Sangha, S., Rai, S., Norman, K. R. & Rankin, C. H. Decreased sensory stimulation reduces behavioral responding, retards development, and alters neuronal connectivity in Caenorhabditis elegans. J Neurosci 25, 7159-7168, doi:25/31/7159 [pii] 10.1523/JNEUROSCI.1833-05.2005 (2005). 98 Stergiou, L. & Hengartner, M. O. Death and more: DNA damage response pathways in the nematode C. elegans. Cell Death Differ 11, 21-28, doi:10.1038/sj.cdd. 44013404401340 [pii] (2004).
|