(44.192.112.123) 您好!臺灣時間:2021/03/06 07:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:呂柏萱
研究生(外文):Lu, Po-Hsuan
論文名稱:藉由二氧化碳雷射加熱與張力拉伸製作長週期光纖光柵
論文名稱(外文):Periodically Tapered Long-Period Fiber Gratings by CO2 Laser Heating and Tension Stretching
指導教授:賴暎杰
指導教授(外文):Lai, Yin-Chieh
學位類別:碩士
校院名稱:國立交通大學
系所名稱:顯示科技研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:44
中文關鍵詞:光纖濾波器光纖感測器熔拉長週期光纖光柵
外文關鍵詞:Fiber filterFiber sensorTaperLong period fiber grating
相關次數:
  • 被引用被引用:2
  • 點閱點閱:225
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:28
  • 收藏至我的研究室書目清單書目收藏:0
在本論文中,我們提出一種週期性熔錐形狀的長週期光纖光柵及製作方法。有別於以往二氧化碳雷射產生不對稱的長週期光纖光柵,我們產生的長週期光纖光柵是對稱的結構,而這個對稱的結構是藉由熔拉所產生。我們並藉由解三層結構光纖模態的數值模擬得到和實驗相吻合的結論。我們發現當週期性熔錐形狀明顯時,其對溫度的靈敏度升高。而將具週期性熔錐形狀光纖光柵置於較高折射率的介質中時,其對溫度的靈敏度亦升高。
具週期性熔錐形狀光纖光柵的製作方法如下:首先將高功率的二氧化碳雷射經過柱狀透鏡聚焦後加熱光纖,此光纖的一端固定而另一端則懸掛重物(重物即為光纖所受到的張力),熔融的光纖經張力拉伸後產生熔拉的形狀。將上述光纖裝置於一個移動平台上,並用一個開關去控制二氧化碳雷射的加熱的時間。我們利用Labview進行自動控制,藉由控制開關打開的時間可以決定加熱的時間,藉由移動平台的移動的距離可以決定光柵的週期。此對稱光纖光柵對溫度的靈敏度(週期為700 μm且拉伸後的直徑100 μm的樣本)測得為0.238 nm/˚C,比傳統的0.059 nm/˚C改善很多。

In this thesis, we demonstrate a periodically tapered long period fiber grating and its fabrication method. Not as the same as the asymmetric long period fiber gratings produced before, we have produced devices with a symmetric structure tapered by a CO2 Laser. The produced LPFG with deep corrugated surface structure and immersed in higher index media results in high temperature sensitivity. The numerical results performed by solving waveguiding modes in three-layer optical fibers agree with the experimental observation.
The procedure of making a periodically tapered long period fiber grating is as following: First, let the high power CO2 laser beam pass through the cylindrical lens and focused on the fiber, which is fixed at one end and tagged with a weight at the other end ( the stress of the fiber equals the weight ). Then, the melting fiber will be extruded and shaped like a tapered fiber with laser heating. The fiber is put on a translation stage and a shutter is used to control the heating time of the CO2 laser. We use the Labview software to control the translation stage and the shutter automatically so that we can set the parameters like the heating time and period easily. This kind of symmetric long period fiber gratings is more sensitive to temperature. We have measured the temperature sensitivity 0.238 nm/˚C for one of our LPFG samples, which is much better than the temperature sensitivity of traditional long period fiber gratings (0.059 nm/˚C).

Chapter 1:Introduction……………………………..……………………………….1
1.1 Introduction of fiber gratings...........…………………………………1
1.1-1 Various fabrication methods………………………………1
1.1-2 Characteristics………………………………………………...3
1.1-3 Applications…………………………………………………… 4
1.2 Motivation of the thesis ………………………………………………5
1.2-1 Previous work………………………………………………5
1.2-2 Motivation……………………………………………………...6
1.3 Structure of the thesis……………………………………………..6
1.4 References…………………………………………………………6
Chapter 2:Theory…………………………………………………………………10
2.1 Phase-matching condition………………………………………10
2.2 Coupled-mode theory……………………………………………12
2.3 Wave guiding condition………………………………………….14
2.4 Dispersion mechanism …………………………………………….17
2.4-1 Material dispersion……………………………………….17
2.4-2 Waveguide dispersion……………………………………19
2.5 References………………………………………………………..19
Chapter 3:Experimental setup and results………………………………….21
3.1 Experimental setup………………………………………………….21
3.1-1 Instruments utilized in fabricating LPFG………………….21
3.1-2 Fabrication process………………………………………23
3.2 Results and discussion …………………………………………….25
3.2-1 The surface structure observed by CCD camera…….…..25
3.2-2 The experiment of measurement…………………..………27
3.2-3 The transmission spectrum of LPFGs……………..………28
3.2-4 Discussion........................................................................32
3.3 Simulation…………………………………………………………33
3.3-1 Assumption…………………………………………….33
3.3-2 Simulation method…………………………………………..34
3.3-3 Simulation results…………………………………………35
3.4 Possible improvement of the fabrication process………………..40
Chapter 4:Conclusions and future work……………………………………….42
4.1 Conclusions……………………………………………………….42
4.2 Future work…………………………………………………………..43

[1-1] K. O. Hill, Y. Fujii, D. C. Johnson, and B. Kawasaki, “Photosensitivity in Optical Fiber Waveguides : Application to Reflection Fiber Fabrication, ” Appl. Phys. Lett. 32(10), p647(1978).
[1-2] G. Meltz, W. W. Morey, and W. H. Glenn, “Formation of Bragg gratings in optical fibers by a transverse holographic method, ” Opt. Lett. 14, 823-825 (1989).
[1-3] M. Gagné, L. Bojor, R. Maciejko, and R. Kashyap, “Novel custom fiber Bragg grating fabrication technique based on push-pull phase shifting interferometry, ” Opt. Express 16, 21550-21557 (2008).
[1-4] J. Albert, K. O. Hill, B. Malo, S. The´riault, F. Bilodeau, D.C. Johnson and L.E. Erickson, “Apodization of the spectral response of fiber Bragg gratings using a phase mask with variable diffraction efficiency,” Electron. Lett. 31, 222, (1995).
[1-5] W. H. Loh, M. J. Cole, M. N. Zervas, S. Barcelos, and R. I. Laming, “Complex grating structures with uniform phase masks based on the moving fiber-scanning beam technique, ” Opt. Lett. 20, 2051-2053 (1995).
[1-6] J. B. Jensen, N. Plougmann, H.-J. Deyerl, P. Varming, J. Hubner, and M. Kristensen, “Polarization control method for ultraviolet writing of advanced Bragg gratings, ”Opt. Lett. 27, 1004-1006 (2002).
[1-7] A. Asseh, H. Storoy, Bengt E. Sahlgren, S. Sandgren, and Raoul A. H. Stubbe, “A writing technique for long fiber Bragg gratings with complex reflectivity profiles,” Journal of Lightwave Technology, vol. 15, pp.1419-1423, (1997).
[1-8] I. Petermann, B.Sahlgren, S. Helmfrid, A. T. Friberg, and P.-Y. Fonjallaz, “Fabrication of Advanced Fiber Bragg Gratings by use of Sequential Writing with a Continuous-Wave Ultraviolet Laser Source, ” Appl. Opt. 41, 1051-1056 (2002).
[1-9] D. D. Davis, T. K. Gaylord, E. N. Glytsis, S. G. Kosinski, S. C. Mettler, and A. M. Vengsarkar, “Long period fiber grating fabrication with focused CO2 laser beams,” Electron. Lett. 34, 302-303 (1998).
[1-10] A. Malki, G. Humbert, Y. Ouerdane, A. Boukhenter, and A. Boudrioua, “Investigation of the Writing Mechanism of Electric-Arc-Induced Long-Period Fiber Gratings,” Appl. Opt. 42, 3776-3779 (2003).
[1-11] A.M. Vengsarkar, P.J. Lemaire, J.B. Judkins, V. Bhatina, T. Erdogan and J.E. Sipe, “Long-period fiber gratings as band-rejection filter, ” IEEE J. Lightwave Technol. 14, 58–65(1996).
[1-12] A. M. Vengsarkar, J. R. Pedrazzani, J. B. Judkins, P. J. Lemaire, N. S. Bergano and, C. R. Davidson, “Long- period fiber-grating-based gain equalizers, ” Opt. Lett. 21, 336-338 (1996).
[1-13] H. J. Patrick, A. D. Kersey, and F. Bucholtz, “Analysis of the Response of Long Period Fiber Gratings to External Index of Refraction, ” J. Lightwave Technol. 16, 1606- (1998).
[1-14] K.-W. Chung and S. Yin, “Analysis of a widely tunable long-period grating by use of an ultrathin cladding layer and higher-order cladding mode coupling, ” Opt. Lett. 29, 812-814 (2004).
[1-15] M. Yan, S. Luo, L. Zhan, Z. Zhang, and Y. Xia, “Triple-wavelength switchable Erbium doped fiber laser with cascaded asymmetric exposure long-period fiber gratings, ”Opt. Express 15, 3685-3691 (2007)
[1-16] Y. Rao and T. Zhu, “ A Highly Sensitive Fiber-Optic Refractive Index Sensor Based on an Edge-Written Long-Period Fiber Grating, ” in Nonlinear Photonics, OSA Technical Digest (CD) ,paper JWA53 (Optical Society of America,( 2007).
[1-17] N.-K. Chen, D.-Y. Hsu, and S. Chi, “Widely tunable asymmetric long-period fiber grating with high sensitivity using optical polymer on laser-ablated cladding, ” Opt. Lett. 32, 2082-2084 (2007).
[1-18] W. Ding and S. R. Andrews, “Modal coupling in surface-corrugated long-period-grating fiber tapers, ” Opt. Lett. 33, 717-719 (2008).
[1-19] K.-C. Hsu, N.-K. Chen, C.-L. Lee, Y.-S. Chih, P.-J. Jhuang, Y. Lai, and C. Lin, “Spectral Response of Long-Period Fiber Grating Based on Tapered Fiber With Side-Contacted Metal Grating, ” J. Lightwave Technol. 28, 1057-1063 (2010).
[2.1] H. Malitson, “Interspecimen Comparison of the Refractive Index of Fused
Silica.” Journal of the Optical Society of America, vol. 55, pp. 1205-1209, 1965. [2.2] W. Fleming, “Material Dispersion in Lightguide Glasses,” Electronics Letters,vol. 14, pp. 326-328, 1978.
[2.3] Zengerle and O. Leminger, “Narrow-band wavelength-selective directional
couplers of dissimilar single-mode fibers,” J. Lightwave Technol. LT-5,
1196-1198 (1987).
[2.4] J. Chung and A. Safaai-Jazi, “Narrow-band spectral filters made of W-index and step-index fibers,” J. Lightwave Technol. 10, 42-45 (1992).
[2.5] Monerie, “Propagation in doubly clad single-mode fibers,” IEEE J. Quantum Electron. QE-18, 535-542 (1982)
[2.6] A. Arbore, “Application of fundamental-mode cutoff for novel amplifiers and lasers,” in Optical Fiber Communication Conference OFC’05 (Optical Society of America, Washington, D.C., 2005), paper OFB4.
[2.7] K. Chen, S. Chi, S. M. Tseng, and Y. Lai, “Wavelength-tunable fiber
codirectional coupler filter based on asymmetric side-polished fiber coupler
with local dispersive intermediate layer,” submitted to ECOC 2006 conference. [2.8] K. Chen and S. Chi, “Influence of a holey cladding structure on the spectral characteristics of side-polished endlessly single-mode photonic crystal fibers,” accepted by Opt. Lett. (2006).
[2.9] K. Furusawa, A. Malinowski, J. H. V. Price, T. M. Monro, J. K. Sahu, J. Nilsson, and D. J. Richardson, Optics Express 9, 714 (2001).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔