(44.192.10.166) 您好!臺灣時間:2021/03/05 09:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李則賢
研究生(外文):Lee, Tse-Hsien
論文名稱:改善聚乙烯醇製作軟性薄膜電晶體之遲滯現象
論文名稱(外文):Hysteresis Suppression of Thin-Film Transistors with Poly(Vinyl Alcohol) insulator on Flexible Substrate
指導教授:陳皇銘
指導教授(外文):Chen, Huang-Ming Philip
學位類別:碩士
校院名稱:國立交通大學
系所名稱:顯示科技研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:59
中文關鍵詞:薄膜電晶體聚乙烯醇遲滯
外文關鍵詞:TFTPVAhysteresis
相關次數:
  • 被引用被引用:1
  • 點閱點閱:268
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:24
  • 收藏至我的研究室書目清單書目收藏:2
本論文研究是以探討InGaZnO4半導體薄膜於軟性不銹鋼基板上的彎曲特性,並嘗試以機械應力的角度來探討薄膜與薄膜間的交互作用;我們發現在基板可彎曲的限度內,使用低楊氏係數PVA製程介電層的薄膜電晶體遠比舊有的二氧化矽薄膜穩定,在臨限電壓的位移上從2.4 V降至 0.1 V,其載子遷移率均可達7.8 cm2V-1s-1,已達到薄膜電晶體應用之要求。而在使用PVA製程的薄膜電晶體,電性上產生明顯的遲滯現象臨限電壓位移,藉由添加二氧化矽粉末於溶液中,大幅降低臨限電壓位移從3.9 V 降至0 V,其載子傳輸效率為 9.7 cm2V-1s-1,保有穩定TFT特性表現。
In this thesis, the electrical characteristics of amorphous InGaZnO4 thin film transistor (TFT) on stainless steel substrate were evaluated under flat and bending conditions. Our investigation based on the interaction between films at each layers of TFT under mechanical stress. The low Young’s modulus materials, such as poly vinyl alcohol (PVA), are more stable than the traditional silicon dioxide thin film under bending. The displacement of threshold voltage decreases substantially from 2.4 V to 0.1 V by using PVA as insulator. Furthermore, the hysteresis on the threshold voltage of TFT can be improved by using silicon dioxide (SiO2) nano-particles in PVA. The threshold voltage shift is greatly reduced from 3.9 V to 0 V. The field effect mobility is 9.7 cm2 V-1 s-1. The electrical characteristic of IGZO TFTs using SiO2/PVA as insulator keeps a stable feature even they are built on stainless steel.
第一章 序論……………………………………………………...…..1
1-1 研究背景…………………………………………………………………...1
1-2 軟性顯示器發展…………………………………………………………...2
1-2-1 軟性薄膜電晶體發展現況……………………………………………2
1-2-2 關鍵技術之軟性製程…………………………………………………2
1-2-3 關鍵技術之軟板材料…………………………………………………4
1-2-4 製程元件的探討………………………………………………………5
1-3 氧化薄膜電晶體的發展…………………………………………………..8
1-3-1 IGZO氧化薄膜電晶體…………………………………….………….9
1-4 研究動機和目標……………………………………………..…………..13
1-5 論文架構………………………………………………………………..13

第二章 實驗相關原理………………………………………….….14
2-1 薄膜電晶體原理……………………………………………….………..14
2-2 薄膜電晶體重要參數……………………………………………………15
2-2-1 載子遷移率(mobility)…………………………………………….15
2-2-2 臨限電壓(threshold voltage)…………………………………...16
2-2-3 電流開關比(on/off ratio)………………………………………..16
2-2-4 次臨界擺幅(subthreshold swing(s.s))………………………….16
2-3 遲滯現象(hysteresis)…………………………………………………17
2-3-1 遲滯現象原因………………………………………………………17
2-3-2 遲滯現象對電性影響………………………………………………19
2-4 遲滯現象的幾種解決方法………………………………………………20
2-4-1 沉積無機薄膜阻擾來自閘極的載子注入…………………………..20
2-4-2 替換閘極金屬材料減少載子注入…………………………………21
2-4-3 改善介電層材料…………………………………………………….22

第三章 製程與量測設備…………………………………………24
3-1 實驗流程……………………………………………………………….24
3-1-1 基板清洗………………………………………………………….24
3-1-2 不鏽鋼基板前段處理……………………………………………..25
3-1-3 閘極金屬蒸鍍製程(thermal coater)…………………………..26
3-1-4 介電層PVA旋塗(spin coater)…………………………………26
3-1-5 主動層材料濺鍍(sputter)……………………………………….26
3-1-6 電極金屬蒸鍍製程(thermal coater)……………………………27
3-2 實驗儀器及原理…………………………………………………………27
3-2-1 旋佈塗抹機(spin coater)…………………………………………27
3-2-2 紫外臭氧機(UV-Ozone machine)…………………………………..27
3-2-3 熱蒸鍍機(Thermal coater)………………………………………..28
3-2-4 原子力顯微鏡(Atomic Force Microscope)………………………28
3-2-5 六靶濺鍍機(sputter)………………………………………………29
3-2-6 掃描式電子顯微鏡(scanning electron microscope,SEM)……31
3-2-7 傅立葉轉換紅外線光譜儀(FTIR)…………………………………..31
3-2-8 元件電性量測系統(Keithley 4200)………………………………32
3-2-9 黏度計系統…………………………………………………………..32

第四章 實驗與討論……………………………………………..…33
4-1 聚乙烯醇製作薄膜電晶體……………………………………………...33
4-1-1 聚乙烯醇……………………………………………………………33
4-1-2 PVA濃度影響……………………………………………………….34
4-1-3 PVA厚度選取……………………………………………………….37
4-1-4 PVA彎曲電性量測與比較………………………………………….39
4-2 PVA的遲滯現象與改善…………………………………………………43
4-2-1 PVA的遲滯機制(hysteresis mechanism)………………………..44
4-2-2 二氧化矽奈米粉末…………………………………………………..45
4-2-3 PVA和二氧化矽粉末混合溶液特性………………………………….45
4-2-4 PVA添加二氧化矽的電性數據………………………………………49
4-2-5 C-V和FTIR量測……………………………………………………..51

第五章 結論……………………………………….………….…….53
5-1 結論………………………………………………………………………54
5-2 未來展望…………………………………………………………………54

References…………………………………………………………..56




[1] C. C. Wu, S. D. Theiss, G. Gu, M. H. Lu, J. C. Sturm, S. Wagner, and S. R. Forrest, “Integration of organic LED’s and amorphous si TFT’s onto flexible and lightweight metal foil substrates,” IEEE Electron Device Lett. , vol. 18, no. 12, pp. 609–612, Dec. 1997.

[2] D. U. Jin, T. W. Kim, H. W. Koo, D. Stryakhilev, H. S. Kim, S. J. Seo, M. J. Kim, H. K. Min, H. K. Chung, and S. S. Kim, “Invited paper: highly robust flexible AMOLED display on plastic substrate with new structure,” SID’10 Digest, pp. 703-705, May. 2010.

[3] H. Gleskova, S. Wagner, and Z. Su, “a-Si : H TFTs made on polyimide foil by PE-CVD at 150 degrees C,” Mater. Res. Soc. Symp. Proc., vol 508, no. 73, pp. 73-78,Apr. 1998.

[4] Suo Z, Ma EY, Gleskova H, Wagner S, “Mechanics of rollable and foldable film-on-foil electronics,” Appl. Phys. Lett. vol 74, no. 8, pp. 1177-1179, Feb. 1999.

[5] J. Fromageau, E. Brusseau, and D. Vray, “Characterization of PVA Cryogel for Intravascular Ultrasound Elasticity Imaging,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 50, no. 10, pp. 1318–1326, Oct. 2003.

[6] M. W. J. Prins, K.‐O. Grosse‐Holz, G. Müller, J. F. M. Cillessen, J. B. Giesbers, R. P. Weening, and R. M. Wolf, “A ferroelectric transparent thin‐film transistor,” Appl. Phys. Lett. vol 68, no. 25, pp. 3650-3652, Apr. 1996.

[7] J. B. Kim, C. Fuentes-Hernandez, W. J. Potscavage, Jr., X.-H. Zhang, and B. Kippelen, “Low-voltage InGaZnO thin-film transistors with Al2O3 gate insulator grown by atomic layer deposition,” Appl. Phys. Lett. vol 94, no. 14, pp. 14217, Apr. 2009.

[8] J. B. Kim, C. Fuentes-Hernandez, and B. Kippelen, “High-performance InGaZnO thin-film transistors with high-k amorphous Ba0.5Sr0.5TiO3 gate insulator,” Appl. Phys. Lett. vol 93, no. 24, pp. 242111, Dec. 2008.

[9] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,” Nature, vol. 432, no. 7016, pp. 488-492, Nov. 2004.

[10] K. Nomura, A. Takagi, T. Kamiya, H. Ohta, M. Hirano, and H. Hosono, “Amorphous oxide semiconductors for high-performance flexible thin-film transistors,” J. Appl. Phys., vol. 45, no. 5B, pp. 4303-4308, May 2006.

[11] John F. Wager, “15.1: Invited Paper: Amorphous oxide semiconductor thin-film transistors performance & manufacturability for display applications,” SID’09 Digest, pp. 181-183, May. 2009.

[12] Jong H. Na, M. Kitamura, and Y. Arakawa, “High field-effect mobility amorphous InGaZnO transistors with aluminum electrodes,” Appl. Phys. Lett., Vol. 93, No. 6, pp. 063501, Aug. 2008.

[13] H. Young Noh, S. Young Park, S. Seo, and Hong H. Lee, “Root cause of hysteresis in organic thin film transistor with polymer dielectric,” Organic Electronics, Vol. 7, No. 5, pp. 271-275, Mar. 2006.

[14] J. B. Koo, S. Y. Kang, I. K. You, and K. S. Suh, “Effect of UV/ozone treatment on hysteresis of pentacene thin0film transistor with polymer gate dielectric,” Solid-state Electronics, Vol. 53, No. 6, pp. 621-625, Mar. 2009.

[15] S. Lee, B. Koo, J. Shin, E. Lee, H. Park, and H. Kim, “Effects of hydroxyl groups in polymeric dielectrics on organic transistor performance,” Appl. Phys. Lett. Vol 88, No. 16, pp. 162109, Apr. 2006.

[16] T. Cahyadi, H.Boey, Z. K. Chen, C. M. Ng, V. R. Rao, and G. J. Qi, “Electret mechanism, hysteresis, and ambient performance of sol-gel silica gate dielectrics in pentacene field-effect transistors,” Appl. Phys. Lett. Vol. 91, No. 24, pp. 242107, Dec. 2007.

[17] C.A. Lee, D. W. Park, S. H. Jin,I. H. Park, J. D. Lee, and B. G. Park “Hysteresis mechanism and reduction method in the bottom-contact pentacene thin-film transistors with cross-linked poly(vinyl alcohol) gate insulator,” Appl. Phys. Lett. Vol. 88, No. 25, pp. 252102-1-3, Jun. 2006.

[18] C. Li, F. Pan, X. Wang, L. Wang, H. Wang, H. Wang, and D. Yan, “Effect of the work function of gate electrode on hysteresis characteristics of organic thin-film transistors with Ta2O5/polymer as gate insulator,” Organic electronics, Vol. 10,No. 5, pp. 948-953, Aug. 2009.

[19] S. C. Lim, S. H. Kim, J. B. Koo, J. H. Lee, C. H. Ku, Y. S. Yang, and T. Zyung, “Hysteresis of pentacene thin-film transistors and inverters with cross-linked poly(4-vinyphenol) gate dielectrics,” Appl. Phys. Lett. Vol. 90, No. 7, pp. 173512, Apr. 2007.

[20] G. Gu, M. G. Kane, J. E. Doty, and A. H. Firester, “Electron traps and hysteresis in pentacene-based organic thin-film transistors” Appl. Phys. Lett. Vol. 87, No. 24, pp. 243512, Dec. 2005.

[21] T. Oyama, R. Ye, M. Baba, and K. Ohta, “High performance pentacene thin film transistors with a PVA gate dielectric,” MOLECULAR CRYSTALS AND LIQUID CRYSTALS, Vol. 471, pp. 205-211, Jan. 2007.

[22] J. H. Choi, H. S. Seo, and J. M. Myoung, “Dual-gate InGaZnO thin-film transistors with organic polymer as dielectric layer,” Electrochemical and Solid-State Letters, Vol. 12, No. 4, pp. 145-148, Feb. 2009.

[23]R. Schroeder, L. A. Majewski, and M. Grell, “A study of the threshold voltage in pentacene organic field-effect transistors,” Appl. Phys. Lett. Vol. 83, No. 15, pp. 3201, Oct. 2003.

[24] M. Egginger, M. I. Vladu, R. Schwodiauer, A. Tanda, I. Frischauf, S. Bauger, and N. S. Sariciftci, “Mobile ionic impurities in poly(vinyl alcohol) gate dielectric possible source of the hysteresis in organic field-effect transistors,” ADVANCED MATERIALS, Vol. 20, pp. 1018-1022, 2008.

[25] G. M. Wu, Y. H. Lu, J. W. Teng, J. C. Wang, and T. E. Nee, “Preparation and characterization of pentacene-based organic thin-film transistors with PVA passivation layers,” Thin Solid Films, Vol. 517, No. 17, pp.5318-5321, Jul. 2009.

[26] S. W. Kim, “Preparation and barrier property of poly(vinyl alcohol)/SiO2 hybrid coating films,” Korean J. Chem .Eng., Vol. 25, No. 5, pp. 1195-1200, Feb 2008.

[27] Y. Jamg, W. H. Lee, Y. D. Park, D. Kwak, J. H. Cho, and K. Cho, “High field-effect mobility pentacene thin-film transistors with nanoparticle polymer composite/polumer bilayer insulators,” Appl. Phys. Lett. Vol. 94, No. 18, pp. 183301, May. 2009.

[28] X. Zhu, Q. Gao, D. Xu, and X. Shi, “Effect of interaction between hydroxyl group and high valence metal ion impurity on the electrospinnability of Polyvinyl Alcohols,” Journal of Applied Polymer Science, Vol. 113,pp. 143-149, Jul. 2009

[29] L. Chen, K. Zheng, X. Tian, K. Hu, R. Wang, C. Liu, Y. Li, and P. Cui, “Double Glass Transitions and Interfacial Immobilized layer in in-Situ-Synthesizrd Poly(vinyl alcohol)/silica nanocomposites,” MACROMOLECULES, Vol. 43,No. 2, pp. 1076-1082, Dec. 2010.

[30] M. D. Sarkar, and P. Deb, “Synthesis and characterization of hybrid nanocomposites comprising poly(vinyl alcohol) and colloidal silica,” ADVANCES IN POLYMER TECHNOLOGY, Vol. 27, No. 3, pp.152-162, Feb, 2009.

[31] J. P. Boisvert, J. Persello, and A. Guyard, “Influence of the surface chemistry on the structural and mechanical properties of silica-polymer composites,” JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, Vol. 41, pp. 3127-3138, Jul. 2003.

[32] H. S. Mansur, R. L. Orefice, A. P. Mansur, “Characterization of poly(vinyl alcohol)/poly(ethylene glycol) hydrogels and PVA-derived hybrids by small-angle X-ray scattering and FTIR spectroscopy,” POLYMER, Vol.45, No. 21, pp. 7193-7202, Sep. 2004.

[33] S. R. Sudhamani, M. s. Prasad, K. U. Sankar, “DSC and FTIR studies on Gellan and Polyvinyl alcohol (PVA) blend films,” FOOD HYDROCOLLOIDS, Vol. 17, No. 3, pp. May. 2003.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔