(18.210.12.229) 您好!臺灣時間:2021/02/26 09:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:詹皇彥
研究生(外文):Jhan, Huang-Yan
論文名稱:矽光伏特材料於低溫薄膜電晶體之應用
論文名稱(外文):Application of photovoltaic silicon materials in low temperature
指導教授:黃中垚謝嘉民
指導教授(外文):Huang, Jung Y.Shieh, Jia-Min
學位類別:碩士
校院名稱:國立交通大學
系所名稱:顯示科技研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:英文
論文頁數:47
中文關鍵詞:薄膜電晶體低溫
外文關鍵詞:Thin Film Transistorlow temperature
相關次數:
  • 被引用被引用:0
  • 點閱點閱:126
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:11
  • 收藏至我的研究室書目清單書目收藏:0
大面積軟性電&;#63799;展現新型態的電子裝置,快速的崛起在顯示、感應裝置、生醫及其他&;#63924;域。除此之外軟性電子元件&;#63745;具備許多優點,輕&;#63870;化、可饒式、耐用、可以因應&;#63745;多自由的設計。因為氫化非晶矽薄膜電晶體的成熟的低溫製程,現階段是最常被使用在液晶顯示器以及軟性電子,然而最大的缺點&;#63845;是較低的電子遷移&;#63841;、&;#63847;穩定性以及較高的驅動電壓。近&;#63789;研究發展顯示&;#63756;米或稱微晶矽的材&;#63934;是具有取代氫化非晶矽成為新一代軟性電子及大面積電子元件潛&;#63882;本篇&;#63809;文中,&;#63965;用高密&;#64001;電漿化學氣相沉積系統及熱燈絲化學氣相沉積系統在低溫200oC 下沉積出高結晶性的氫化微晶矽薄膜以及低電阻&;#63841;的n 型氫化微晶矽薄膜,並且藉由XRD 及SEM 確認氫化微晶矽薄膜,確認晶&;#63993;大小約100nm 等同於一般非晶矽藉由固相結晶法(Solid Phase Crystallization) 600℃退火24 小時的結晶性。使用簡單的自我對準式薄膜電晶體,藉由場效傳導法(Field Effect Conductance)取出缺陷密&;#64001;(Density of states)從中&;#63930;解&;#63847;同結晶&;#64001;對於缺陷密&;#64001;分布之影響。最後將低缺陷密&;#64001;之氫化微晶矽及n 型氫化微晶矽薄膜整合成功的製作出&;#63847;需&;#63978;子佈植、低成本、低溫、高結晶性的薄膜電晶體,開與關的電&;#63946;差距超過105、開關速&;#64001;達到S=100mV/decade,並且電子遷移&;#63841;達到50 cm2/V-s 展現出極高的潛&;#63882;應用於軟性電子元件。
Flexible, large area circuits exhibit a new form of electronics which have led to rapidly rising and promising applications in displays, sensors, medical devices and other areas. Besides flexible electronics on plastic substrates possess advantageous characteristics, being lightweight, flexible, and have the capacity to be manufactured in a variety of shapes, which leads to freedom of design. Currently, a-Si:H TFTs are used in AMLCD and compatible with flexible substrate due to low temperature process. However, low device mobility, higher drive voltage and electrical instability are the main disadvantages of a-Si TFT. Recent developments reveal that micro- or
nanocrystalline silicon is a promising alternative for flexible display and largearea electronic applications. The charge carrier mobility exceeds the mobility of amorphous silicon significantly and compatible with flexible substrate.
In this thesis, a high quality and low resistivity of intrinsic and n-type microcrystalline silicon films were developed at low temperature 200oC by High Density Plasma chemical vapor deposition system and Hot-Wire chemical vapor deposition system. First μc-Si:H film was analyzed by XRD and SEM. And the μc-Si:H with a grain sizes of ~50-100 nm was recognized.
The grain size is the same with conventional SPC(600℃annealing 24hours)method. A self-aligned TFTs was demonstrated. After that, the density of state distribution was extracted from TFTs by FEC method. With these results we
can understand the different crystallinity on the effect of defect density distribution. Finally a top-gate microcrystalline TFTs without S/D implantation was demonstrated. A high electron mobility exceeding 50
cm2/V-s, low subthreshold swing 0.1-0.3 V/decade and high current ON/OFF ratios more than 105 was obtained. It shows highly potential in flexible electronics application.
Contents
摘要 .................................................................................. i
Abstract .......................................................................... ii
誌謝 ................................................................................ iv
Contents .......................................................................... v
List of figures ................................................................ vi
Chapter 1 Introduction ................................................. 1
1.1 The general background and motivation ........................................................... 1
1.2 TFT Structures ..................................................................................................... 3
Chapter 2 Material Characterization .......................... 5
2.1 Introduction of amorphous and microcrystalline silicon ................................. 5
2.2 Growth mechanisms of microcrystalline silicon thin films .............................. 7
2.3 Electronic properties of amorphous silicon (a-Si:H) and microcrystalline
silicon (uc-Si:H) .......................................................................................................... 9
2.4 Density of states extraction using FEC method .............................................. 11
Chapter 3 Experimental Details ................................. 14
3.1 Measurement system setup ............................................................................... 14
3.2 Capacitance fabrication ..................................................................................... 15
3.3 Laser-activatied amorphous silicon (a-Si:H) and microcrystalline silicon
(uc-Si:H) self-aligned TFTs ..................................................................................... 15
3.4 In-situ dopant microcrystalline silicon TFTs .................................................. 18
Chapter 4 Results and Discussions ............................. 21
4.1 CV measurement ................................................................................................ 21
4.2 Microcrystalline silicon film characterization ................................................. 24
4.3 Highly conductive doped flim ........................................................................... 29
4.4 IV characterization and Density of states of laser-activated self-aligned
TFTs .......................................................................................................................... 31
4.5 IV characterization and Density of states of In-situ dopant TFTs ................ 39
Chapter 5 Conclusions and Future work .................. 44
5.1 Conclusions ......................................................................................................... 44
5.2 Future work ........................................................................................................ 44
Reference ...................................................................... 45
Chapter 1
[1]. Weimer, P. K. (1962). "The TFT A New Thin-Film Transistor." Proceedings
of the IRE 50(6): 1462-1469.
[2].le Comber, P. G., W. E. Spear, et al. (1979). "Amorphous-silicon field-effect
device and possible application." Electronics Letters 15(6): 179-181.
[3]Depp, S. W., A. Juliana, et al. (1980). Polysilicon FET devices for large area
input/output applications.
[4]Little, T. W., K. Takahara, et al. (1991). "Low temperature poly-Si TFTs
using solid phase crystallization of very thin films and an electron cyclotron
resonance chemical vapor deposition gate insulator." Japanese Journal of
Applied Physics 30(part 1): 3724-3728.
[5] R. B. Min and S. Wagner, Appl. Phys. A, 74, 541 (2002)
[6]Y. Chen and S. Wagner, Appl. Phys. Lett. 75, 1125 (1999)
[7] M. Mulato, Y. Chen, S. Wagner, and A. R. Zanatta, J. Non-Cryst. Solids, 266,
1260 (2000)
[8]S. Veprek, Z. Iqbal, R. O. Kuhne, P. Capezutto, F. A. Sarott, and J. K. Gimzewski,
J. Phys. C: Solid State Phys. 16, 6241 (1983)
[9] A. Saboundji, N. Coulon, A. Gorin, H. Lhermite, T. Mohammed-Brahim, M.
Fonrodona, J. Bertomeu and J. Andreu, Thin Solid Films, 487, 227 (2005).
[10] S. Wagner, H. Gleskova, I-C. Cheng, and M. Wu, Thin Solid Films, 430, 15
(2003)
[11] J. Jang, J. Y. Oh, S. K. Kim, Y. J. Choi, S. Y. Yoon, and C. O. Kim, Nature
sLondond 395, 481 (1998).
[12] P. Roca i Cabarrocas, R. Brenot, P. Bulkin, R. Vanderhaghen, B.Drévillon,and I. French, J. Appl. Phys. 86, 7079 (1999).
[13] T. Nagahara, K. Fujimoto, N. Kohno, Y. Kashiwagi, and H. Kakinoki, Jpn.
J. Appl. Phys., Part 1 31, 4555 (1992).
[14] I-C. Cheng and S. Wagner, Appl. Phys. Lett. 80, 440 (2002)
Chapter 2
[1]. Jerzy Kanicki, Amorphous and Microcrystalline Semiconductor Devices
VolumeІІ.
[3] K. Y. Chan, D. Knipp, A. Gordijn, and H. Stiebig, Journal of Applied Physics 104,
054506 (2008).
[2] O. Vetterl, F. Finger, R. Carius, P. Hapke, L. Houben, O. Kluth, A. Lambertz, A.
Mück, B. Rech, and H. Wagner, Sol. Energy Mater. Sol. Cells 62,97 2000
[4] C. C. Tsai, in Amorphous Silicon and Related Materials, edited by H.
Fritzche sWorld Scientific, Singapore, (1988), p. 123.
[5] A. Matsuda, J. Non-Cryst. Solids 59–60, 767 (1983).
[6] G. Yue, J. D. Lorentzen, J. Lin, D. Han, and Q. Wang, Applied Physics Letters
75, 492-494 (1999).
[7]. A. Matsuda and T. Goto, Mater. Res. Soc. Symp. Proc. 164, 3(1990)
[8]. A. Matsuda, Thin Solid Flims 337, 1(1999)
[9]. S. Veprek, Z.Iqbal, H.R.Oswald, and A. P.Wedd, J. Phys. C 14, 295(1981)
[10]. C.C. Tsai, G. B. Anderson, R. Thompson, and B. Wecker, J. Non-Cryst. Solids
114, 151(1989)
[11]. I. Shimizu, J. Non-Cryst. Solids114, 145(1989)
[12]. G. Fortunato and P. Migliorato, Appl. Phys. Lett., 49, 1025 (1986).
[13] S. Hirae, M. Hirose and Y. Osaka, J. Appl. Phys., 51, 1043 (1980).
[14] H. C. de Graaf, M. Huyber and J. G. de Groot, Solid state Electron. 25, 67
(1982).
[15] R. L. weisfield and D. A. Anderson, Philos Mag. B., 44, 83 (1981).
[16] G. Fortunato, D. B. Meakin, P. Migliorato and P. G. Lecomer, Philos. Mag. B.,
57,573 (1988).
[17] T. Suzuki, Y. Osaka and M. Hirose, Jpn. J. Appl. Phys., 21, L159 (1982).
Chapter 4
[1]S. M. S. Kwok K. Ng, "Physics of Semiconductor Devices,3rd Edition," (2007).
[2] N. Honda, A. Masuda, H. Matsumura, J. Non-Cryst. Solids. 266, 100 (2000).
[3] R.E.I. Schropp, S Nishizaki, ZS Houweling, V Verlaan, C.H.M. van der Werf, H
Matsumura, Solid State Electron. 52, 427 (2008).
[4 ] S.G. Ansari, H. Umemoto, T. Morimoto, K. Yoneyama, A. Izumi, A. Masuda, H.
Matsumura, Thin Solid Films. 501, 31 (2006)
[5] K. Ishibashi, Thin Solid Films. 395, 55 (2001).
[6]K. Y. Chan, D. Knipp, A. Gordijn, and H. Stiebig, J. Appl. Phys. 104, 054506
(2008).
[7]A. Saboundji, N. Coulon, A. Gorin, H. Lhermite, T. Mohammed-Brahim, M.
Fonrodona, J. Bertomeu, J. Andreu, Thin Solid Films. 487, 227 (2005).
[8].T. Noguchi, Jpn. J. Appl. Phys., Part 2 32, L1584 (1993).
[9] K. Ono, T. Aoyama, N. Konishi, and K. Miyata, "Analysis of current voltage
characteristics oflow-temperature-processed polysilicon thin-film transistors," IEEE
Transactions on Electron Devices, vol. 39, pp. 792-802, (1992).
[10] T. Suzuki, M. Hirose, and Y. Osaka, "Influence of Gap States on Basic
Characteristics of a-Si: H Thin Film Transistors," Japanese Journal of Applied Physics,
vol. 21, pp. L315-L317, (1982)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔