跳到主要內容

臺灣博碩士論文加值系統

(98.84.18.52) 您好!臺灣時間:2024/10/10 19:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳彥凱
研究生(外文):Yan-kai Chen
論文名稱:探討共培養對Chlorella sp.的生長與生產活性多醣的影響
論文名稱(外文):Study on the effect of co-culture to the growth of Chlorella sp. and produce activity polysaccharide.
指導教授:徐敬衡徐敬衡引用關係
指導教授(外文):Chin-Hang Shu
學位類別:碩士
校院名稱:國立中央大學
系所名稱:化學工程與材料工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:102
中文關鍵詞:酵母菌小球藻共培養多醣刺激免疫
外文關鍵詞:Chlorella sp.Saccharomyces cerevisiaeco-culturepolysaccharideimmunostimulation
相關次數:
  • 被引用被引用:2
  • 點閱點閱:384
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
小球藻Chlorella sp.是一富含營養價值的微藻,已被大量商業化生產,如何增加生物量(biomass)以及其產物的營養價值,是近年來不斷被研究與改進的目標。
本論文將以小球藻與釀酒酵母(Saccharomyces cerevisiae)共培養(co-culture),探討因兩物種交互作用而改變的環境因子,包括二氧化碳、葡萄糖濃度、pH值以及崩解酵母細胞充當氮源對小球藻造成的影響。
實驗結果發現,小球藻Chlorella sp.在0.03%~5%二氧化碳濃度下,小球藻生長以及多醣產量隨濃度提高而上升;在弱鹼pH7.4~pH8.4範圍左右較適合Chlorella sp.生長,pH9.0則略微降低生長,pH6.5則有明顯抑制現象;0.125 g/L崩解酵母細胞有助於Chlorella sp.生長並提高多醣產量,另外也找出小球藻-酵母菌共培養系統的最佳葡萄糖濃度為0.5 g/L以及1 g/L,其中又以1 g/L可得最高的多醣產量,在此條件下共培養與兩物種分開培養相比可提升23% 總細胞濃度,胞內多醣產量1.5倍以及提高胞內多醣平均分子量以及提高胞內多醣活性30%。
Chlorella sp. is a kind of microalgae with many nutrition. It has been produce in commercialize. In recent years, to enhance the biomass and the value of production is important objects.
This thesis had studied in the interaction between Chlorella sp. and Saccharomyces cerevisiae, and the environment factor include carbon dioxide, glucose concentration, pH, and yeast spend cells.
It was found that Chlorella sp. growth and production of polysaccharide were directly proportional to CO2 concentration; In the range of about weak base pH7.4 ~ pH8.4 more suitable for Chlorella sp. growth pH9.0 was slightly lower growth, and pH 6.5 were supressd; 0.125 g/L spent yeast cell promoted Chlorella sp. growth and increase polysaccharide production; the best concentration of glucose that improve Chlorella sp. growth were 1 g/L and 0.5 g/L, among which 1 g/L system were produce the most polysaccharide. By co-culture, we can get more 23% cells, and 1.5 times intracellular polysaccharide and its molecular weight, also we can promoted the activity of IPS 30% than monoculture.
摘要 i
Abstract ii
目錄 iii
圖索引 vii
表索引 xi
第一章、緒論 1
1-1 研究背景 1
1-2研究目的 1
1-3 研究架構 1
第二章、文獻回顧 3
2-1 藻類 3
2-1.1 藻類介紹 3
2-1.2 綠球藻的分類 4
2-1.3 藻類的一般成分及商業應用 5
2-2 藻類的生長與代謝 8
2-2.1 營養源對藻類生長的影響 8
2-2.2 微藻的光合作用 10
2-2.3 微藻的反應器設計 16
2-3 酵母菌介紹 20
2-4 多醣介紹 21
2-4.1 多醣種類介紹 21
2-4.2 藻類的多醣介紹 23
2-4.3 酵母菌多醣介紹 24
2-5人類免疫系統與機制簡介 25
2-5.1 人體免疫系統簡介 25
2-5.2 β-D-葡聚醣的抗腫瘤機制 26
2-6 共培養介紹 26
第三章、實驗規劃、材料與方法 29
3-1 實驗規劃 29
3-2 實驗材料 31
3-2.1 實驗菌株 31
3-2.2 實驗藥品 32
3-2.3 實驗儀器與其他設備 34
3-3 實驗方法 37
3-3.1 菌種保存 37
3-3.2 繼代培養 37
3-3.3 血清瓶培養實驗 41
3-3.4 發酵槽培養實驗 45
3-3.5 分析方法 46
第四章、結果與討論 58
4-1 血清瓶培養實驗 58
4-1.1 不同濃度二氧化碳對於小球藻的影響 58
4-1.2小球藻培養,以磷酸鹽緩衝溶液以及Tris-HCl緩衝溶液調控酸鹼值 63
4-1.3小球藻培養,添加不同濃度破碎酵母細胞充當額外氮源 67
4-1.4 葡萄糖對兩物種的影響 72
4-1.4.1 不同濃度葡萄糖對小球藻生長及合成多醣的影響 72
4-1.4.2不同濃度葡萄糖對酵母菌生長與合成多醣的影響
75
4-1.4.3 共培養時,添加不同濃度葡萄糖 80
4-2 氣舉式發酵槽實驗 87
4-3 多醣體特性分析 92
第五章、結論與建議 96
5-1.1 血清瓶實驗結論 96
5-1.2 氣舉式發酵槽實驗結論 96
5-1.3 建議 97
第六章、參考資料 98
陳裕星,洪梅珠,林秀儒,”釀酒用酵母菌的篩選與鑑定” ,農政與農情,151期 (2005)。
謝誌鴻,吳文騰,”微藻-綠色生質能源”,科學發展,433期(2009)
劉仲康, “神奇的酵母菌” , 科學月刊, 1997。
李佳娥, “小球藻多醣體的萃取與功能評估探討”,嘉南藥理科技大學化妝品科技研究所碩士論文,2007。
江善宗、殷儷容,“纖維素水解酵素於綠藻工業之應用研究” 農業
生技產業季刊,第七期(2006)。
黃悌儀, “綠藻對大白鼠對體內脂質代謝的影響”,台北醫學院保
健營養學研究所碩士論文,2000。
張上鎮、王升陽、葉汀峰、吳季玲, “超音波法快速萃取及定量葉綠
素”,台灣林業科學 12(3):329-334
中華民國行政院環境保護署環境檢驗所, “水中葉綠素 a檢測方法-
丙酮萃取法/分光光度計分析法” ,NIEA E507.02B, 中華
民國95年9月6日公告。
張展、劉建國, “微藻高密度培養中的生長指標和適應機制”, 海洋
水產研究 Vol. 24, No.4 (2003)。

Arinaga S., Karimine N. Takamuku K., Nanbara S., Nagamatsu M., Ueo H. and Akiyoshi T. Enhanced production of interleukin 1 and tumor necrosis factor by peripherai monocytes after lentinan administration in patients with gastric carcinoma. Int. J Immunopharmac., 14, 43-47 (1992).
Becler E. W. Microalgae: biotechnology and microbiology. Cambridge University Press. UK. P.1. 1994.
Beer L. L., Boyd E. S., Peters J. W. and Posewitz M. C. Engineering algae for biohydrogen and biofuel production. Current Opinion in Biotechnology, 20, 264–271 (2009).
Bohn, J. A. and BeMiller, J.N., (1?3)-β-D-Glucans as biological response modifiers: a review of structure-functional aztivity relationships. Carbohydrate Polymers, 28(1), 3-14 (1995).
Cai S. Q., Hu C. Q., and Du S. B. Comparisons of Growth and Biochemical Composition between Mixed Culture of Alga and Yeast and Monoculture. JOURNAL OF BIOSCIENCE AND BIOENGINEERING, 104,5, 391–397 (2007).
Cardozo K. H. M., Guaratini T., Barros M. P., Falcao V. R., Tonon A. P., Lopes N. P., Campos S., Torres M. A., Souza A. O., Colepicolo P. and Pinto E. Metabolites from algae with economical impact. Comparative Biochemistry and Physiology. 146, 60-78 (2007).
Chiu S.Y., Kao C. Y., Chen C. H., Kuan T. C., Ong S. C. and Lin C. S. Reduction of CO2 by a high-density culture of Chlorella sp.in a semicontinuous photobioreactor, Bioresource technology, 99 3389–3396 (2008).
Converti A., Casazza A. A., Ortiz E. Y., Perego P.and Borghi M. D., Effect temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production, Chemical Engineering and Processing: Process Intensifiction, 48, 1146–1151 (2009).
Dere S., Gunes T. and Sivaci R. Spectrophotometric determination of chlorophyll – A, B and total carotenoid contents of some algae species using different solvents. Tr. J. of Botany 22,13-17 (1998).
Dong Q. L. and Zhao X. M. In situ carbon dioxide fixation in the process of natural astaxanthin production by a mixed culture of Haematococcus pluvialis and Phaffia rhodozyma. Catalysis Today 98,537-544 (2004).
Duffus, J. H., Levi, C., and Manners, D J. Yeast cell-wall glucans. Advances in Microbial Physiology. 23, 151-181 (1982).
Eullaffroy P. and Vernet Guy, The F684/F735 chlorophyll fluorescence ratio: a potential tool for rapid detection and determination of herbicide phtotoxicity. Water Research 37,1983-1990 (2003).
Freimund S., Sauter M., Kappeli O and Dutler H. A new non-degrading isolation process for 1,3-β-D-glucan of high purity from backer’s yeast Saccharomyces cerevisiae. Carbohydrate Polymers. 54,159-171 (2003).
Furehauf J. P., Bonnard G. D. and Herberman R. B. The effect of lentinan on production of interleukin-1 by human monocytes. Immonpharmacology, 5, 65-74 (1982).
Gao M. T., Hirata M., Toorisaka E. and Hano T. Study on acid-hydrolysis of spent cells for lactic acid fermentation. Biochemical Engineering Journal 28,87-91 (2006)
Haass D, Tanner W, Regulation of hexose transport in Chlorella vulgaris, Plant physiology, 53, 14-20 (1974).
Izumo A., Fujiwara S., Oyama Y., Satoh A., Fujita N., Nakamura N.and Tsuzuki M., Physicochemical properties of starch in Chlorella change depending on the CO2 concentration during growth: Comparison of structure and properties of pyrenoid and stroma starch. Plant Science, 172, 1138–1147 (2007).
Bohn J. A., BeMiller J.N., (1-3)-β-D-Glucans as biological response modifiers: a review of structure-functional activity relationships, Carbohydrate Polymers, 28,3-14 (1995).
Kamiya A, Kowallik W, Photoinhibition of glucose uptake in Chlorella, Plant Cell physiology, 28(4), 611-619 (1987).



Liang Y., Sarkany N. and Cui Y. Biomass and lipid productivies of Chlorella vulgaris under autotrophic, heterotrophic and mixtrophic growth conditions, Biotechnol Lett, 31, 1043–1049 (2009)
Manners D. J., Masson A. J. and Patterson, J. C., Structure of a
β-(1?3)-D-glucan from yeast cell walls. Biochemical Journal,135(1), 19-30 (1973).
Campbell N. A., Reece J. B., 總審校:鐘楊聰,編譯:鐘楊聰、張立雪、
徐歷鵬、黃碧祈, 生物學,第六版,偉明圖書有限公司 (2005)
Ogbonna J. C. and Tanaka H. Light requirement and photosynthetic cell cultivation – Development of processes for efficient light utilization in photobioreactors. Journal of Applied phycology 12, 207-218 (2000).
O’Reilly A.M., Scott J.A., Enzyme Microb. Technol. 17, 636-646 (1995).
Pisman T. I. and Somova L. A. Interaction of a mixed yeast culture in an “autotroph-hetrotroph” system with a closed atmosphere cycle and spatially separated components. Advance in space Research. 31, 7, 1751-1756 (2003).
Randolph K., Wilson J., Tedesco L., Li L., Pascual L. and Soyeux E. Hyperspectral remote sensing of cyanobacteria in turbid productive water using optically active pigments, chlorophyll a and phycocyanin. Remote sensing of environment 112 4009-4019 (2008).
Sato N., Tsuzuki M. and Kawaguchi A. Glycerolipid synthesis in Chlorella kessleri 11h II. Effect of the CO2 concentration during growth, BIOCHIMICA ET BIOPHYSICA ACTA. 1633, 35– 42 (2003).
Sheng J. , Yu F., Xin Z., Zhao L., Zhu X. and Hu Q. Preparation, identification and their antitumor activities in vitro of polysaccharides from Chlorella pyrenoidosa, Food Chemistry 105, 533-539 (2007).
Shi X. M., Zhang X.U. and Chen F. Heterotrophic production of biomass and lutein by Chlorella protothecoides on various nitrogen sources, ENZYME and MICROBIAL TECHNOLOGY, 27, 312–318 (2000).
Shi Y., Sheng J., Yang F. and Hu Q. Purification and identification of polysaccharide derived from Chlorella pyrenoidosa, Food Chemistry 103, 101-105 (2007).
Sobczuk T. M., Camacho F. G., Rubio F. C., Fernandez F. G. A. and Grima E. M. Carbon dioxide uptake efficiency by outdoor microalgal cultures in tubular airlift photobioreactors. Biotechnology and Bioengineering 67, 465–475 (2000).
Spolaore P., Cassan C. J., Duran E. and Isambert A. Commerical Applications of Microalgae. Journal of bioscience and bioengineering, 101, 2, 87-96. (2006).
Stewart A. C. The chlorophyll-protein complexes of a thermophilic blue-green alga. FEBS LETTERS. 114, 1 (1980).
Sung K. D., Lee J. S., Shin C. S. and Park S. C. Isolation of a new highly CO2 tolerant fresh water microalga Chlorella sp. KR-1. Renewable Energy 16, 1019-1022 (1999).
Tam N. F. Y. and Wong Y.S. Effect of ammonia concentrations on growth of Chlorella vulgaris and nitrogen removal from media, Bioresource Technology, 57, 45-50 (1996).
Ugwu C.U., Aoyagi H.and Uchiyama H. Photobioreactors for mass cultivation of algae. Bioresurce technology, 99, 4021–4028 (2007).
Wang H. X., Ng T. B., Liu W. K., Ooi V. E. and Chang S. T. Polysaccharide-peptide complexes from the culture mycelia of the mushroom Coriolus versicolor and their culture medium activate mouse lymphocytes and macrophages, Int. J. Biochem. Cell Biol., 28, 601-607 (2007).
Wang Y. and Peng J. Growth-associated biosynthesis of astaxanthin in heterotrophic Chlorella zofingiensis (Chloroophyta), World J Microbiol Biotechnol, 24, 1915-1922 (2008).
Young S. H. and Jacobs R. R. Sodium hydroxide-induced conformational change in schizophyllan detected by the fluorescence dye, aniline blue. Carbohydr Res. 310, 91-99.1998.
Zigmantas D., Hiller R. G., Sundstrom V. and Polıvka T. Carotenoid to chlorophyll energy transfer in the peridinin-chlorophyll-a-protein complex involves an intramolecular charge transfer state. PNAS. 99, 26 16760-16765, (2002).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 8. 王霜媚,〈孫吳政權的成立與南北勢力的興替〉,《食貨月刊》第10卷第3期,台北,食貨月刊社,1980年。
2. 劉仲康, “神奇的酵母菌” , 科學月刊, 1997。
3. 陳裕星,洪梅珠,林秀儒,”釀酒用酵母菌的篩選與鑑定” ,農政與農情,151期 (2005)。
4. 26. 謝偉傑,〈孫吳「彈性」外交述論〉,《漢學研究》第22卷第1期,2004年。
5. 31. 李長林,〈長沙孫吳簡牘考古大發現〉,《歷史月刊》1997年8月號。
6. 34. 魏斌,〈孫吳年號與符瑞問題〉,《漢學研究》第27卷第1期,2009年。
7. 52. 黃俊文,〈孫吳的政治結構〉,《史苑》第41期,1985年。
8. 74. 高亞偉,〈孫吳開闢蠻越考〉,《大陸雜誌》第7卷第7、8期。
9. 79. 范家偉,〈六朝時期人口遷移與嶺南地區瘴氣病〉,《漢學研究》第16卷第1期。
10. 81. 孫海石,〈論三國謀略之軍事與歷史意義〉,《九州學刊》第6卷第1期,1993年。
11. 85. 錢國盈,〈三國時期的天命思想〉,《嘉南學報》第27期,2001年。
12. 93. 蔡學海,〈三國的人口問題〉,《東海大學歷史學報》第三期,台中,東海大學歷史研究所、歷史系,1978年。
13. 95. 詹士模,〈東漢末三國時期的人口移動〉,《嘉義大學學報》第71期,2000年。
14. 96. 鄒紀萬,〈三國人才現象與人物類型〉,《輔仁歷史學報》第8期,1996年。
15. 108. 龐聖偉,〈論三國時代之大族〉,《新亞學報》第6期。