(44.192.112.123) 您好!臺灣時間:2021/03/06 07:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李佳慧
研究生(外文):Lee, Jia-Huey
論文名稱:以線蟲為生物模組探討固定磁場誘發加速發育及老化現象的基因機制
論文名稱(外文):Genetic mechanisms on the static magnetic fields-induced acceleration for development and aging in Caenorhabditis elegans
指導教授:黃國華黃國華引用關係
指導教授(外文):Huang, Guewha Steven
學位類別:碩士
校院名稱:國立交通大學
系所名稱:奈米科技研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:英文
論文頁數:55
中文關鍵詞:磁場發育老化線蟲
外文關鍵詞:static magnetic fieldsdevelopmentagingCaenorhabditis elegans
相關次數:
  • 被引用被引用:0
  • 點閱點閱:170
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
固定磁場(static magnetic field,簡稱SMF)在醫療方面的應用漸廣,磁場對生物體影響相關的研究亦與日俱增,而本實驗室使用線蟲為生物模組,探討固定磁場與生物體致癌現象的相關性。在我們的研究中,主要分為兩個部分:第一部分主要是以線蟲為生物模組探討SMF誘導生物體發育加速以及致癌現象之間的關係。我們發現在200 mT SMF的處理之下加速了線蟲的發育,縮短了線蟲每個生長發育分期所需時間的20%~30%。在發育調控基因的分析結果發現:有磁場處理的組別,蟲體的clk-1, lim-7, daf-2, unc-3及age-1的表現量都較未經磁場處理的蟲體來的高;在let-7, clk-1, unc-3及 age-1突變種的分析試驗結果和基因表現分析結果是一致的。從實驗結果分析發現:經由SMF誘導產生的發育加速現象可能經由let-7, clk-1, unc-3, 及age-1所調控的路徑產生。
第二部分則是延續第一部分所發現的現象更進一步探討: SMF誘導產生的老化現象主要可能和哪些關鍵基因有相關連性。在前一部分的實驗發現:經由200 mT SMF處理下,正常線蟲的壽命會從31天提早到25天。而在老化蛋白lipofuscin, 爬行速率,生殖能力等老化指標分析發現:經200 mT磁場處理的線蟲皆有提早老化的現象產生。進一步的老化基因分析顯示:經200 mT磁場處理的線蟲,其體內調控老化表現的基因(lim-7, age-1, daf-2)表現量皆比未處理組別高出20~1500倍以上。而在clk-1, eat-2, daf-2, daf-16, age-1及unc-3的突變種分析試驗的呈現結果是與前述老化分析實驗一致的。
癌症的生成主要是由細胞不正常的生長造成,而失序的生長主要來自於細胞無法正常傳遞遺傳訊息和及時修補遺傳序列上的錯誤訊號。當發育過程被加速,使得遺傳訊息錯誤配對的機率提高;而老化現象提早,將會使得遺傳訊息傳遞錯誤的修補率下降,導致錯誤的遺傳訊息被傳遞下去,進而可能導致細胞失序生長,甚至是癌症的產生。根據我們的實驗結果發現:長時間在超過200 mT以上的磁場暴露之下,會加速生物體的發育速率並且提早生物體老化現象的產生,這可能與長期在磁場暴露之下工作者的罹癌率較高有相關性。

With the application of static magnetic field (SMF) in clinical practice, the incidence of exposure has largely increased. We investigated the correlation between SMF and cancer production with Caenorhabditis elegans as an animal model. Here are two parts in our study. Firstly, we were focused on the SMFs-induced acceleration for the development and cancer production in C.elegans model. Treatment with a 200 mT SMF reduced the development times about 20 ~ 31%. The total developmental time was significantly reduced for the lin-4, lin-14, lin-41, and lim-7 mutants, but not for the let-7, clk-1, unc-3, and age-1 mutants. Lifespan analyses revealed that the let-7, unc-3, and age-1 mutants were not affected by SMF treatment. Here we show that SMFs accelerate nematode development and shorten nematode lifespan through pathways associated with let-7, clk-1, unc-3, and age-1.
Secondly, we were focused on the genetic control for aging process under the influence of SMF in C. elegans model. After SMF treatment, the average lifespan was reduced from 31 days to 25 days for wild-type nematodes. And the results of representative experiments in aging analysis, lipofuscin accumulation, crawling speed, and reproductive ability, indicated 200 mT SMF accelerate the aging process. The 20 ~ 1500 times up-regulation of aging genes (lim-7, daf-2, and age-1) after 200 mT SMF treatment was verified by quantitative real-time RT-PCR. And the results of the clk-1, eat-2, daf-2, daf-16, age-1, and unc-3 mutant-type analysis are coincidence with the aging assay.
The cancer production is according to the abnormal cell proliferation. And the uncontrollable cell proliferation attributes to the transcription messages mistake and missing in transcription messages mistake repaired. The mismatch probability of transcription messages communicating was increased during accelerated development; the repair rate of wrong transcription messages was decreased during aging. These make the wrong transcription messages pass down, and then induce abnormal cell proliferation, even cancer production. According to our studies, over 200 mT SMF exposures would accelerate the development and aging process. And this may explain why people exposures with SMF for a long time get cancer with high proportion.

Contents .................................................................................... I
Chapter 1: Introduction ..................................................................... 1
1.1 General Introduction to static magnetic field .............................................................. 1
1.2 Static magnetic fields................................................................................................... 1
1.3 The effects of static magnetic fields at cellular level .................................................. 2
1.4 The effects of static magnetic fields at multicellular organisms ................................. 2
1.5 The effects of static magnetic fields in Mammals ....................................................... 3
1.6 A leading animal model system - Caenorhabditis elegans ......................................... 5
1.7 Aging alterations of Caenorhabditis elegans .............................................................. 9
1.8 Motivation ................................................................................................................... 9
Chapter 2: Experiment and Method .................................... 10
2.1 Chemicals ................................................................................................................... 10
2.2 Static Magnetic Fields ................................................................................................ 10
2.3 Strains of Caenorhabditis elegans ............................................................................. 10
2.4 Isolation of Nematode Developmental Stages............................................................ 11
2.5 Lifespan assay ............................................................................................................ 11
2.6 Lipofuscin analysis ..................................................................................................... 12
2.7 Mobility assay ............................................................................................................ 12
2.8 Reproduction analysis ................................................................................................ 12
2.9 Quantitative real-time RT-PCR .................................................................................. 13
2.10 Statistical Analyses ................................................................................................... 14

Chapter 3: Result .............................................................................. 16
3.1 A SMF of 200 mT shortens the lifespan of C. elegans .............................................. 17
3.2 SMFs stronger than 150 mT accelerate nematode development time ........................ 18
3.3 Genes associated with development and aging are differentially expressed after treatment with SMFs ........................................................................................................ 21
3.4 Nematodes mutant for developmental and aging genes are resistant to SMF-induced life cycle reduction .......................................................................................................... 22
3.5 Nematodes mutant for developmental and aging genes are resistant to SMF-induced lifespan reduction ............................................................................................................. 24
3.6 SMFs shortened the lifespan of C. elegans ................................................................ 27
3.7 SMF at 200 mT reduced the mobility of wild-type, daf-2, and daf-16 adult C. elegans 29
3.8 SMF promoted early expression of lipofuscin ........................................................... 31
3.9 SMF promoted the egg laying of C. elegans .............................................................. 31
3.10 SMF extended the reproductive span of C. elegans ................................................. 33
3.11 Real time RT-PCR revealed over expression of clk-1, age-1, unc-3, and let-7 under the influence of SMF ........................................................................................................ 34
Chapter 4: Discussion ............................................................ 37
4.1 SMFs accelerate the development and aging of nematodes ..................................... 37
4.2 Global effects of SMFs ............................................................................................. 38
4.3 Triggering effects of SMFs on transcription ............................................................. 39
4.4 Genetic analyses of mutants revealed possible mechanisms underlying the SMF-induced gene expression ........................................................................................ 39
Chapter 5: Conclusions ......................................................... 41

List of Abbreviations ............................................................. 44
References .......................................................................... 45

1 Drinker, C. K. a. T., R. M. Does the magnetic field constitute an industrial hazard? J. Ind. Hyg. 3, 117-129 (1921).
2 Hartwig, V. et al. Biological effects and safety in magnetic resonance imaging: a review. Int J Environ Res Public Health 6, 1778-1798, doi:10.3390/ijerph6061778 (2009).
3 Snyder, D. J., Jahng, J. W., Smith, J. C. & Houpt, T. A. c-Fos induction in visceral and vestibular nuclei of the rat brain stem by a 9.4 T magnetic field. Neuroreport 11, 2681-2685 (2000).
4 Sandyk, R., Anninos, P. A., Tsagas, N. & Derpapas, K. Magnetic fields in the treatment of Parkinson's disease. Int J Neurosci 63, 141-150 (1992).
5 Leszczynski, D. Rapporteur report: cellular, animal and epidemiological studies of the effects of static magnetic fields relevant to human health. Prog Biophys Mol Biol 87, 247-253, doi:S0079-6107(04)00117-8 [pii] 10.1016/j.pbiomolbio.2004.08.014 (2005).
6 Dini, L. & Abbro, L. Bioeffects of moderate-intensity static magnetic fields on cell cultures. Micron 36, 195-217, doi:S0968-4328(05)00009-0 [pii] 10.1016/j.micron. 2004.12.009 (2005).
7 (WHO), W. H. O. Static fields. Environmental Health Criteria 232 (2006).
8 Miyakoshi, J. Effects of static magnetic fields at the cellular level. Prog Biophys Mol Biol 87, 213-223, doi:S0079-6107(04)00111-7 [pii] 10.1016/j.pbiomolbio.2004.08.008 (2005).
9 Nakahara, T., Yaguchi, H., Yoshida, M. & Miyakoshi, J. Effects of exposure of CHO-K1 cells to a 10-T static magnetic field. Radiology 224, 817-822 (2002).
10 Sakurai, T., Terashima, S. & Miyakoshi, J. Effects of strong static magnetic fields used in magnetic resonance imaging on insulin-secreting cells. Bioelectromagnetics 30, 1-8, doi:10.1002/bem.20433 (2009).
11 Hiraoka, M. et al. Induction of c-fos gene expression by exposure to a static magnetic field in HeLaS3 cells. Cancer Res 52, 6522-6524 (1992).
12 Yamaguchi, H., Hosokawa, K., Soda, A., Miyamoto, H. & Kinouchi, Y. Effects of seven months' exposure to a static 0.2 T magnetic field on growth and glycolytic activity of human gingival fibroblasts. Biochim Biophys Acta 1156, 302-306 (1993).
13 Buemi, M. et al. Cell proliferation/cell death balance in renal cell cultures after exposure to a static magnetic field. Nephron 87, 269-273 (2001).
14 Teodori, L. et al. Static magnetic fields affect calcium fluxes and inhibit stress-induced apoptosis in human glioblastoma cells. Cytometry 49, 143-149, doi:10.1002/cyto. 10172 (2002).
15 Pacini, S. et al. Effects of 0.2 T static magnetic field on human skin fibroblasts. Cancer Detect Prev 27, 327-332, doi:S0361090X03001247 [pii] (2003).
16 Pate, K., Benghuzzi, H., Tucci, M., Puckett, A. & Cason, Z. Morphological evaluation of MRC-5 fibroblasts after stimulation with static magnetic field and pulsating electromagnetic field. Biomed Sci Instrum 39, 460-465 (2003).
17 Pagliara, P., Lanubile, R., Dwikat, M., Abbro, L. & Dini, L. Differentiation of monocytic U937 cells under static magnetic field exposure. Eur J Histochem 49, 75-86 (2005).
18 Tarantino, P., Lanubile, R., Lacalandra, G., Abbro, L. & Dini, L. Post-continuous whole body exposure of rabbits to 650 MHz electromagnetic fields: effects on liver, spleen, and brain. Radiat Environ Biophys 44, 51-59, doi:10.1007/s00411-005-0274-y (2005).
19 Gamboa, O. L., Gutierrez, P. M., Alcalde, I., De la Fuente, I. & Gayoso, M. J. Absence of relevant effects of 5 mT static magnetic field on morphology, orientation and growth of a rat Schwann cell line in culture. Histol. Histopath. 22, 777-780 (2007).
20 Lai, H. & Singh, N. P. Magnetic-field-induced DNA strand breaks in brain cells of the rat. Environ Health Perspect 112, 687-694 (2004).
21 McCann, J. Cancer risk assessment of extremely low frequency electric and magnetic fields: a critical review of methodology. Environ Health Perspect 106, 701-717 (1998).
22 Sikov MR, M. D., Montgomery LD, Decker JR. Development of mice after intrauterine exposure to direct-current magnetic fields. Phillips., 462-473 (1979).
23 Konermann, G. & Monig, H. [Effect of static magnetic fields on the prenatal development of the mouse]. Radiologe 26, 490-497 (1986).
24 Murakami, J., Torii, Y. & Masuda, K. Fetal Development of Mice Following Intrauterine Exposure to a Static Magnetic-Field of 6.3-T. Magn. Reson. Imaging 10, 433-437 (1992).
25 Okazaki, R., Ootsuyama, A., Uchida, S. & Norimura, T. Effects of a 4.7 T static magnetic field on fetal development in ICR mice. J Radiat Res (Tokyo) 42, 273-283 (2001).
26 (IARC), I. A. f. R. o. C. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Non-Ionising Radiation. Part 1: Static and Extremely Low Frequency (ELF) Electric and Magnetic Fields. . IARC 80 (2002).
27 Mevissen, M., Buntenkotter, S. & Loscher, W. Effects of static and time-varying (50-Hz) magnetic fields on reproduction and fetal development in rats. Teratology 50, 229-237, doi:10.1002/tera.1420500308 (1994).
28 Suzuki, Y. et al. Induction of micronuclei in mice exposed to static magnetic fields. Mutagenesis 16, 499-501 (2001).
29 Rogers, A. et al. WormBase 2007. Nucleic Acids Res 36, D612-617, doi:gkm975 [pii] 10.1093/nar/gkm975 (2008).
30 Croll, N. A., Smith, J. M. & Zuckerman, B. M. The aging process of the nematode Caenorhabditis elegans in bacterial and axenic culture. Exp Aging Res 3, 175-189 (1977).
31 Rosen, A. D. & Lubowsky, J. Magnetic field influence on central nervous system function. Exp Neurol 95, 679-687 (1987).
32 Rosen, A. D. & Lubowsky, J. Modification of spontaneous unit discharge in the lateral geniculate body by a magnetic field. Exp Neurol 108, 261-265 (1990).
33 Trabulsi, R., Pawlowski, B. & Wieraszko, A. The influence of steady magnetic fields on the mouse hippocampal evoked potentials in vitro. Brain Res 728, 135-139, doi:0006-8993(96)00508-2 [pii] (1996).
34 Miyakawa, T. et al. Exposure of Caenorhabditis elegans to extremely low frequency high magnetic fields induces stress responses. Bioelectromagnetics 22, 333-339, doi:10.1002/bem.58 [pii] (2001).
35 Kimura, S. et al. Novel ordering of an S = 1/2 quasi-1d Ising-like antiferromagnet in magnetic field. Phys Rev Lett 100, 057202 (2008).
36 Tenforde, T. S., Gaffey, C. T., Moyer, B. R. & Budinger, T. F. Cardiovascular alterations in Macaca monkeys exposed to stationary magnetic fields: experimental observations and theoretical analysis. Bioelectromagnetics 4, 1-9 (1983).
37 Smagghe, G. et al. Stimulation of midgut stem cell proliferation and differentiation by insect hormones and peptides. Ann N Y Acad Sci 1040, 472-475, doi:1040/1/472 [pii] 10.1196/annals.1327.094 (2005).
38 Kangarlu, A. et al. Cognitive, cardiac, and physiological safety studies in ultra high field magnetic resonance imaging. Magn Reson Imaging 17, 1407-1416, doi:S0730-725X(99)00086-7 [pii] (1999).
39 High, W. B., Sikora, J., Ugurbil, K. & Garwood, M. Subchronic in vivo effects of a high static magnetic field (9.4 T) in rats. J Magn Reson Imaging 12, 122-139, doi:10.1002/1522-2586(200007)12:1<122::AID-JMRI14>3.0.CO;2-C [pii] (2000).
40 (ICNIRP), I. C. o. N.-i. R. P. Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300GHz). Health Phys 74, 494-522 (1998).
41 Chakeres, D. W. & de Vocht, F. Static magnetic field effects on human subjects related to magnetic resonance imaging systems. Prog Biophys Mol Biol 87, 255-265, doi:S0079-6107(04)00115-4 [pii] 10.1016/j.pbiomolbio.2004.08.012 (2005).
42 De Vocht, F. v. D., H.; Engels, H.; Kromhout, H. Exposure, health complaints and cognitive performance among employees of an MRI scanners manufacturing department. J. Magn. Reson. Imaging 23, 197-204 (2006).
43 Evans, J. A., Savitz, D. A., Kanal, E. & Gillen, J. Infertility and pregnancy outcome among magnetic resonance imaging workers. J Occup Med 35, 1191-1195 (1993).
44 Feychting, M. Health effects of static magnetic fields--a review of the epidemiological evidence. Prog Biophys Mol Biol 87, 241-246, doi:S0079-6107(04)00110-5 [pii] 10.1016/j.pbiomolbio.2004.08.007 (2005).
45 Franco, G., Perduri, R. & Murolo, A. [Health effects of occupational exposure to static magnetic fields used in magnetic resonance imaging: a review]. Med Lav 99, 16-28 (2008).
46 Maxwell C. K. Leung, P. L. W., Alexandre Benedetto, Catherine Au, Kirsten J. Helmcke, Michael Aschner, and Joel N. Meyer. Caenorhabditis elegans: An Emerging Model in Biomedical and Environmental Toxicology. Toxicol. Sci. 106, 5-28 (2008).
47 Hope, I. A. C. elegans. Oxford: Oxford University Press. (1999).
48 Caswell-Chen, E. P. et al. Revising the standard wisdom of C. elegans natural history: ecology of longevity. Sci Aging Knowledge Environ 2005, pe30, doi:2005/40/pe30 [pii] 10.1126/sageke.2005.40.pe30 (2005).
49 Kiontke, K. & Sudhaus, W. Ecology of Caenorhabditis species. WormBook, 1-14, doi:10.1895/wormbook.1.37.1 (2006).
50 Antoshechkin, I. & Sternberg, P. W. The versatile worm: genetic and genomic resources for Caenorhabditis elegans research. Nat Rev Genet 8, 518-532, doi:nrg2105 [pii] 10.1038/nrg2105 (2007).
51 Kaletta, T. & Hengartner, M. O. Finding function in novel targets: C. elegans as a model organism. Nat Rev Drug Discov 5, 387-398, doi:nrd2031 [pii] 10.1038/nrd2031 (2006).
52 (NRC), N. R. C. Scientific Frontiers in Developmental Toxicology and Risk Assessment. The National Academies Press, 296-308 (2000).
53 Harris, T. W. et al. WormBase: a multi-species resource for nematode biology and genomics. Nucleic Acids Res 32, D411-417, doi:10.1093/nar/gkh06632/suppl_1/D411 [pii] (2004).
54 Dupuy, D. et al. Genome-scale analysis of in vivo spatiotemporal promoter activity in Caenorhabditis elegans. Nat Biotechnol 25, 663-668, doi:nbt1305 [pii] 10.1038/ nbt1305 (2007).
55 Li, S. et al. A map of the interactome network of the metazoan C. elegans. Science 303, 540-543, doi:10.1126/science.10914031091403 [pii] (2004).
56 Li, T. et al. In vivo analysis of Caenorhabditis elegans noncoding RNA promoter motifs. BMC Mol Biol 9, 71, doi:1471-2199-9-71 [pii] 10.1186/1471-2199-9-71 (2008).
57 Zhong, W. & Sternberg, P. W. Genome-wide prediction of C. elegans genetic interactions. Science 311, 1481-1484, doi:311/5766/1481 [pii] 10.1126/science. 1123287 (2006).
58 Kim, S. K. et al. A gene expression map for Caenorhabditis elegans. Science 293, 2087-2092, doi:10.1126/science.1061603293/5537/2087 [pii] (2001).
59 Menzel, R. et al. Cytochrome P450s and short-chain dehydrogenases mediate the toxicogenomic response of PCB52 in the nematode Caenorhabditis elegans. J Mol Biol 370, 1-13, doi:S0022-2836(07)00558-X [pii] 10.1016/j.jmb.2007.04.058 (2007).
60 James, C. E. & Davey, M. W. Increased expression of ABC transport proteins is associated with ivermectin resistance in the model nematode Caenorhabditis elegans. Int J Parasitol 39, 213-220, doi:S0020-7519(08)00261-0 [pii] 10.1016/j.ijpara. 2008.06.009 (2009).
61 Van Voorhies, W. A. Production of sperm reduces nematode lifespan. Nature 360, 456-458, doi:10.1038/360456a0 (1992).
62 Kenyon, C., Chang, J., Gensch, E., Rudner, A. & Tabtiang, R. A C. elegans mutant that lives twice as long as wild type. Nature 366, 461-464, doi:10.1038/366461a0 (1993).
63 Hertweck, M., Hoppe, T. & Baumeister, R. C. elegans, a model for aging with high-throughput capacity. Exp Gerontol 38, 345-346, doi:S0531556502002085 [pii] (2003).
64 McKay, R. M., McKay, J. P., Avery, L. & Graff, J. M. C elegans: a model for exploring the genetics of fat storage. Dev Cell 4, 131-142, doi:S1534580702004112 [pii] (2003).
65 Bolanowski, M. A., Russell, R. L. & Jacobson, L. A. Quantitative measures of aging in the nematode Caenorhabditis elegans. I. Population and longitudinal studies of two behavioral parameters. Mech Ageing Dev 15, 279-295, doi:0047-6374(81)90136-6 [pii] (1981).
66 Hosono, R., Sato, Y., Aizawa, S. I. & Mitsui, Y. Age-dependent changes in mobility and separation of the nematode Caenorhabditis elegans. Exp Gerontol 15, 285-289, doi:0531-5565(80)90032-7 [pii] (1980).
67 Johnson, T. E. Aging can be genetically dissected into component processes using long-lived lines of Caenorhabditis elegans. Proc Natl Acad Sci U S A 84, 3777-3781 (1987).
68 Herndon, L. A. et al. Stochastic and genetic factors influence tissue-specific decline in ageing C. elegans. Nature 419, 808-814, doi:10.1038/nature01135nature01135 [pii] (2002).
69 Huang, C., Xiong, C. & Kornfeld, K. Measurements of age-related changes of physiological processes that predict lifespan of Caenorhabditis elegans. Proc Natl Acad Sci U S A 101, 8084-8089, doi:10.1073/pnas.04008481010400848101 [pii] (2004).
70 Chow, D. K., Glenn, C. F., Johnston, J. L., Goldberg, I. G. & Wolkow, C. A. Sarcopenia in the Caenorhabditis elegans pharynx correlates with muscle contraction rate over lifespan. Exp Gerontol 41, 252-260, doi:S0531-5565(05)00314-1 [pii] 10.1016/j.exger. 2005.12.004 (2006).
71 Klass, M. R. Aging in the nematode Caenorhabditis elegans: major biological and environmental factors influencing life span. Mech Ageing Dev 6, 413-429 (1977).
72 Hughes, S. & Sturzenbaum, S. R. Single and double metallothionein knockout in the nematode C. elegans reveals cadmium dependent and independent toxic effects on life history traits. Environ Pollut 145, 395-400, doi:S0269-7491(06)00372-1 [pii] 10.1016/j.envpol.2006.06.003 (2007).
73 Garigan, D. et al. Genetic analysis of tissue aging in Caenorhabditis elegans: a role for heat-shock factor and bacterial proliferation. Genetics 161, 1101-1112 (2002).
74 Cherkasova, V., Ayyadevara, S., Egilmez, N. & Shmookler Reis, R. Diverse Caenorhabditis elegans genes that are upregulated in dauer larvae also show elevated transcript levels in long-lived, aged, or starved adults. J Mol Biol 300, 433-448, doi:10.1006/jmbi.2000.3880S0022283600938804 [pii] (2000).
75 Lund, J. et al. Transcriptional profile of aging in C. elegans. Curr Biol 12, 1566-1573, doi:S0960982202011466 [pii] (2002).
76 Golden, T. R. & Melov, S. Microarray analysis of gene expression with age in individual nematodes. Aging Cell 3, 111-124, doi:10.1111/j.1474-9728. 2004. 00095.xACE095 [pii] (2004).
77 Davis, B. O., Jr., Anderson, G. L. & Dusenbery, D. B. Total luminescence spectroscopy of fluorescence changes during aging in Caenorhabditis elegans. Biochemistry 21, 4089-4095 (1982).
78 Hosokawa, H. et al. Rapid accumulation of fluorescent material with aging in an oxygen-sensitive mutant mev-1 of Caenorhabditis elegans. Mech Ageing Dev 74, 161-170 (1994).
79 Gerstbrein, B., Stamatas, G., Kollias, N. & Driscoll, M. In vivo spectrofluorimetry reveals endogenous biomarkers that report healthspan and dietary restriction in Caenorhabditis elegans. Aging Cell 4, 127-137, doi:ACE153 [pii] 10.1111/j.1474-9726. 2005.00153.x (2005).
80 Lakowski, B. & Hekimi, S. The genetics of caloric restriction in Caenorhabditis elegans. Proc Natl Acad Sci U S A 95, 13091-13096 (1998).
81 Brenner, S. The Genetics of Caenorhabditis elegans. Genetics 77, 71-94 (1974).
82 Cassada, R. C. a. R., R. L. The dauerlarva, a post-embryonic developmental variant of the nematode Caenorhabditis elegans. Dev. Biol. 46, 326-342 (1975).
83 Narra, V. R., Howell, R. W., Goddu, S. M. & Rao, D. V. Effects of a 1.5-Tesla static magnetic field on spermatogenesis and embryogenesis in mice. Invest Radiol 31, 586-590 (1996).
84 Tablado, L., Perez-Sanchez, F. & Soler, C. Is sperm motility maturation affected by static magnetic fields? Environ Health Perspect 104, 1212-1216 (1996).
85 Tablado, L., Perez-Sanchez, F., Nunez, J., Nunez, M. & Soler, C. Effects of exposure to static magnetic fields on the morphology and morphometry of mouse epididymal sperm. Bioelectromagnetics 19, 377-383, doi:10.1002/(SICI)1521-186X (1998) 19:6<377::AID-BEM5>3.0.CO;2-Z [pii] (1998).
86 Tablado, L., Soler, C., Nunez, M., Nunez, J. & Perez-Sanchez, F. Development of mouse testis and epididymis following intrauterine exposure to a static magnetic field. Bioelectromagnetics 21, 19-24, doi:10.1002/(SICI)1521-186X (200001) 21:1<19::AID -BEM4>3.0.CO;2-1 [pii] (2000).
87 Neurath, P. W. High gradient magnetic field inhibits embryonic development of frogs. Nature 219, 1358-1359 (1968).
88 Ueno, K., Thurumaru, H., Furuta, S., Ohyama, M. & Fujimoto, T. [Magnetic resonance spectroscopy of naso-sinus tumors]. Nippon Jibiinkoka Gakkai Kaiho 97, 430-435 (1994).
89 Mills, D. K. & Hartman, P. S. Lethal consequences of simulated solar radiation on the nematode Caenorhabditis elegans in the presence and absence of photosensitizers. Photochem Photobiol 68, 816-823 (1998).
90 Tyndall, D. A. MRI effects on craniofacial size and crown-rump length in C57BL/6J mice in 1.5T fields. Oral Surg Oral Med Oral Pathol 76, 655-660 (1993).
91 Tyndall, D. A. MRI effects on the teratogenicity of x-irradiation in the C57BL/6J mouse. Magn Reson Imaging 8, 423-433 (1990).
92 Tyndall, D. A. & Sulik, K. K. Effects of magnetic resonance imaging on eye development in the C57BL/6J mouse. Teratology 43, 263-275, doi:10.1002/tera. 1420430310 (1991).
93 Carnes, K. I. & Magin, R. L. Effects of in utero exposure to 4.7 T MR imaging conditions on fetal growth and testicular development in the mouse. Magn Reson Imaging 14, 263-274, doi:0730-725X(95)02099-F [pii] (1996).
94 Magin, R. L., Lee, J. K., Klintsova, A., Carnes, K. I. & Dunn, F. Biological effects of long-duration, high-field (4 T) MRI on growth and development in the mouse. J Magn Reson Imaging 12, 140-149, doi:10.1002/1522-2586(200007)12:1<140::AID-JMRI15 >3.0.CO;2-D [pii] (2000).
95 Boulton, S. J. et al. Combined functional genomic maps of the C. elegans DNA damage response. Science 295, 127-131, doi:10.1126/science.1065986295/5552/127 [pii] (2002).
96 Hekimi, S., Lakowski, B., Barnes, T. M. & Ewbank, J. J. Molecular genetics of life span in C. elegans: how much does it teach us? Trends Genet 14, 14-20, doi:S0168-9525(97)01299-7 [pii] 10.1016/S0168-9525(97)01299-7 (1998).
97 Rose, J. K., Sangha, S., Rai, S., Norman, K. R. & Rankin, C. H. Decreased sensory stimulation reduces behavioral responding, retards development, and alters neuronal connectivity in Caenorhabditis elegans. J Neurosci 25, 7159-7168, doi:25/31/7159 [pii] 10.1523/JNEUROSCI.1833-05.2005 (2005).
98 Stergiou, L. & Hengartner, M. O. Death and more: DNA damage response pathways in the nematode C. elegans. Cell Death Differ 11, 21-28, doi:10.1038/sj.cdd. 44013404401340 [pii] (2004).

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔